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Efficient Walking Gait Generation via Principal
Component Representation of Optimal Trajectories:

Application to a Planar Biped Robot
With Elastic Joints

Gian Maria Gasparri , Silvia Manara , Danilo Caporale , Giuseppe Averta , Manuel Bonilla ,
Hamal Marino, Manuel Catalano , Giorgio Grioli , Matteo Bianchi , Antonio Bicchi , and Manolo Garabini

Abstract—Recently, the method of choice to exploit robot dy-
namics for efficient walking is numerical optimization (NO). The
main drawback in NO is the computational complexity, which
strongly affects the time demand of the solution. Several strate-
gies can be used to make the optimization more treatable and to
efficiently describe the solution set. In this letter, we present an
algorithm to encode effective walking references, generated offline
via numerical optimization, extracting a limited number of princi-
pal components and using them as a basis of optimal motions. By
combining these components, a good approximation of the optimal
gaits can be generated at run time. The advantages of the presented
approach are discussed, and an extensive experimental validation
is carried out on a planar legged robot with elastic joints. The biped
thus controlled is able to start and stop walking on a treadmill, and
to control its speed dynamically as the treadmill speed changes.

Index Terms—Humanoid robots, legged locomotion, optimiza-
tion, principal component analysis.

I. INTRODUCTION

THE energy efficiency of robotic locomotion is strongly re-
lated to the careful exploitation of the natural dynamics of

the robots. For example, looking at passive and heavily under-
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actuated bipeds, a fine tuned design and control is crucial to get
[1]–[3] highly efficient systems. However, these robots still ex-
hibit limited flexibility if compared to fully actuated humanoids,
which, on the other hand, present a high Cost of Transport
(CoT) [1], [4]. Main reasons for this poor energy performance
of humanoids can be ascribed to the mismatch between the
complexity of robot dynamics and the oversimplified modeling
(e.g., cart-table, spring loaded inverted pendulum, etc.), which
is usually employed for robotic locomotion planning [5]–[7].

Such a mismatch is even more evident in the emerging gen-
eration of elastic joint robots (e.g., [8], [9]) since the actuation
compliance, purposefully introduced in the mechanical design
to guarantee robustness [10], efficiency [11], peak performance
[12], is usually neglected or not properly taken into account.

NO could represent a viable approach to tackle this issue
and hence take advantage of the full robot dynamics for motion
planning. Recently, in [13] NO was applied to plan the walking
motion of a 23 Degree-of-Freedom (DoF) humanoid robot. The
results show a cost of transport slightly above 1, which currently
represents the best performance achievable with fully actuated
humanoids. However, NO comes with a cost, which is related to
time demand: e.g., the footstep optimization presented in [13]
requires from 910 to 380 seconds. For these reasons, to success-
fully use NO for online applications, a suitable combination
of off-line and on-line computations is required. This usually
implies the off-line evaluation of a large set of trajectories and
their encoding. For example, in [14] relevant features of opti-
mal walking trajectories (e.g., cost of transport and trajectory of
the center of mass) were encoded via quadratic functions of the
initial state and footsteps.

In [15] the authors moved from an off-line dataset of optimal
gaits, and applied supervised learning to identify state-variable
feedback control policies to manage speed transition and distur-
bance rejection.

In [16] walking gaits were synthesized via motion primi-
tives [17]. A similar approach is commonly used also in com-
puter graphics [18], [19]. In [18] Principal Component Analysis
(PCA) was employed to encode a large set of behaviors (from
an existing motion capture database) in motion primitives to
animate a 60 DoF character. In [19] reinforcement learning was
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Fig. 1. A six DoF biped robot (in red), named SoftLegs, walks on a treadmill
(in blue) and a target (in yellow) is placed in front of it. An infrared sensor
(in green) retrieves the current distance d∗ of the robot from the target. Given
the desired distance d̂, the task goal is to regulate the error d̃ = d̂ − d∗ while
the treadmill speed changes from 0.3 km/h to 0.7 km/h. The proposed control
approach includes a PI controller C(d̃) that provides as output the forward
speed of the robot v. Then the principal component combination generates the
desired motor trajectories θ that approximate the optimal (i.e. efficient) gait at
the given speed v.

adopted to synthesize locomotion controllers that correspond to
specific motion skills (e.g., jumping movements extracted from
a motion capture database).

