
FAO1 9:5O 
Proceedings of the 34th 
Conference on Decision & Control 
New Orleans, LA - December 1995 

Planning Motions of Rolling Surfaces* 

Antonio Bicchi*t Domenico Prattichizzof 

Shankar S. Sastryl 

* Centro “E. Piaggio” , Universiti di Pisa. bicchi@dsea.unipi.it 
Dip. Sist,emi Elet,t.rici e Automazione, Universit>b di Pisa. domenico@dsea.unipi.it 

Elect,ronics Research Laborat.ory, Unix7ersit.y of California, Berkeley. sastry4eecs.berkeley.edu 

Abstract 
Rolling bet,ween rigid surfa.ces in spa.ce is a, well- 
known nonholonomic system, whose ma.theniatica1 
model has some interest.ing features that make it, a 
paradigm for the study of some very general syst.ems. 
It, also t,urns out t,hat, the nonholonomic fea.t.ures of 
this syst>em can be exploit.ed in pra.ct.ica1 devices wit.h 
some appea.1 for engineers. However, in order t.o 
achieve all pot,ential benefits, a. greater understmanding 
of tshese rather complex systems a,nd more pract,ical 
algorit,hnis for phnning a.nd controlling t.heir mot>ions 
are necessary. In this paper, we will consider some 
geometric and control a.spects of the problem of arbi- 
t,rarily displxing a.nd reorienting a body which rolls 
wit.hout, slipping a.mong other bodies. 

1 Introduction 
Nonholonomic systems have been attracting much ats- 
t’ent,ion in t,he control literat,ure recently, due to bot,h 
t.heir relevance to pra.ctica1 applications (in particular, 
t80 Robotics) and to t,he challenges that arise in p1a.n- 
ning and controlling them. Nonholononiic systems. 
coninionly encountered in pra.ct.ice ca.n be subdivided 
in two groups: those where nonholonomy is, so t.o say. 
incidenhl, and basically represents an annoyance for 
the designer; and those where nonholonomy is intro- 
duced on purpose. In the first class one may consider 
for instance bicycles and cars (possibly with t,railers), 
a,nd space plat,forms equipped with robotic arms sub- 
ject, t-o angular momentum conservation. The sec- 
ond group is formed by devices whose nonholonomic 
beha.viour is purposefully introduced a.nd exploibed. 
One of t,he chara.ct,eristics of nonholonomic syst,ems 
h i t ,  n i q  a.t,t,ra,ct, engineers is t.hat in genera.1 t,hey can 
be driven by a small number of inputs (i.e., act,ua- 
tors) wit81i respect, to the diniension of their configu- 
rat.ion manifold, thus allowing to simplify the hard- 
ware design, reducing costs and increasing relia.bi1- 
ity. Examples of such systems ha.ve been reported 
e.g. by  Brockett. [1989], Na,kamura.[l993]. Ostrowski 
et al. [1994]. Sordalen and Na.karnura [1994], Bicchi 
a.nd Sorrent,ino [1995]. 

On t,lie other hand, planning and cont,rolling n011- 
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holonomic systems is in general a considerably dif- 
ficult t a k .  The very fa.ct tha.t fewer degrees-of- 
freedom are available t.han configurations involves 
t.1ia.t. standard motion phnning techniques can not be 
direct,ly ada.pted to nonholonomic systtems. From the 
control viewpoint, nonholonomic syst,ems are intrinsi- 
cally nonlinear systems, in the sense that they are not 
exact,ly feedback linea,rizable, nor does their linear ap- 
proximation retain t.he fundamental charact,eristics of 
the system (such e.g. controllability). Simple (dif- 
ferent,ia.ble, t.ime-invariant,) feedba.ck control laws, on 
the other hand, can not be applied to stabilizing non- 
holonomic syst.ems, as shown by Brockett’s theorem 
[Brockett, 19831. 

