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Abstract, This paper deals with the problem of controlling the interactions of flexible manipulators with their
environment. For execnting a force control task, a manipulater with intrinsic (mechanic) compliance has some
advantages over 2 rgid manipulator. On the other hand, the deformations of the arm under the applied load
give tise to atrors in the evaluation of the kinematic model of the arm based on its rigid model. Since force
feedback is usually provided by 2 force/torque sensor placed at the end-effector, kinematic errors reflect in
force sensing errors, when a force task is specified in the world frame. This paper addresses the problem of
evaluating these errors, and of compensating for them with suitable joint angle corrections. A solution to this
problem is proposed in the simplifying assumptions that an accurate model of the arm flexibility is known, and

that quasi-static corrections are of interest.
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1. INTRODUCTION

Force control of manipulators in interaction with the environment
poses a sumber of difficult problems, as abundantly illustrated in
literature (a classical review is given by Whitney [1937]}. Prob-
ably, the most important of these problems is the tendency of
force conirol loops to become unstable in presence of small per-
surbations of the model parameters used to design the controller,
due to the high stiffness of the manipulator-environment system.
Reducing this stiffneds certainly represents a vizble way of al-
leviating force controt problems: a more precise formulation of
this conceps can be found in [Roberts, Paul, and Hillberry, 1985],
[Eppinger and Seering, 1987], and [Chion and Shahinpoor, 1990).
This observation suggests an interesting application of flexible
robots, that might enconrage to design futurs robots with a built-
in compliance. Besides this advantage, the design of lightweighs,
slender link robot arms meets other important requirements in
applications suck as space or underwater, and could reduce the
cost of robot arms.

However, if the manipulator is composed of flexible links,
and/or its joints are compilant, the positioning accuracy of the
robot may result greatly reduced. The computation of the for-
ward kinematics is affected by ervors due to the deformations of
its structyre caused by contact forces. Also, assuming that the
structaral characteristics of the links are known, and that mea-
sures are available of its stress siate (for example through strain
gauges sensors}, it is possible to determine the real position of
the end effector, and to compute the applied force, ie. to use
the rabot as a force sensor, see {Richter and Pfeiffer, 1991]. The
goal of this paper is to compute the optimal joint position in
order to minimize the error in a force-control task, given a locat
{wrist} force sensor and joint position information. This prob-
lem is basically regarded as a planning phase preceding real-time
implementation, so that a quasi-static assumption is made, and
dynamic effects of Bexibility are disregarded.

A first difficulty arises from the fact that the force sensor is
gsually located as close as possible to the end-effector: the mea-
sured force is expressed in a reference frame whose position and
orientation in the world frame depend in turn on the elastic defor-
mations. A consequence is that the force information provided

by the sensors can mot be directly used in the force and posi- _
tion control loops. However, a recursive algorithm is presented

to compute that position and orientation based on a model of
the arm compliance, without resorting on any direct measure of

the deformations. A substaptially equivalent method has been
presented by Fresonke, Hernandez, and Tesar {1988]).

Once the deflections of the arm uader the givem load are
known, appropriate corrections of the robot inputs can be applied .
to minimize the force/position errors due to flexibility. Since the
overzll deflection of the robot is comprised of both jeint and link
flexibilities, the determination of this correction is not trivial. In
geneeal, the modification that may be applied to the joint inputs
will be able to compensate only in part for the deformation of the
manipnlator. The proposed method is framed in the context of
nonlinear optimization, and may homogeneously consider both
the case of defective and redundant manipulators.

The paper is organized as follows. In section 2, the model
considered for the links of the flexible manipulator is described,
and the mair assumptions used in thiz paper explained. Ir sec-
tion 3 the problem of the force error compensation is formuiated
as a minimization problem, and an algorithm for its solution is
presented. Section 4 describes some specific details of the algo-
rithm in the context under consideration, while section 5 reports
some examples. The final section § concludes with comments
about the suggested technique and pians for future activity.