In [16] parametric motion primitives were learned from a
dataset of optimized trajectories. Once the motion primitives
were defined, their parameters were used as optimization vari-
ables to synthesize trajectories not belonging to the original
dataset.

In this letter, we present an approach that allows to drastically
reduce the space complexity of the original data set. Further-
more, it also enables the robot to update its stride on-line and to
synthesize gaits not belonging to the original data set (avoiding
further optimizations that are required e.g., in [16]).

More specifically, we propose a technique that leverages upon
NO (see e.g., [13]), and dimensionality reduction of PCA for
on-line planning of efficient locomotion of robots with elastic
actuation. We built a set of optimized gaits for different speeds
and swinging foot clearances. The gaits we obtained minimize
robot energy consumption fulfilling both stability and dynamic
feasibility requirements, while a reduced representation of the
set of optimal gaits was identified through PCA. Similarly to
[16], the relationship between the principal component (PC)
weights and task parameters (namely, forward speed and step
clearance) was approximated by a parametric representation,
named Component Map (CM), while a mostly feed-forward
strategy was used to preserve the mechanical compliance of the
system introduced by design as in [20] – which is not generally
guaranteed by learning a feedback policy (which was described
e.g., in [15]).

One of the main contributions of our work is the extensive
numerical and experimental validation of the method on a planar
biped robot powered by compliant actuators (see Fig. 1) named
SoftLegs. Numerical results show that: (i) only two PCs are
needed to satisfactorily reconstruct a walk (explained variance
99%) and, (ii) CMs allow to reduce the complexity of the original
data set by two orders of magnitude.

Fig. 2. Model of the biped: biped kinematics 2(a), kinematic and dynamic
parameters 2(b), scheme and parameters of the SEA 2(c). The link and the
motor displacement are represented by q and θ respectively, k is the elastic
transmission stiffness and b the motor damping (more details in the appendix).
Quantities in table are named in analogy with their biological counterparts.

Finally, experiments demonstrated that with our techniques
the robot was able to successfully start and stop walking, per-
form transitions between different forward speeds, and walk on
a treadmill while the velocity of the belt changed (see Fig. 1).

II. PROBLEM DEFINITION

In this section we compare the CoT given by optimized walk-
ing gaits with the CoT obtained by using a classical ZMP based
method. The comparison is carried out on a six DoF planar biped
(a scheme is reported in Fig. 2(a), (b).

The biped is composed of two planar three-DoF legs, con-
nected to a pelvis on which a one-DoF trunk is mounted. Each
joint of the robot is powered by a Series Elastic Actuator (SEA)
[21]. The parameters of the motor dynamics are showed in
Fig. 2(c) (details in appendix).

Given desired forward speed v and swing foot clearance fh ,
we derive, in accordance to [22], the robot step length:

s = ανβ , (1)

where s = S/l is the normalized step length, l is the leg length
and ν = v/

√
lg is the normalized speed. The stride parameter

sets used in the study are: fh = [0.01, 0.03 ] m with a granular-
ity of 5 mm, and v = [0.04, 0.5] m/s with a granularity of 1 cm/s.
These choices resulted in 485 trajectories. The upper bound of
the velocity range has been chosen to include the walk-to-run
transition speed1 in order to guarantee to span dynamic gaits,
while the lower bound was selected to allow a smooth transition
to the standing posture. The swing-foot clearance range has been
chosen to avoid compass gaits (discovered by the optimizer for
fh = 0) by preferring more practical gaits up to a step height
equal to ten percent of the leg length.

For the sake of clarity, a detailed formulation of the optimal
control problem to derive a walking gait is provided in appendix.
As examples we show in Fig. 3 the photo sequence of two
optimal walks.

The ZMP-based trajectories were determined according to
[5]. Combining step parameters and centre-of-mass evolution,
it is possible to obtain the link trajectories, and, through inverse

1The walk-run transition speed, defined as the speed at which running be-
comes more convenient than walking [23], has been determined with another
optimization campaign whose results is not included due to space limits
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Fig. 3. Photo sequence of two optimal gaits for two different forward speeds:
on the top v = 0.1 m/s and on the bottom v = 0.5 m/s. The feet are colored in
white when in contact with the ground.