An importrant, cla.ss of nonholonomic systems for 
which a reasonably satisfactory understa.nding has 
been rea.ched in the recent few years is the class 
of two-inputs nilpotrent3izable systems t,hat ca.n he 
put,  by feedback transforma.tion, in the so-called 
“cha.ined” form [Murray and Sastry, 19931. A com- 
plete characterization of such systems (i.e., necesmry 
and sufficient conditions for the existence of a feed- 
back t.ransformat.ion t,o chained-form) has been pro- 
vided by Murray [1994], while an algorithm for find- 
ing t.he necessary coordinate tmnsform has been pre- 
sented by Tilbury, Murray, and Sa.stry [1995]. As an 
example, a car pulling an arbitrary number of trailers 
has been shown to be a cha.ined-form syst,em by Sor- 
dalen [1993]. Pla.nning a.lgorit,hms for chained-form 
systems in free space have been described by several 
authors: in his ea.rly work Br0cket.t [1981] used si- 
nusoidal inputs, that  were subsequentsly investigated 
in more detail by Murray and Sa.stry [1993]. The 
mebhods of Lafferriere and Sussmann [1991], Monaco 
and Normand-Cyrot, [1992], and Jacob [1992], using 
piecewise conshnt inputs in different, arrangement,s, 
are pa.rt.icula.rly well-suit,ed to chained systems, where 
t.hey achieve exact: phnning (only approximate, iter- 
at,ive pla.nning schemes are obt,ained in the general 
case). Further, cha,ined syst,ems are &fleerentially fiat 
in t,he sense of Fliess et al. [1992]! and therefore t,he 
techniques of Rouchon et ul. 119931 can be profit.ably 
applied. As for t.he problem of feedback stabiliza- 
t,ioii t,o a point, time-va.rying or nonsmoot,h feedhack 
schemes have been proposed that achieve t.he g o d  for 
cha.ined syst,ems (see for instance [Samson, 199.51 and 
[Sordalen and Egeland, 19951, and references therein). 

In t.his paper. we consider some aspect,s of t,he prob- 
lem of planning nonholonomic syst,ems t,ha.t, can not,  
he put, in chained form. In part.icular, WP consider me- 
chanical systems t.hat, include bodies rolling on top 

, 
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of ea.ch ot,her wit.hout, slipping. The fa.ct, t,ha.t such 
systxvns a.re among t,he simplest, (in t.erms of number 
of configura.t.ions and input,s) exhibiting more genera.1 
behaviours tl1a.n chained syst,enis, along wit,h their ap- 
plirat.ion pot,ent,ials in rohot,ics. expiitins our inberest, 
in t,lieir invest,iga.t,ion. 

2 Rolling Motions of Surfaces 

2.1 The Plate-Ball Problem 
The stxdy of t,he rolling motmion of a sphere on a. plme 
is a c1assica.l problem in rat,iona.l mechmics, recent,ly 
brought, to t8he a.tt,ention of t,he cont,rol community by 
Brocket,t a.nd Da.i [1991]. 

Consider a hall t,hat. rolls wit,hout, slipping beheen  
t,wo horizoihl plat,es, one of which (say the upper) 
is moved relat,ive t,o t,he ot,her. We also assume t,hat, 
frict,ion prevent$s t,he ba.11 from spinning about. t,he axis 
t,hrough t'he conta.ct, pointas. The problem is to move' 
t,he ball from an initial configurat,ion (position a.nd 
orientat,ion) to a. given final configura.tioh, by mea.ns 
of suit,ahle movements of t.he upper plate. Among 
t,lie infinitely many possible solutions to this prob- 
lem, one may ask to determine t,he nmneuver of the 
plane t,ha.t, minimizes t.he lengt,h of curve t!ra.ced out 
by t,he sphere on t,he lower p1at.e. Formally, t,he prob- 
lem can he described as a.n opt!imal cont,rol problem 
on t,he five-dimensional Lie group G = R2 x SO(3) of 
t,he configurations g = (z, y, R )  of the sphere, where 
c E R1, y E IR1 are t,he coordinates of the contact, 
point, on the lower plate, a.nd R E SO(3) is a. proper 
3 x 3 rota.t.ion ma.trix describing the orientation of a 
frame fixed with t.he sphere, wit,h respect to a frame 
fixed ont#o t,he lower pla.te. The velocit,y of t,he sphere 
is an element. of the t,a.ngent, space a.t g, g E T,G. 
Since G is a Lie group (wit,h t,he group opemtion 

can a.ssocia.t,e each element, of TgG wlt811 the Lie alge- 
bra of G, T,G Z C(G) = R2 x so(3) ( e  is the group 
ident,ity, e = ( O , O ,  I ). We denote by S(a),a E R3 
a generic element o l the Lie algebra so(3) of 3 x 3 
skew-symmetric matrices, wit,h t,he shndard under- 
s t,anding t, ha t, 