2. MODEL OF A FLEXIBLE ARM

The general structure of a flexible arm dynamics can be deseribed
by a set of partial differential eguations, of degree two for the
torsiopal and axjali modes, and four for the bending modes of the
links. Consider for instance the simple manipulator link depicted
in Fig. 1, with constant cross-section and lying in 2 harizontal
piane. In this case, caly the axial and bending deflections of the
link in the plane are of interest. The axial and bending dynamics
can be written as

Pz F=z

EA—aC,., -ppE = 0 03]
I

EJB_C" + PHa = 0 {2)

where ( is the coordinate along the undeformed beam axis, z =
z((,t) is the displacement at time t of the section iritially in (,
E is the elastic modulus, p the mass per nnit length, J is the
cross-sectional moment of inertia, and y is defined as y((,t} =
w{{,1) + (g {see [Korolov and Chen, 1988}), being w the elastic
dispiacernent measured from the undeformed axis (see Fig. 1),
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and g the nominal (hub) position of the joint. Note that lumped
Jjoint elasticity is not considered in this exarmple.

The overall manipulator dyramic relationship can be built
{for serial link arms) by concatenating differential equations of
this type by their boundary conditions. When only quasi-static
conditions are considered, dynamical terms in the relationships
above can be negiected. Thersfore, eq.(1} and eq.(2) reduce to
the following ordinary differential equations of elastic beams:

2
g—; = 0, {3
g—;-'g = Q. {4)

Deflections of Links under the loads applied at their extremi-
ties can be determined by integrating such relationships. For
instance, integrating eq.(3), eq.(4) with proper boundary condi-
tions, one obtains:

L
bz = T

L, I*m
& = 3t s

I, Im
A= Y ES

where Az, Ay are the displacements of the extremity of the link
along the link axis and normal to it, respectively, and A#f is the
rotation of the link’s end.

In the three-dimensional case, similar relationships hold, and
2 generai linear equation relating the six elastic displacements
of the link’s end with the applied ioad can be written in matrix
form as;

£ ¢ 0 0o o0 @

0 & o 0 o0 &
adl_lo o £ o -& o 1
asj"fo 0o 6 & 0o o m

2 -

0 0 -7 0 & o

0 & 0 0 0o &

where Ad and A# are the displacements and rotation vectors of
the link’s extremity in 3D space, G is the shear modulus of the
Link’s material, and J, is the polar momentum of the beam cross
section.

The forces and torques on the distal ends of the links can be
evaluated by meang of static equilibrium considerations, using the
recursive algorithm illustrated in section 4. The recursive calcu.
lation is started at the last link, where the load coincides with
the robot - environment interaction forces, which are assumed to
be known (by means e.g. of a wrist mounted forea/ftorque sen-
sor). However, this knowledge is relative to a reference frame E
fixed to the end-effector. By solving the elastic displacements' of
every link, the geometric relationship of the end-effector framme
E with the fixed {base) frame B can be found. Therefore, also
the refaticnship between the interaction forces in E and in B is

L ][

B¢
Bm
where BPa is a skew-symmetric matrix equivalent to the cross
product (Fp x), being Bp the vector of the linear displacements
of the end-effector caused by both the flexibility and the kine-
matics of the mechanism, and R ¢ is the corresponding rotation
matrix.
Introducing the symbol #Kg for the foree tranformation ma-

Er
Em

BRE L¢]

BP@ BRE BRE (6)

T
trix, and the vector w = [fT mT] {wrench}, we rewrite for
convenience eq.(6) as

Bor = BKE E,

M

Figure 1: A simple manipulator link and itz elastic model

3. COMPENSATION OF THE FORCE ERRORS

As mentioned in the introduction, our goal is to compensate for
force errors during task exemtion, Le. to compute and apply
proper sei-points to the position/foree controllers of the manip-
ulator’s joints to minimize these errors.

The correction of interaetion force errors may be cast in a
nonlinear optimization problem form. The kernel of the adopted
algorithm is related to the steepest descent method [Press et
al., 1986], and it has been utilized in other fields of robotics,
in particular in the solution of the inverse kinematic problem
for redundant and aon-redundant manipalators, see for instance
[Balestrino, DeMaria and Scavicen, 1984, [Wolovich and Flliots,
1984}, [Sciaviero and Siciliano, 1986, 1988], {Das, Slotine and
Sheridan, 1988].