Fig. 4. 4(a) Comparison between ZMP-based and NO-based CoT at different
speed averaged over the swing/foot step height. 4(b) Stance leg configuration
at different speed. 4(c) Squared torque evolution of Stance (top) and Swing
(bottom) leg for a ZMP-based and NO-based step for two different forward
speed v = 0.1 m/s and fh = 0.03 m.

dynamics, motor positions and torques to finally evaluate the
CoT.

Fig. 4(a) presents the values of the CoT of the two approaches
over a range of forward speeds. The simulations show that the
NO gaits perform at least four times better if compared to the
ZMP based gaits. Fig. 4(c) shows the joint torques during the
walking cycle for the case with ν = 0.1 m/s and fh = 0.03 cm.
It is possible to notice that there are minor differences in the
swinging leg squared torques of the two methods. Conversely

Fig. 5. Motor trajectories of Σ (in gray) and a representative trajectory (in
black).

the stance leg squared torques of NO are substantially lower than
ZMP ones. This because NO fully exploits the leg singularity in
the central part of the motion [see Fig. 4(b)]. The application of
NO presents one major limitation: for the majority of cases of
practical interest the optimization problems are too complex to
be solved at run time.

III. OPTIMAL GAIT ENCODING VIA PRINCIPAL COMPONENTS

In this section we apply PCA to encode the data set of optimal
trajectories into a small set of PCs and their weights. Then we in-
terpolate the dependence of the weights on the walk parameters
through a CM.

The starting dataset is determined as follows. Assume that:
(i) the robot is composed of nj joints, (ii) the trajectories are
described by nt sample times, (iii) the walking task is described
by np parameters (e.g., forward speed, step height, lateral speed,
etc...) and (iv) ns(i) parameter samples are needed to explore
the range of the i-th parameter. Hence, the starting data set can
be stored in a matrix Σ ∈ Rmj t ×ms p , where mjt = nj ×nt and
msp = Πnp

i=1ns(i). Σ has been evaluated accordingly to Section
II (np = 2, ns = {5, 95}). In Fig. 5 we report the complete
set of trajectories for Hip, Knee, and Ankle used in this study.
Fig. 5 suggests a strong correlation between motor trajectories,
motivating the application of motion primitives.

A. Principal Components Analysis

Among the many methods proposed to identify motion prim-
itives (e.g., radial basis function, gaussian process, etc), we
decide to rely on PCA which represents an effective compro-
mise between complexity and computational cost. PCA uses an
orthogonal transformation to convert a set of possibly correlated
variables, to which the mean value of each observation is sub-
tracted, into a set of values of linearly uncorrelated components,
called PCs. In order to apply the PCA to the robot trajectories we
proceed as follows. Each motor trajectory θj ∈ Rnt of the start-
ing set is split into two components: its mean value θ̄j ∈ R and
a null mean vector θ̃j = θj − θ̄j for j ∈ {1, . . . , nj}. Hence
Σ can be described by two matrices: Σm ∈ Rmj t ×ms p and
Σp ∈ Rnj ×ms p . Each column of Σm is a vector composed of
[θ̃1, . . . , θ̃nj ]T . Each column of Σp is a vector composed of
[θ̄1, . . . , θ̄nj ]T that represents the robot mean pose (hereinafter
Pose) of the corresponding movement (column) in Σ. We ap-
plied PCA to Σm and Σp for the case study of the planar biped
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TABLE I
EXPLAINED VARIANCE AS A FUNCTION OF THE COMBINATION OF AN

INCREASING NUMBER OF PRINCIPAL COMPONENTS

N PC Σm Σp RMSE

1 87.04% 98.81% 0.06
2 98.75% ≃100% 0.017
3 99.43% ≃100% 0.005

TABLE II
SPACE COMPLEXITY COMPARISON

Σ PCs PCs + CMs

O(N ) O(mjt mps ) O(pkm (mjt + mps ) O(pkm (mjt + dn p )
+pkp (nj + mps )) +pkp (nj + dn p ))

N 87300 2312 408

robot with elastic joints (nj = 6, nt = 30). The variance ex-
plained by the PCs, reported in Table I, shows that few principal
components account for a large amount of variation in both Σm

and Σp . This leads to hypothesize that all the trajectories of Σ
can be reconstructed with high precision using only two PCs
from a set of 180 PCs.