S(a) = a, 0 -az ] , 

(51, y1, R!)(22, Y2, Rz) = (51 Sz2, Y1 +YZ, RlRZ)), we 

0 --a, ay 1 -ao a, 0 

such t,hat, S(a)v = a x v,Va,v E R3. Let, VI = 
(q,S(al)) and V2 = (vz,S(a,)) be vector fields in 
C(G), t.hen tmheir Lie bracket is defined as [fi, VZ] = 

The f' oregoing opt,imal cont.rol problem can now be 
(0, S(a2 S(m) - S(a1)S(aa)). 

writ,t.en a.s t,he minimizat,ion of t,he cost. functional 

u.1, .2) = /' J i 2 ( t )  + yz(t) dt ,  (1) 
Jo 

subject to 

where 

and e< a.re.the st,a.ndard unit vectors in R3. .Note 
t,hat, ( 4 )  is the conventional form of a. 1inea.r a.na.lytic 
cont,rol system, wit,h inputs u1 a.nd ~2 representing 
the components of the velocity of the center of the 
hall (which is the same a.s the velocity of the contact 
point. on the fixed ph te ,  and 1/2R times the velocity 
of the moving plat,e, i.e., the actual physical inpi~t~s) .  
Observing that [-S(eZ), S(el)] = -S(e3),  by com- 
put.a.tion of the rank of the control Lie algebra one 
getss that tthe system is weakly accessible, and, since 
no drift term is present, can conclude for the com- 
plete controllabi1it.y of the phte-hall system ([Li and 
Canny, 19901; [durdjevic, 19931). 

Brockett and Da,i [1991] were int,erest,ed in an a.p- 
proximate version of the problem, which fit<t,ed int,o 
an Engels canonical form invehgated in that paper.. 
They modified the cost, functional to 

which t,hey showed to be equivdent to minimizing arc 
length for their problem, and provided optimal plan- 
ning solutions in t,erms of elliptic int.egrals (of the first 
kind). Later on, Jurdjevic [1993] investigated optimal 
solutions of the complete problem (with cost func- 
tiona,l (2.1)), and obtained a full characteriza,tion of 
the solutions, which are also expressed in terms of el- 
liptic integrals (of the third kind). A most interesting 
a.spect, of these solutions is that  they also minimize 
t,he funct,ional 

f I' k2dt (5) 

where k 2  = $? + 3 is the geodesic curvature of the 
curve tsraced by the ball on the fixed plate. In other 
words, such curve is a solution of the elastica problem, 
of Euler . 

From an engineering viewpoint, the efficiency of 
computation of a path joining t,he start, and goal con- 
figurations is often of more concern than the opt,i- 
mality of it,s length. This is particularly true when 
planning has t+o be executed in the presence of obst,a- 
des, in which case a viable solut,ion is to first p1a.n t8he 
motion of the object disregarding the nonholonomic 
constraint,, and subsequent,ly approximate such path 
wit,h a number of nonholonomic paths staying close 
enough to  the holonomic pa.th. To this purpose, the 
optimal planning methods a,bove described may not, 
be suitfable, a,nd more direct procedures have been 
sought in the literature. 

Li and Ca.nny [1990] proposed a. phnning algo- 
rit.hm ba.sed on t,he use of coordinate-free differen- 
t,ial geometric rehtionships, obtaining an elega.nt. al- 
gorithm capable of bringing the sphere t,o the desired 
positmion a,nd orienta.t,ion by a sequence of three st,eps. 
In the first step the sphere center is brought at, the 
desired goal position; in the second st,ep, t,wo orienh- 
tion para.meters of t,he sphefe are settled by execut,ing 
a closed path of t.he center, while the third step a,d- 
just,s the holonomy angle by executing a movement. 

2813 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 14,2010 at 09:58:44 UTC from IEEE Xplore.  Restrictions apply. 



such that the contact point on the sphere follows a 
latitude circle. While step 1 is straightforward, pa- 
rameters of motions executed at step 3 are derived 
from an application of the Gauss-Bonnett theorem, 
and step 2 is based on an algorithm specific to the 
geometry of the sphere. 

