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Abstract 
This paper describes a techiiique for path planning 

in rn\ ironmeiits cluttered with obstacles for mobile 
rohots with noiiholonomic kinematics and bounded 
trajectory ciirvature ( I  e , limited turning radius) The 
method i s  inspired by the results of Reeds and Shepp 
regarding shortest paths of hounded curvature iri ah- 
sence of obqtacles It i s  proved tha t ,  under suit- 
able amimptionq, the proposed technique provides the 
shortest path of hounded curvature among polygo- 
na l  objects for a particular class of iehicles (circn- 
lar unicycles of radiiis h and niiniinum turriiiig radius 
pmzn 5 h )  Although the claw of vehicle? thiq theo- 
rrtical resiilt i s  restricted to  is rather narrow, the pro- 
powd planner can be wtiqfactorilj applied to other 
nonholonoinic vehicle5 ~ i e l d i n g  good practical results 

1 Introduction 
Motion planiiing for nonholononiic vehicle.: IS at- 

tracting a wide interest in Robotics 
A nonholonomic constraint is an equation involr- 

ing the configuration parameter4 and  their derivativeq 
(velocity paraiii~“ters) that  is not integrable Such 
constraintq do not retliice the tliniension of the robot 
configuration space (like holonoinic constraints do),  
hut rrduce the dimension of the velocity space a t  any 
given confignration A fundamental result of nonlin- 
ear system theory shows that nonholonomic systerns. 
notwithstanding the reduced number of inputs, remain 
completely controllable if tlie degree of nonholonomy 
is  sufficient ([9]) Barraquand a n d  Latombe [2] proved 
that a car-like robot with curvature limiiations niov- 
ing airiidsf obstacles remainq fully controllable, that  
is, w h r n ~ s e r  a frep (holonomic) trajectory exists, tlie 
existence of a feasible path is also guaranteed 

The preqencp of lower I)oiinds on tlie rn in i in~i~n  
turning radius involves curvature constraints on fea- 
sible trajectories tha t  deeply affect the geometry of 
tlie problem Dubins [6] and Reeds and Shepp [la] 
solved the geodesic problem without and with rever- 
qals, resprc t i~r ly ,  and  showd that a path with short- 
est length c a n  always he built by concatenating at  
most five linear or circular segments Similar reqults 
have been elegantly derived again by Suwmaiin and 
Tang [13] and J3oissonnat, Cerezo, aiitl Leblond [ 3 ] ,  
u4ng  Pontryagin’s maximum principle These theo- 
retical resultq ignited a npw serie? of methods tc-nd- 
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Figure 1: A generic car-like robot (a) and  a particular 
iiiiicycle vehicle (1)) .  

ing t,o find short,& nonliolonomic paths with bounded 
curvature amidst ohsta.cles, among which [7], [SI, [ll]. 

The method presentmecl in this pa.per is also inspired 
by Reeds a.nd Shepp’s work, in that, t8he result,ing pat>h 
is a, simple concat,ena.t,ion of linear and  circula,r seg- 
rnent,s of maxiinum curvahure. The main t,heoretical 
resnlt, proved in this pa.per concerns shortmest. paths 
of a part,icular vehicle ( a  circular unicycle of radius 
h a.nd miiiimum t,iirning radius pmin 5 h )  moving 
among polygonal obst,acles. Theorem 1 st,at,es that,, 
if t9he proposed planner succeeds in finding a. pa.trh, 
and if t.liat pa.th is regular i.e., wit,hout reversals), 

vatmure for t>he given problem. The principa.1 worth 
of the proposed met,hod is perhaps in it,s simplicitmy 
and in tthe srnoot,hness of t,he resultsing paths. It. does 
not require explicit evaluation of the configuration 
space, nor it employs a preliminary phase of holo- 
nomic traject,ory plmning. The  met,hod ca,n be ap- 
plied t,o bot,h unicycle and car-like mobile robots of 
general shape, provided tha t  some simple heuristics 
a.re int,roduced tlo overcome most, typical deadlocks for 
f#he planner. Simula.t,ion and experimental results are 
report,ed demonst,rat#ing t,he viahilitmy of tlie method in 
medium-~coniplexity environmeiibs. 