In the following we evaluate how much the space com-
plexity of Σ can be reduced via the application of PCs.
Let O(mjtmsp) and O(njmsp) be the space complexities
of Σm and Σp respectively. Let pkm be the chosen num-
ber of PCs to represent the robot movements, Σm can be
encoded in the eigenvector matrix Σm,e ∈ Rmj t ×pk m and in
the weight matrix Σm,w ∈ Rpk m ×ms p . Let pkp be the chosen
number of PCs to represent the robot Poses, the same proce-
dure can be adopted for Σp . This results in a total complexity
of O(pkm (mjt + msp) + pkp (nj + mps)). Table II reports the
data related to the case study presented in this letter.

B. Component Maps

Since in practical cases msp ≫ mjt it is worth to further
encode the weight dependence on the task parameters. This can
be achieved by exploiting second order polynomial functions. In
Fig. 6 we present the results of the approximation of the weight
dependence on v and fh for both trajectories and Pose.

The very low values of RMSE suggest that the CMs can
approximate Σm,w and Σp,w . To quantify the level of approxi-
mation introduced by applying the CMs we evaluated the RMSE
in the reconstruction of the trajectories of Σ. The results of PCs
only and the combination of PCs and CMs are compared in
Fig. 7(a). Moreover, in Fig. 7(b), we report the performance
of the two approaches in the reconstruction of a novel set of
optimal trajectories not included in Σ. Both the validation tests
show that the reconstruction errors in case of combination of
PCs and CMs are comparable to the ones in case of PCs only.

The reduction in the space complexity of Σm,w and Σp,w

allowed by the encoding via CMs is evaluated in the following.
Assuming that CMs are polynomial functions of order d in each

Fig. 6. Principal Component Mapping functions. Surfaces represent the CMs,
while the points represents the actual PC weights (Raw Data). First PC weight
of Σm ,w (a), second PC weight of Σm ,w (b), first PC weight of Σp ,w (c),
second PC weight of Σp ,w (d). Each CM is a second order polynomial on each
stride variable. The CMs approximate worse both the pose and trajectory PCs
for higher speed levels. This explains the RMSE trend in Fig. 7(a). However, this
phenomenon occurs just at the boundaries of the explored region of parameters
and produces a low RMSE on the whole set.

Fig. 7. RMSE of the reconstruction of the optimal trajectories via two PCs
(green) and via the combination of PCs and CMs (red). Panel (a) shows the error
obtained approximating Σ, while panel (b) shows the same for a new validation
set.

Fig. 8. SoftLegs experimental setup: side view (left), and front view (right).
The system is composed of two planar legs (2) with three degrees of freedom
each and a trunk mounted on the robot pelvis (1). The flat feet are equipped
with four force sensors each (4). An external structure (3) constraints the robot
to move in its sagittal plane.
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parameter, an upper bound of the space complexity of each
CM is O(dnp ). Hence the total complexity of Σm,w after the
encoding becomes O(pkm mjt + pkm dnp ). The same holds for
Σp,w . The complete complexity analysis is reported in Table II.

In conclusion, both PCs and PCs plus CMs show a low RMSE
when reconstructing the trajectories of Σ. Moreover, the space
complexity of Σ is reduced by one order of magnitude via PCs
and two orders of magnitude via PCs plus CMs.

IV. EXPERIMENTAL VALIDATION

The proposed approach has been experimentally validated
in the following cases: (i) constant speed, (ii) variable speed
with off-line computation of controls via PC combination, (iii)
variable speed with on-line computation of controls via PCs and
CMs.

The experimental setup is shown in Fig. 2(a). Each joint
of the robot is actuated by a qbmove Advanced (an improved
version of [24]). Eight spherical bearings, rolling on two parallel
walls, constrain the robot trunk in the sagittal plane. A four bar
mechanism drives the ankle joints. Above the centre of rotation
of each of them are located the ankle actuators. To retrieve
contact forces, four Opto Force sensors ([25]) are mounted in
the sole of each foot.

The qbmove actuator dynamics is modelled here as:

I θ̈ + bθ̇ = − h(δ,σ) + u , (2)

where θ, θ̇, θ̈ are the motor position, speed and acceleration
respectively, σ is the stiffness adjuster, I is the motor inertia and
b is the damping coefficient. h(δ,σ) represents the nonlinear
elastic characteristic of the actuator (see [24], [26] for more
details). In the following, we consider the linearized actuator
stiffness at δ̄ = 0, i.e.

k =
∂h(δ,σ)

∂δ

∣∣∣∣
δ̄=0

. (3)

Given the stiffness adjuster which reproduces the stiffness
used in the optimization, the motor position is set to replicate
the optimal behavior returned by the numerical optimization.
Reference tracking is guaranteed by a PID control on motor
position, i.e. there is no direct feedback of the link position.
The motor dynamic parameters are reported in Fig. 2(c). The
optimization results are concatenated coherently with the robot
phase (single or double) to accomplish the locomotion task for
several steps. The transition between the initial steady state con-
figuration, and the regime is obtained with few steps generated
by low pass filtering the optimal trajectories. The same proce-
dure is used, in reverse, to stop the robot.