2.1.1 Rolling General Surfaces 

To address t.he more general problem of manipulating 
a.n object. with general surface by rolling, some t.ools 
from t,he geomet>ry of surfa.ces are needed. Both t.he 
rolling bodies are assumed t,o be sm0ot.h solid surfa.ces 
C embedded in lR3. The surface of one of the bodies. 
called the ‘(object”, is also assumed to  be convex. The 
ot,her body, whose position is assumed to  be fixed in 
space, will be sometmimes referred to  as t.he “finger”. 
We at#t.ach t,o such surfaces local coordinate patches 
(f, U I ; ~  : U c R’ + CV c C, so as to  form an atlas. 
We a.ssume that t,he coordinate systems are orthog- 
onal, i.e. fTfv = 0. In t.hese coordinates, a Gauss 
(normal) ma.p n : C + Sa c Et3, can be written as 

xf ). It is also useful to define a normal-. 
ized Gauss frame [z, y, z] = [fu/llfull,ftl/llf~ll, n], wit.h 

The kinematics of rolling motions can be de- 
rived from either the classical differential geomet- 
ric viewpoint (using first and second fundament,al 
forms for C at  p ,  I and II, respectively, and 
Christ,offel symbols of the first and second kind, 
[i j ,  121 and or using Cartan’s definitions of met,- 
ric form ME = diag(llf,)l, Ilfvll), curvature form 
Kx = [ ~ , y ] ~ [ z , , z , ] M ~ ~ ,  and torsion form Tx = 
yT[x,, xv]Mnl. While the latter description re- 
sults more convenient., we recall that the relation- 
ship between t.he two sets of forms is given by 
ME = &, KI: = M G T I I p M G 1 ,  and T ~ M E  = 
MzzM;;’[I‘:l, (cf. e.g. Murray, Li and Sas- 

= l l f : : X Z l l  

f,Tf, = 0. 

try [ 19941 ). 
The kinematic equations of motion of the contact 

points bet,ween two bodies rolling on top of each other 
describe the evolution of the (local) coordinates of 
the contact, point on the finger surface, af E Rz, 
and on t.he object surface, a, E Rat along with the 
(holonomy) angle between the z-axes of the two gauss 
frames +, a.s they change according to the rigid rela- 
tive motion of the finger and the object described by 
the relative velocity v a.nd angular velocity w .  Ac-- 
cording t.0 the derivat.ion of Montana [1988], in the 
presence of friction one has 

“f 
r 

+ = T ~ M ~ & f + T o M , & o , ;  

where K, = Kf + +KO% is the relat,ive curvature 
form. and 

cos+ -s in+ 
~ t +  = [ -s in+ - c o s + ] .  

We note explicitly that, while this formulation of the 
kinematics of rolling motions differs from the one used 
earlier in this paper, simple geometrical relationships 
exist relating the representation of the object orienta- 
tion by means of R E SO(3) and that employing the 
contact point coordinates a,, at and the holonomy 
angle $. 

The rolling kinematics (6) are readily written in 
the standard control form, = gl(E)wl+gz( t )v2,  if we 
consider a local parametrization of the configuration 
manifold given by the state vector E R5,( = 
[z, y, U ,  v ,  +IT and take the angular velocities of the 
rolling object as the system inputs, v l  = U, and v2 = 
w y .  In the case of a unit sphere rolling on a plane, for 
instance, the control vector fields are 

where the shorthand notation So, C,, T, 
sin(a), cos(a) and tan(a) ,  respectively, is used. 
computing the controllability filtration 

ro = span (g1,gz) 
rl = ro+ [ro,roi 
rz = rl + [rl ,rol 

for 
BY 

r k  = r k - l +  [rk-1, TO], 

and its associated growth vector, 

7 = [dim rl, dim r2, . . ., dim ri] ,  
one obtains 7 = [a, 3, 5, 5,  . . .] at every ( except 
where the parametrization of the configuration man- 
ifold is singular. In their controllability argument, Li 
and Canny [1990] circumvedted the latter problem by 
using a different chart of the atlas covering the sphere. 

Our interest here is however in pointing out that 
(even in this simplest plate-ball example), nonholo- 
nomic system comprised of rolling surfaces do not fit 
conditions for most known exact planning methods to  
be applied. In fact, since dim Ti # i + 2, there does 
not exist any state and feedback transforms that can 
put the system in chained form (Murray, 19941. Sim- 
ilarly, Rouchon et al. [1993] observed that the system 
is not differentially flat. On the other hand, system 
(6) is not in nilpotent form, so that  application of 
the constructive method of Lafferriere and Sussmann 
[I9911 would only provide approximate results. Fur- 
thermore, direct application of multirate digital con- 
trol techniques to the system (6) is not possible, since 
the corresponding exact sampled model is not avail- 
able. 

Noting that any system with n 5 4 states and 
m = 2 input,s can be put in chained form ([Hermes, 
1989]), and hence is differentially flat, nilpot,ent, and 
it.s sampled model can be exactly computed, it can 
be observed that rolling syst,ems with n = 5,m = 2 
are in a sense the simplest systems to which powerful 
known methods fail to apply. 