The basic idea is the following, Define a wrench error as

1, By B :
RGN RR
and a quadratic positive definite function 2s ’
TP
Vie)= == ©

where P it a symmetric positive definite matrix. Because of
equations (6)-(7), the wrench Bw is a function of g, so that
V{e) depends on the joint position vector. The optimal joint
positions q are theee minimizing V(q), and therefore we seck
a control law for the arm joint positions such that the robot
is driven towards the optimal configuration. Since V{q) may be
regarded as a Lyapunav function, the convergence to its minimam
is guaranteed if the position control Iaw is such that the value of
Vis kept decreasing along the trajectories of the system.

In the continnous time domain, the convergence to the mini-
mum is achieved if the following Lyapunov condition is satisfied:

V= ¢'Pa < 0. (10)

where

(OKeEw) 5
e =

being G = Qlfﬁgg.‘i’l the Jacobian matrix of fw. If the update

law for the joint position is chosen as

. (2T PPvry)

= ) [ . Z A

4= +Iaraarre

it can be easily shown that the condition (10} is verified. Sci-
avicco and Siciliano [1988], using the same algorithm for solving
the inverse kinematic problem, pointed out how €q.{12) may be,
for computational convenience, simplified to

§ = AGT Pe,

&= By, Wy - G4 (11)

1GT Pe, A> 0, (12)

(13)

allowing in this case the function V to be negative-definite only
outside a region of the error space containing the stability point

- & = 0. The resulting algorithm is shown as a block diagram in
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Tig. 2.
“ In discrete time, the stability proof of the algorithm is more
complex. A detailed discussion of such proof has been presented



"Kiw(q)

Figure 2: Block diagram of the proposed algerithm.

in [Das, Slotine, and Sheridan, 1988] for the inverse kinematic
solution of redundant manipulators. One of the major maodifica-
tions in discrete time is that, in order both to obtain the max-
imum convergence tate for the scheme and 2o avoid instability
problems. the gain A has to be updated at each sampling pe-
riod T. In fact, given the discrete time version of the Lyapunov
function, eq{9), at ¢ = n»T, ¥, the goal is to make negative
the difference Vay1 — Va. If the joint velocities are computed at
t=nT as

Gn = MG Pe., (19)
the convergence of the algorithm is guaranteed with the choice
1 «P7G,5,GT Pe,

== 15
dn = T TPTG,8,GLPGAS.GL Pen (13)
where S, is a diagonal matrix whose ejements are properly com-
puted to limit the maximum values of GT Pe,, {Das, Slotine,
and Sheridan, 1988].

4. COMPUTATION OF PKg AND G

In order to apply the algoritﬂhm,gt is mecessary to compute the
matrices PKgp and G = 2EET eq.(7), (11). In this sec-
ticn, these two matrices are calculated for = manipulator with a
generic kinematic structure with o degrees-of-freedom.

Computation of K g. The wrench transformasion matrix, see
eq.(8), is defined as

Bp ]
By = E 16
Xz [ Bpy SR ®Rg } (16)

The sub-matrices PR 5 and & Pg are iz general complex functions
of the compliance of the joints, of the link flexibility and of the
Linematics of the manipulator, Since these quantities depend
on the interaction forces and the joint position, in general it is
not trivial to compute K g. A possible and efficient way to
determine this matrix is to use a recursive method, consisting
in computing the effects of the force/torque appiled to the i-th
Link on the (i-1)-th Link, starting with the distal link. These
effects are expressed by a transformation matrix X, with the
same structare as in eq.(16), and such that

wi-1 = K;w; (17)

Therefore, the matrix BY - can be expressed as the product of
the K; as

HKg:KIKgAA.Kg:—HKi (18)

=l

where the generic term K;, according to the hypothesis of small
deformations, can be computed as

K = K pin{ 06K joine (1)K, fre2(#1) (19)

where K; 1in depends on the geometry of the link, K joins on the
joint compliance, and K; stez on the link flexibility. In the foi-
lowing, the expressions of these three transformation matrices are
given, For the sake of simplicity, in the following discussion only
rotational joints are taken into accownt in the kinematic strue-
ture of the manipulator: however, similar considerations may be
domne also for the case of prismatic joints.