A. Walking with PCs - Constant Speed

In the first experiment we evaluate the walking capability
of the robot driven by (i) the nominal optimal trajectories, (ii)
the ones related to the first PC (for both trajectory and pose),
and (iii) the ones obtained through the combination of the first
and second PCs. The nominal walking conditions are generated
for a forward speed of v = 0.1 m/s with foot clearance fh =
0.015 m. Fig. 9(a) presents the measured joint values of the left

Fig. 9. a) Link measurements of the left leg joint (H,K,A for Hip, Knee and
Ankle) obtained by applying: optimal trajectories (Meas N), the first PC (Meas
1 PC) and the combination of the first two PCs (Meas 2 PCs). The signals are
compared to the link measurements returned by the optimization (Nominal). b)
Photo sequence of the experiment for the speed v = 0.1 m/s and foot clearance
fh = 0.015 m.

leg. In the case of two PCs the RMSE of the left leg joints per
sample, hereinafter JRMSE, is comparable to the one obtained
for the nominal case (JRMSE = 0.0028) which is almost the
half of the one obtained in the case of application of just the
first PC, (JRMSE = 0.0056). Moreover it is possible to argue
that the obtained trajectories are dynamically consistent and that
a small set of PCs can be successfully applied to reproduce a
walk. Fig. 9(b) shows the photo sequence of the experimental
result obtained by applying two PCs.

B. Walking with PCs and with PCs and CMs–Speed Variation

In the second experiment we evaluate the applicability of the
PC combination in case of speed variation. Firstly, PCs are used
to compute off-line motor references for the cases v1 = 0.1 m/s
and v2 = 0.04 m/s with fh = 0.015 m. (Other case studies have
been tested, e.g., v1 = 0.1, v2 = 0.2 m/s, but are not reported
here due to space limitations). Then, the transition from v1 to
v2 and viceversa is obtained simply switching PC weights and
mean poses when the error between the motor references is
minimum in norm. The desired and measured link positions are
presented in Fig. 10(a) and (b). These results show that it is
possible to modify the robot speed by a proper switch of the
references obtained by PC combination.

In the final experiment the biped is placed on a treadmill
(Home Track HT2000 min/max speed: {0.03, 16} km/h) and an
on-line control policy adjust the biped speed v in order to main-
tain a desired position d̂ = 0.4 m, while the treadmill velocity
is varied (see the attached video). The external structure, which
constrains the robot motion, is adapted to the treadmill. An in-
frared distance sensor, SHARP 2y0a21, is mounted on the biped
trunk and retrieves the robot distance d∗ from a target placed in
front of the robot (see Fig. 1). When the treadmill is activated the
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Fig. 10. Experimental robot behaviour during the speed transients: accelerating from 0.04 m/s to 0.1 m/s (a) and decelerating from 0.1 m/s to 0.04 m/s (b). Top
three plots show the desired (Des) and measured (Meas) values of the Link positions of Hip (H), Knee (K), Ankle (A). Bottom plot shows the contact forces of the
two feet.

Fig. 11. Experimental results of the treadmill experiments. In (a) the robot Distance (in orange) is showed while the treadmill speed T.Speed is modified. The
time line of the varying T.Speed is colored in black. The speed reference provided to the robot, Speed, is reported in blue in figure. On treadmill time line two
intervals are colored in red and in green respectively, which refer to the slowest and fastest experimental case, i.e. 0.3 km/h in (b) and 0.7 km/h in (c). Of these
intervals, on the top of the figure the motor positions (H,K,A for Hip, Knee and Ankle) are showed while on the bottom the contact forces (Left and Right foot)
are presented.