We return to the case of an object with general 
smooth, convex surface rolling on top of a plane. 
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Notwit list anding the genericity of its Lie filtration 
growth. the rolling kinematic eqiiations do possess a 
structure that can he  exploited to find efficient plan- 
ning algorithms An useful result in this sense is the 
following 

Proposition 1 There exist a state dzffeomorphzsm 
and a regular static state feedback law guch that the 
kinematzc equations of contact (6) for planar fingers 
assume a strictly triangular structure (as defined e.g. 
in [Murray and Sastry, 29931). 

Proof. Rewrite (6)  as 

&, = M T I K ; ' ~ :  ( 7 )  
iu, = M ; ~ R + K ; ~ ~ ;  

11, = [TjQ + TolK;'wl 

where wT = [-wy w, ] .  Recall that for plane fingers, 
Tt = [0 01, and Mt = 12. Define the regular state 
feedback w = 7(at aol 11,)W as 

7(at 1 a o i  11,) = K M o W i  (8) 

and apply a change of coordinates t.hat suitably re-' 
orders t8be states, to obtain 

iu, = w; 
11, = TOMOW; 

iuj = &MOW, 

which is st,rict,ly lower t.ria.ngu1a.r. 0 
As a.n inst,a.nce of applica.t,ion of this technique, 

consider the case of an object with an axial symme- 
t,ry rolling on a planar finger. Axial-symmetric ob- 
ject,s a,re convenient for computations, since a single 
pa.tch of cylindrical coordinat#es provides an ort$hog- 
onal para.met,riza.t,ion of t.he whole surfa.ce except at 
t.he nort,h and sout,li poles, a.nd a.t. one meridian. Let 
such coordinate system he (f (-IF, T )  x IR), 

and not,ice that, for systems with an axial symme- 
try, 2 = 0. Denoting 2 = pv,  evaluating the sur- 
face forms and applying the triangularizing feedback 
above, the control system associated with the rolling 
kinematic equations is obtained as q = gl(q)vl + 
gdqb2, with q = [ul v ,  4, zl  yIT and 

Objects with an axis of symmetry are of practical in- 
terest in industrial parts handling applications, for 
instance. Bicchi and Sorrentino [l99.5] discussed the 
design of a dextrous robot hand for manipulating ob- 
jects by rolling them between two plane fingers (see 
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Figure 1: The nonholonomic dextrous hand devel- 
oped at the University of Pisa 

fig. 1). Exploitation of nonholonomy allowed the 
hand to  be built using only three actuators, with sub- 
stantial savings in terms of cost, weight, and failure 
likelyhood with respect to  other dextrous hands us- 
ing actuators in numbers ranging between 10 and 30. 
The viability of such a solution is subject to  the va- 
lidity of the conjecture that controllability of rolling 
motions between surfaces is generic, i.e., almost every 
pair of surfaces form a controllable rolling kinematic 
system. An argument in favour of such conjecture is 
that Li and Canny [1990 showed that in the rolling 

lost only when the radii are coincident or when either 
vanishes. Based on the developments above, we can 
give here another partial argument in support of that 
conjecture: 

Proposition 2 The kinematic system comprised of 
any smooth strictly convex axial-symmetric surface 
rolling on a plane is controllable. 

of a sphere on top of anot h er sphere, controllability is 

Proof. The Lie brackets of the control vector fields 
are computed as 

L 0 J 
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The growt,h vector of the cont.rolla.bi1it.y filtrat.ion 
is [2, 3, 5, 5 ,  . . . whenever the distribution 
span{gl g2 g3 g4 g5 I is full rank. The singulari- 
t.ies of t.he distribution are a t  the roots of either of 
t,he equat,ions 

p = 0; (9) 

pvo = 0; (10) 
C‘ondit,ion (9) indica,tes that the dist,ribution is singu- 
lar when the object degenerates to  a point (infinite 
curvat,ure surface). Note that ,  for convex surfaces 
wit,li finit,e curva.ture, the radius p can only vanish at 
t.he iiort,h and sout,li poles (no hourglasses allowed). 
The poles are not covered by the above described 
cylindrical coordinate patch anyhow. 

Condit,ion ( 10) corresponds to  surfaces which are 
not, strictly convex. In fact, the curva.ture form for 
surfa.ces of revolution in cylindrical coordinates is 
evaluated a.s 

Note incidentally that  such surfaces may still be con- 
trollable, with a hi her local degree of nonholonomy. 
Surfaces with poy(v7 E 0 are cones and cylinders with 
linear generators. For such surfaces, the growth vec- 
tor is [a, 0, 0, . . .I, hence cones and cylinders (as well 
as the point surface) are actually noncontrollable. 