The elements of the matrices R xin 20d Pg i kin-aze only fune-
tions of the geometric and kinematic parameters of the i-th iink.
Using the standard Denavit-Hartenberger notation for the de-
seription of the kinematic parameters. the expression of By kin is
the standard rotation mattix about the joint axis, and Pg,kin
may be composed from the elements of the vector
Pitin = (0: C08(Fi-1) + sin{gi—1) sin(@i)d;

a; sin(gi-1) = cos{gi1)sinfen)d;  cos{a)dilT-

The matrix K june i5 composed by the sub-matzices Ri joint
and Py joiney Where Rijoin: = Rot(z;,kuT;} is a rotation ma-
trix about the joint (z) axis, and Pg i jein: 18 composed with the
elements of the vector [ —ai[l — cos{kem)] aisin(kein) O ]T.
ki and 1; are the jeint compliance and the tofque acting on the
joint, respectively.

Finally, the i-th matrix X; sr.- is composed by the submatric
es R; fre- and Py, frexs whose elements are functions of the elas-
tic displacements of the link. The evaluation of such displace-
ments is not an easy task in general. Sophisticated numerical
techniques, such as FEM, can be applied profitadly to this prob-
lem; in other cases, a direct calibration of displacements under
known loads can be a viable solution to obtain a flexibility model
for the arm. For our purposes here, however, 2 rather simple flex-
ibility model for the iinks, considered 23 slender beams with con-
stant section, can suffice. In the hypothesis of small elastic defor-
mations, the relation between the 6-dimensional vector of linear

and rotational displacements of the link [ Adf_‘ﬁu Aﬂfﬂﬁ. ‘
and the applied force £ and torque my is reported in section 2,
eq.(5). The matrix R; .. is computed 25 3 rotation matrix about
an axis parallel to Af; .- of an angle given by the module of
Ab; 1oz As pointed out in [Fresonks, Hernandez and Tesar,
1988}, this approximation is valid as long as small deformations
are assumed.

The recursive computation of eq.(17), starting from the dis-
tal joint for which the force/torque sensor provides B, yields
the deformations generated by the flexibility and the joint com-
pliance, and therefore all the matrices in eq.(18), allowing the
transformation of the force vector from the frame E locatad in
the end-effector to the base frame B.

Computation of G = Q%’. The application of the algorithm

presented in section ;3 requires the computation of the matrix
£

G = L = 2Kz i wihich, in general, both PKg and

Evw are functions of the joint position vector q. Since the wrench

transformation matrix BKg is a function of the joint positions,

see equations (8), (7), the Jacobian matrix G may be computed
as g

_ 3(PKg Fw) _ ST K Fw)

G
da dq

- i n w

= .‘?Sﬁ.x_) Ew+ (‘I:IIK,)%

In general, the computation of this matrix requires the knowl-
edge of the manipulator-environment interaction, eq.{5), for the
calculation of agql. In the following, only the case in which Ew
may be considered constant in the range of motion cansed by
elastic displacements is taken into account. The matrix G may
be computed as

G T Xl e, _q5y
dq

where T is a three-dimensional matrix composed by n T {6x5)
matrices given by

i=-1 n
aK  bin
T = (] Kj,ksnKj,join:Kj,ﬂez)—-é;f”(H K; joins Kj pter K1 in)
1 . .

j=a

. where conventionally we assume Ko, kin = 1.
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Therefore, the generic i-th column of the marrix G is calcu-

lated as
G.‘ = T.’ EW

5. CASE STUDIES

In this section. two examples of the application of the algorithm
are illustrated. The case studies refer to the simulation of two
planar manipulators with rotational joints. The manipulators
are a planar 3 degrees-of-freedom and 2 redundant 5 degrees-
of-freedom planar arm. Although the above reported formuias
are applicable to generic links, for simplicity here dfl the links
of both manipulators have the same geometrical and mechanical
structure, with a circular cross-section with radins 10 mm, and
a leagth of 1000 mm. The material elastic constants are those
of common steel, while for the joints a compliance of k4 = 16°
(Nm/rad) has been assumed. The matrix P is, in both the ex-
amples, an identity matrix with proper dimensional units.