robot speed reference v = C(d̃) is provided by a PI controller
which uses as input the distance error d̃ = d̂ − d∗. Obtained v
and given fh the CMs return the PC weight vector λ which is
then used to combine the PCs and to obtain the motor references
θ. These signals are interpolated and resampled at Ts = 0.004 s,
i.e. the motor position control runs at 250 Hz while the speed
control loop runs at a sample rate of 100 Hz. Control strategy,
PCs and CMs, and signals management are implemented in
C++/ROS and run on an Intel Core i7 ThinkPad Notebook.
Fig. 1 shows the experimental setup and control scheme while
Fig. 11 presents the experimental results. In Fig. 11(a) d∗ (Dis-

tance in figure) is always within a neighborhood of d̂ throughout
all the experiment, i.e. the control action successfully adapts
the robot gait in response to the varying treadmill speed (mean
distance 0.38 m, min distance 0.26 m, max distance 0.48 m).
We also notice that v (Speed in figure) is larger than the
treadmill speed (T.Speed in figure). This is probably due to the
not negligible friction on the supporting structure and to the
elasticity of the treadmill belt both not considered in the model.

Two time intervals are colored in red and in green which refer
to the slowest and fastest experimental conditions respectively,
i.e. [0.3,0.7] km/h. Fig. 11(b) shows the desired and current
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motor position of the left leg joints and contact forces for the
slowest speed case. Fig. 11(c) presents analogous signals for
the fastest speed case. The experimental result suggests that
the considered transition policy and the application of PCs and
CMs is indeed admissible. Due to space limitations, in this work
we privileged the presentation of experimental validation of the
trajectories at different forward speeds over step height since this
is the most important parameter toward the distance regulation
test.

C. Robot Performance Evaluation

By applying PCs plus CMs the robot successfully
adapted its stride to match the treadmill speed by us-
ing a reduced parameter set and approximating solutions
for unknown case studies. It is worth noting that ex-
plored tasks cover both static and dynamic gaits. The
sum of the norm of the inertial, Coriolis and centrifugal
joint torques ||τM C ||2 = [3.52, 7.62, 12.01, 14.37, 19.06]T

Nm, and the sum of the norm of the gravitational joint
torques ||τG ||2 = [9.99, 12.50, 14.74, 16.68, 18.55]T Nm,
have been evaluated for the following forward speeds v =
[0.05, 0.1, 0.15, 0.20, 0.25] m/s. The results show that at low
speeds the gravitational torques play the most important role,
while at higher speeds the dynamic torques become larger.

The stability evaluation of the approximated trajectories has
not been considered in this letter. A strategy to guarantee the
fulfillment of the first-order approximation of the constraints in
case of application of the approximated trajectories has been
investigated in [27]. Future works will merge this idea with the
approach presented in this letter.

V. CONCLUSION

In this work numerical optimization has been used to obtain
a data set of optimal and efficient locomotion patterns for a
six-DoF biped with compliant actuation.

Then PCA and polynomial regression were applied to the
trajectories belonging to the data set. This allowed to synthe-
size gaits that approximate the ones of the data set with a low
number of parameters, facilitating the on-line generation of new
trajectories.

Finally, this approach has been extensively experimentally
validated on a planar biped robot with elastic joints.

Future works will be devoted to make a comparison of our
approach with other state-of-art works as [16] and to exploit
the reduced representation to optimize trajectories on-line, so
as to react to possible external disturbances. The validation of
optimal 3D efficient walk for [8] is an ongoing work.

APPENDIX

Let na = 6 be the number of the robot actuated joints,
q ∈ Rna and θ ∈ Rna be the link and motor position vectors
respectively and q̇, q̈, θ̇, θ̈ their time derivatives. The output
shaft of each j-th motor is connected to the j-th joint link via
a viscoelastic transmission whose parameters are the stiffness
kj and the damping bj with j ∈ {1, . . . , na}.

Let δ ∈ Rna be the deflection vector of the elastic elements
and u ∈ Rna be the motor torques. Defined the stiffness, damp-
ing and motor inertia matrices K = diag(kj ), B = diag(bj ),
I = diag(Ij ) with Ij the j-th motor inertia, the actuator dynam-
ics is reported in (5).