The proof of global controllability for convex sur- 
faces can be finalized by defining other suitable coor- 
dinate pat,ches to  cover the borders of the cylindrical 
patch (the meridian U = --K and the north and south 
poles of the object), and going again through the Lie 
algebra rank condition calculations. 

3 Applications to Planning 
The relevance of the strictly triangular form above 
derived t.0 planning is in the relative ease by which 
the flows of the vectorfields can be integrated (t,he 
t,errn “integration” for “solution” of an ODE is used 
properly in this case). In the plate-ball example, for 
inshnce, t,he state feedback law 

transforms (6) in 

One has therefore, for any constant. 6 E lR 

U0 t S t  

$0 + s t s v ,  
ao + &- [sin($o + 6tSo,) - s+,] 

vo 

io Yo + T.0 [cos($o + 6tSo, ) - C,,] 

I (1.7) 
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A solution to  the planning problem for system (6) can 
now be applied. consisting in a particular arrange- 
ment of piecewise.const>ant inputs. In fact, by con- 
catenating a sequence of constant inputs of the form 

zzilik , 2kT < t < (2k + l)T 
wa = 0 

The 2k+l unknown variables 2Tt1,i1 i can be evalu- 
ated by solving the system of five nonfinear equations 
obtained by equating the final to  the desired config- 
uration, namely 

Naturally, other concerns such as minimizing the 
length of the pat.h or avoiding limits of the workspace 
can be taken into account by building a suitable opti- 
mization problem constrained by (15). In [Bicchi and 
Sorrentino, 19951 are reported the results of the ap- 
plication of this method to  planning for the plate-ball 
problem. 

4 Discussion 
While the fact that  the alternating control scheme in- 
troduced above works for planning, local motions de- 
scend directly from the controllability of the system 
(the arguments in the proof of controlla,bility for non- 
linear systems rely prec.isely on such a construction of 
t.he control sequence, see e.g. [Hermann and Krener, 
1977]), what is the minimum number of control steps 
that gumantees the existence of a solution for the, 
generic motion in the large {in particular, whether 
such number is 2k + 1 = n = 5 ) ,  is an open prob- 
lem. A close relationship with other piecewise con- 
stant input based methods is observed, in particular 
with the multirate schemes of Monaco and Normand-- 
Cyrot [1992]. 

The planning technique based on the trimgular- 
ized form a.bove introduced can he applied t,o more 
general cases, including t,ha.t of a general surface of 
revolution between flat fingers. For even more general 
surfaces, a continuation algorithm of Sussma,n [1993] 
can be applied. In its practical implementation this 
method, just like other related a,pproximate iterative 
techniques suffers from an excessive dema,nd of time 
for phnning. Also, t.he fa.ilure of the method heca.use 
of abnorma.1 extreina.ls encountered dong t,he pat,h to  
be lifted , i s  possible theoretically. Research irl this 
direction is also being u n d e h k e n .  

One of t-he main problems in the actual implemen- 
t.a.t.ion of the technique on ma,nipulation systems is 

, 
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that., due t,o t,he feedhack t,ra.nsforma.t,ion used, cont!rol 
inputs used for planning are not, the a.vailable physi- 
cal input.s (say joint velocit,ies in a rohot, hand), but, 
rather complex funct’ions of syst,em stat,es evolving 
along t,he phnned hajectory. Furthermore, in ma.ny 
practical implement,ations it is hardly reasonahle t,o 
expect, t,hat, t,he full st.ate vect.or is ava.ilable for mea- 
surement,s. In pa.rt,icular, ohject, orientat,ion angles, 
a.re dificult, to mea.sure . While it is possible t.0 inte- 
g r a k  t.he kinematic equat,ions for the sphere to obtain 
desired joint, t,raject,ory, t,his is difficult, for ohject,s of 
general shape. Moreover, such approach would re- 
sult in a complet,ely open-loop cont,rol scheme. In 
[Bicchi a.nd Sorreihno, 19951 a. t,echnique ba.sed on 
controlling t,he coordina.t,es of the cont,act, point, on 
tShe lower finger so a.s t80 track the t,raject>ory resulting 
from planning, hy using real-t,ime tactmile feedha.ck, is 
described and experimenta.1 result,s are report,ed. 
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