A 3 Degrees-of-Freedom Planar Manipulator. The ma-
nipulator considered in the first example consists of three links
and three rotational joints with parallel axes. A wrench Fw =
[0 10 0 6 0 0] (N)}(¥m) is applied to the tip of the
arm. The initial (undeformed) pose of the manipulator is shown
in Fig. 3.a. The effects of the applied wrench oa the flexible-
compliant structure are reported in Fig. 3.b. Since the joint
encoders are placed before the elastic elements, the arm ap-
pears to the control system to be in the vndeformed config-
aration of Fig. 3.a. In this situation, if the force set-point

T
Boyy = [ 0 10008 30 ] (N}{Nm} is specified, a force

arror e = [ 1.1561 0.067 0 0 0 0.02506 }T {N)-(Nm) re-
sults. In Fig. 3.c the computed corrective actions on the ioint
positions are shown, i.e. the pominal configuration to which the
arm has to be positicned to minimize the force error e. In Fig.
3.d the final (compensated) configuration of the arm is shown. A
final value of the error function V(e) € 107 is achieved in 335
stepe.

3} Nominal Configuration

s

1000} =

A § Degrees-of-Freedom Planar Redundant Manipula-
tor. The second manipulator taken into consideration is a redun-
daat planar arm. The robot, shown in Fig. 4.a,is a2 5 d

of-freedom robot. A wrench Fw = [ 010000 0 ] (N)-

(¥m) is supposed applied to the tip of the arm, as in the previ-
uos case. In this case, the force error, with a set point fwy =

[0 10 0 0 0 50]" (N)(Nm), s

Be= [ 229975 04598 0 0 0 0.3656 ]T (N)»{Nm). In Fig.
4.a-d the initial undeformed and deformed configurations, as well
as the corrective actions and the final position of the manipulator
are shown. In this case, because of the larger number of joints
and the greater value of the initial error, 2 value of the ersor
function V(e) = 8.1 10~% is reached after 1427 iterations of the
algorithm.

6. CONCLUSIONS

In this paper, an algorithm for the compensation of interaction
force errors for flexible manipulators has been presented. Be-
cause of the joint compliance and the link flexibility this problem
is non-linear, and the proposed solution is framed in the context
of non-linear optimization. In fact, the presented algorithm may
be related to the steepest descent method, a well-known tech-
nique in this ares. The basic idea is to control the joint positions
to minimize a quadratic function the force error. The choice for
the joint position wpdating law results in an. algorithm similar
to algorithms proposed for the kinematic solution of redundant
manipulators. With this choice, it is possible to demonstrate the
stability and convergence of the algorithm with a Lyapunov sta-
bility analysis. Examples of the proposed algorithm are reported,
showing the effectiveness of ihe technique also in the case of re-
durdant arms. The proposed solution is used in this paper as an
aoff-line reference generator. However, it is authors’ opinion that,
with proper modifications, it may be applied also as an on-line
(real-time) high-level control level for the force contrdl of fexible
manipulators.

b) Deformed Configurarion

1000F B

g 0 1

-1060+ g
¢ 2000
mm
d) Final Conﬁmra.u’on
1000+ E
=
g 9 1
-1000 - -
0 2000
mm

F:g 3. A 3 dof planar manipulator: a} nominal configuration; b} deformed
initial configuration; ¢} computed corrections; d) final compensated configu-

ration.




2) Nominal Confi ion
2000

¥
J

mm
(=]
I

-2000

0 2000 4000 6000
mm

¢) Joint Corrections

20005 .

g 0'_‘\\

2000} -

0 2000 4000 6000
mm

b) Deformed Configurasion
2000} b

g 0 3

S2600+ 4

G 2000 4000 6000

mm
d) Final Configurarion
2000 .
£
g 0 I
-2000+ .

0 2000 4000 6000
TIm

Fig. 4. A 5 dof planar manipulator: a) nominal confi guration; b} deformed
initial configuration; ¢) computed correcticas; d) final compensated configu-

ration.

Further developments of this research will investigate exten-
sions of the method to more general problems. In particular,
activity is currently in progress in the following areas:

. modification of the method to take into account interaction
forces that vary (in the end-effector reference §rame) during the
execution of the task, such as e.g. gravity and igertial loading;
. modification of the iterative algorithm in order to achieve bet-
ter convergence speed and trajectory smoothness, so as to allow
the application of the method as an on-line (real-time)} high-level
force coptroller for flexible manipulators.
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