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Abstract
A control technique for the control of contact forces be-
tween the links of a multiple-chain robot system (such
as a robot hand) and an objet is presented. The goal
of the control method is to optimize contact fore so
as to mnimise a cost function, correspoding to n-
imization of a weighted sum of factors such as energy
consumption and sensitivity to force disturbances. A
globally stable algorithm is provided, that asymptoti-
cally converges to the optimum.

1 Introduction
The force and moment balance equations for an ob-

ject subject to an external force f and moment m,
while grasped by a robotic mechanism by means of
n contact forces pi, can be written in matrix notation
as

w = Gt, (1)
where w = (fTmT)T7 t = (pT,...I p)TI and

G =1(c'x
The relationship between contact forces and the
torques at the m Joints can be written as

T = JTt,
where J is the equivalent of the jacobian matrix for
conventional manipulators. We assume that, in a
neighborhood of the equilibrium configuration under
investigation, G and J are ful row rank. A general
solution of (1) can be written as

t = GRW +Ey, (2)
i.e., the sum of a particular solution of (1) (GR stand-
ing for a generic right-inverse of G), and a homoge-
neous solution (3 being a basis matrix of the nulspace
of G). The coefficient vector y E R parametriz
the homogeneous solution. "Interal" contact forces
t = Ey have no direct effect on the external force w.
However, they play an important role in the robustnes
of the equilibrium w.r.t. sippage induced by exteral
disturbances. Coulomb's law of friction ca be written
for each contact point as:

pTS!,n > ailPIll. (3)
where n; is the unit vector normal to the object sur-
face at cs. Internal forces also contribute to the loal
contact force intensity, thus inluencing the danger of
damage on fragile objects, and the energy spent for

mantaining the desired equilibrium. This ests to
keep contact forces below a suitable t6reshold:

lIP;Ill < Anwo > o. (4)
More constraints on contact forces may be added de-
pending on the particliar task. Their treatment is
analogous, and omitted here for brevity. The problem
of optimally choosing intenal forces has been exten-
sively studied, mostly as a constrained programmin
problem in a linearized (e.g., [1) or non-linear settig
([2j). In our approach a more efient, globaIllyasmp
totically convergent algorithm is obtained which real-
is the goal of keeping forces as far as possible from
violation of constraints (3) and (4).

2 Cost Function
Note that contraints (3) and (4) on the i-th contact

force can be written in the form

Orij(Y) = aiJ IIPiIi + A- pTfn + 'Nj S 0, (5)
where aCl, = ti A I = -1, and 'Yi,i = 0 for fricion
constraints; ai,2 = i, A,2 = 09 ad 7i2 =-fg, for
maximum force constraints.

Let 0?, C r indicate the set of grasp variabls
that, in the presence of a given klad w, satisfy con-
strants (5) ofcorresponding indices with a (small, pos-
itive) margin a, fl7W := {y I Joi(y) < -n}. For the
i-th contact and the j-th constraint, consider the cost
function

ao%j{ b+bo.4 +c
y E fl7S,
y en,

I,j,
(6)

An overall cost function is defined as the sum of such
terms:

a 2

(Y)=i=1Ewij j(y),
i=l j=l

(7)

where wjj > 0 are suitable wedghts. By partitioning
(2) as

Pi
t=-

Ps

we have

) = G'w+Zy = ( Pi /Ml

: §W+ . 1Zs
Ps / bin

pMy) = Pi w +K y. (8)
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The gradient of the cot function with respect to y is
the weighted summation over i and j of the terms

a y

dy

|-;I avi A ;,

{ (2aid + b) ;:F:sy z (9

= ai MTPfi + Ad M4ngt, (10)

and p = f/lIpIJ.The cost function hei is the
weighted summaton of the terms

miVj=
Dy2- I:

1 ___+ .3 ZF44,£

(2aioj + b) !4hJ +2?'4

D t _ __MT(I - i_)M.
~y2 IIliIIl

Imposing twice continuous differentiability of Vtj on
the boundaries of flj provides conditions on a, b, and
c.

Proposition 1 The cost function defined in (7) with
a-= j, b= , andc = 3, is strictly convex with
respect to y E r.

The proof follows from observing that the discontinous
terms in (5), (9), and (11) can be regarded as the lim-
its of sequences offunctions continuously differentiable
over r. Hence, the positive definiteness of the hessian
of V is a necessary and sufficient condition for its con-
verity. Being (11) the sunmmation of matrices whic
can be trivially sho to be s.p.d., it wil suffice to
show that the intesetion of the nulLspa of eachl
addend is sero. Focusing on terms due to mum
force constraint (j = 2), suppose there exists a vector
x E Rh such that, for every i,

XT O Jx = aixTMT (I - pTp,) Mx= O;

Dy27
rY "'Z £Jr=-aixTMiii'Mgx =0.

These conditions imply that Mx should be parallel
and normal to Pi, respectively. The only solution is
for Mix = 0. Since this must hold for every i, by
juxtaposing all such relationship we have the condition
Er = 0. Being the columns of K independent (they
form a basis ofthe subspace ofhomogeneous solutions),
it follows xT9vx> 0,Vz 0. U

3 Control algorithm
The aim of this section is to de a suitable law

for controllin contact forces in the grasp of an object,
which is subject to an external force w. Such forces
are assumed bounded and resistible (Le., there exists
at least one possible solution to the grasp equation (1)
with constraints (4), and f3)). Moreover, we assume
w to y slowly, so that w ;V: 0.

Proposition 2 Assume that an object in stabek
grap is subject to forces and torques w that are rc-
istibk. Then, for C > 0 and any initial condition
y(O) = y,, the joint torque control law

r(t)= _JTGRW +JT E y(t); (12)
with the update law

ft
(21V

t
21 (13)

ensures that the object equilibrium is maintained, whik
asymptotically converging to the optinal (in the sense
of minimizing the cost (7)) set of contact forces.
Clearly, the fint term on the right-hand side of (12)
ensures that equilibrium s mainted. Since the cost
function has been shown to be strictly convex, the dy-
namics of the optimition parameter vector y defined
in (13) have an unque equilibrium point in 9, where
the cost gadiet vanishes. To show the global asymp-
totic stability of j, introduce e(t)=y(t) - 9, and con-
sider the p.d., radially boded Lyapnov candidate
V(e) obtained from (7):

De tw wV (14)
which is clearly negative definite.CJ

Note that, should J be les than fuil row rank, an
arbitrary contact force t may not be realised by con-
trolling joint torques. In this case, which is of relevance
to robot systems all their parts to nipulate ob-
jects (e.g., in power spi d in "whole-arm ma.
nipulation ), the optimal contact force must be chosen
in the range space of a suitably modified Z matrix.

In (12), it is assumed tha w is known. This is true
in the case that w is a pre-planed force-trajectory to
be realised by the object (ued as a tool) upon the
environment. Thus, a feed-forward control scheme is
realised. In alternative, w can be measured by force
sensors. Note however that, once the stati gain of the
joint position controller loops is set, the particular so-
lution of (1) corresponding to the physical distribution
of contact forces to balace w taishes joint torques
upon which the optimizEng term can be superimposed.

Although the control ago'rithm has been discussed
in the continuous time domain, it is straitord to
derive its discrete time analog. In this case, however,
the global asymptotic convergence of the algorithm can
be proven only for values ofC saller th alimit value.
Suchn limitations on C will only allow the convergence
to a finit neighborhood of the optimal grap.

The discussed method has been successfully simu-
lated in various conditions for different robotic mecha-
nisms. Preliminary experimental results have also been
obtained, showing good applicative potentiality of the
method.
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