Let qp ∈ Rnn a with nna = 3 be the vector which uniquely
describes the robot position in the sagittal plane, i.e. qp =
[px, py ,φ] where px and py are the translation and φ the ro-
tation terms. The dynamics of the system reads:
⎧
⎪⎨

⎪⎩

M(ξ)ξ̈ + n(ξ, ξ̇) +
∑np i

i=1J⊤
i wi = Q(k, δ, q̇), (4)

I θ̈ + Bθ̇ + Kδ = u (5)
Ji ξ̈ = γi , i = {1, . . . , npi } (6)

where ξ = [qp , q]T is the robot configuration vector and ξ̇, ξ̈
are its time derivatives. M(ξ) is the robot inertia matrix, n(ξ, ξ̇)
is the vector of nonlinear contributions due to gravity, centrifu-
gal and Coriolis effects and the remaining terms of (4) describe
the effects of the exerted forces and motor couplings. In par-
ticular the j-th component of the vector of generalized forces
Q(K, δ, q̇) can be expressed as Qj = kj δj − fj q̇j with fj the
j-th friction term in case the j-th DoF is actuated, Qj = 0 oth-
erwise. wi ∈ R3 is the planar external wrench acting on the i-th
support foot at its contact point pi , whose Jacobian is Ji . Finally,
npi is the number of feet that are in contact with the ground.

During the contact, neither sliding nor interpenetration be-
tween the foot and the ground are allowed, these result in holo-
nomic constraints on the position of the foot ci(ξ). These con-
straints must be taken into account in the dynamics, through
the additional equations in (6) where Ji = ∂ci/∂ξ and γi =
− ((∂Ji/∂ξ)ξ̇)ξ̇.

A multiphase formulation is employed to describe the dy-
namics of the robot through the different contact phases.

The Optimal Control Problem (OCP) that has to be solved in
order to obtain the walking trajectories can be stated as follows:

min
x(·),u(·),w (·),ts

∫ Th

0

∥u(t)∥2

mgS
dt (7)

s.t. Fc(x(t), ẋ(t), w(t), u(t),K) = 0, c ∈ C
(8)

∆(x(t+s ), x(t−s )) = 0 (9)

xred(0) = Πxred(Th) (10)

h(x(t), u(t), w(t), fh ) ≥ 0 (11)

where x = (ξ, θ, ξ̇, θ̇)⊤ indicates the state of the system.
We assume the mean speed in the locomotion direction is

given, as we prescribe both the step length S and the gait period
T . In (7), we minimize the CoT. A cost index that realisti-
cally represents the energy consumption of an electrical pow-
ered geared motor is complex as this would require the modeling
of both electrical and mechanical dynamics, see e.g., [28]. To
enhance the tractability of the problem, we relate the actua-
tor energy consumption to the squared torque which, with the
squared power, is one of the two cost indices most commonly
used in literature (e.g., [13]). This choice appears particularly
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appropriate due to the characteristics of SoftLegs actuators, that
are electrically powered and backdrivable. This makes the en-
ergy efficiency of the system strictly related to the intensity of
the torques. In (8), the function Fc(·) represents the dynamics
of the system during the c-th contact phase. Because of peri-
odicity and symmetry, the set of contact phases is C = {1, 2},
where 1 and 2 represent the single and the double support phase
respectively. In (9), the function ∆(·) represents the state dis-
continuity at the phase change occurring at time ts ∈ [0, Th ]
where Th = T/2, caused by the impact of the floating foot with
the ground. In (10) the gait is constrained to be periodic, by
imposing the relation between xred(0) and xred(Th). The addi-
tional inequality constraints, stated in (11), guarantee that the
external contact wrench w belongs to the static friction cone,
that the contact is unilateral and that the Center of Pressure
(CoP) is inside the support area. Moreover, limits on joint posi-
tions and velocities, as well as on motor torques, are imposed.
Finally, during the single support phase, a minimum foot clear-
ance fh is ensured between the floating foot and the ground. The
OCP was solved numerically, by employing a direct collocation
method [29]. Specifically, this method consists in: i) discretiz-
ing the time horizon into a finite sequence of time intervals,
consistently parameterizing the state and control trajectories by
finite sequences of optimization variables, ii) solving the re-
sulting finite-dimensional nonlinear program (NLP) through a
Newton-based solver.

Specifically, the problem was formulated in the CasADi
framework [30] and solved numerically, using the interior-point
solver IPOPT [31]. 485 OCPs have been solved successfully
and, despite the problem complexity, each optimization lasted
on average about 56 seconds. This method is not free from lo-
cal minima and the global optimal solution search is out of the
purpose of this work. Future works will include strategies to
avoid local minima, such as convex relaxation of the nonlinear
programming problem.
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