then tha,t. is a shortmest feasih i e pa.th of bounded cur- 

2 Problem and Proposed Solution 
Fig.1-a shows a mobile robot, modelled as a two 

dimensional object st moving in a 2 dimensional 
workspace 

The configuration space of the robot i s  IR’ x SI, 
and can be locally parameterized by the coordinates 
35 arid y of the robot reference point P ,  and by the an- 
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gle 8 (representing the rohot, orientmatmion) het,ween t,he 
E - a s i s  of the h s e  fra,me F6 and t,lie main axis of t.lw 
rotlot,. T h e  robot, shape is assumed symmet,ric wit,h 
respect, to it,s main axis, a.nd it,s ha.lf-widtmli is denoted 
l y  h. We rest.rict, ourselves t,o consider only polygo- 
ria1 o t d a c l e s  in  the workspace, t.1ia.t. we indicat,e wit,li 
Oi, i = I ,  . . . , 1. while their n vert.ices are listmecl in X j .  
for j = 0 t,o n .  A nonholonomic const.raint arises he- 
caiise t,lie wheels can roll and spin but not. slip, hence 
the rohot cannot, move sidewise. For a iinicycle vehi- 
cle s i ich a s  t,liat, shown in fig.1Lb. t,he nonholonornic 
cotistraint is writt.en as 

S ( C ~ ) C ~  = [ -s in(@) c o s ( 8 )  0 ] [ f ]  = o  

'l'he motion pla.nning problem can he st.a.t.ed as  follows: 

Problem 1 Let qr = ( E , ,  yr, e , )  and qg = (xg,, yg, 0,) 
be respectively the initial and final configuratzon of a 
robot A with minimum turning radius pmin and half- 
width h. Determine a path q(r) that minimizes the 
cost functional 

J o  

subject to  

wIlprt> q' = clp, = &!d* yl w ,  = %, 

y' - 4 1 2  

d r  d r  dr' 
I - d'aro, 

Finding a solution to this problem is quit,e diffi- 
cult. in  general. However, previous resi~lt~s on sliort.est. 
pat,lis of bounded curva.t.ure in free environments can 
he ext#ended to give a qualit#at,ive descript,ion of t,he so- 
lut,ion of Prohleni l ,  when considering t,he part,iciilar 
class of mohile rohot, wit,h circiilar shape of radius h,  
ant1 minimimi turning radius pmin = h (see fig. 1-b) 

Proposition 1 The solution (if one ezists) of Prob- 
lem 1 for  circular vehicles with pmin = h is a concate- 
nation of line segments and arcs of circle of radius 
fmin. 

Proof. Problem 1 can he cast in the standard 011- 
t i m a l  programming form hy rewriting (5 )  in explicit 
form as 

i = vcose  
y = v s i n e  ( 7 )  e = w  

or. in compact form, as q = f(q,u) T h e  curva- 
ture  constraint ( 6 )  is translated in hounds on the 

inpiit. vect,or 11 = ( v , w )  E U c ma, wliere U = 
{-1, $1) x (-l/pmin, l/pm&}. It, is also possible t.0 
r ewr ik  holoiiomic const,raints due t,o the presence of 
ohstacles, (4), in t.he form of a set of m inequa1it.y 
const,raints on funct.ions of the s t a k s  of t,he syst,em as 

K i ( q ) < 0 ,  i =  1, . . . ,  m 

According t80 the t,reat,ment of optimal control in 
hoiindcd phase space given by Cliang [4], int,rodiice 
t,he variat,ional Harnilt,onian 

%(q, {I, A, 77) = J ( q ,  11) + T T K ( d  + A T f h  11) 

nThere 
= 0, Ki(q) < 0 

vi { # 0, K i ( d  = 0 
Correspondingly, t8he opt,iinal t(raject,ory will he COIII- 
posed of free and constrained a.rcs. Along constrained 
arcs (Ki(q) = 0)  the robot, is in t,ouch wit,li an ob- 
st,acle. Due t o  t,he geomet,ry of t,he robot, and of t,he 
ohst#acles, c o n s h i n e d  arcs are composed of line seg- 
ment,s (t81ie robot, is "grazing" an  edge) and of circn1a.r 
arcs of radius h (t,lie robot is t,rirning about, a v e r k x ) .  

To evaluat,e opt,imal traject,ories along free arcs 
(Ki(q) < 0 ,  V i ) ,  it is expedient, t,o r e f~ rmuln t~e  t,he 
minimization problem by defining a new variable % ( I ! )  
as 

The corresponding Ha.milt>onian can he writ,t,en as 

%(q, U ,  if) =< jf, q >= wi: + pv COS e + qv sin e + kw 

where q = ( z ,  q ) ,  and A = ( w ,  p ,  q,  I C ) .  Application of 
Pont,rya.gin's maximum principle t,o t.liis syst.em wit,li 
t,lie input, houiids ahove described leads t o  dist,inguish 
bet,ween unconst,rained arcs along which i )  z 0, or 
ii) # 0. Fill1 discussion of t,liese cases is report.ed 
by Boissonnat, Cerezo, and Leblond [ 3 ] .  and shows 
that, either t,he arc is a. line segment, (case i ) ,  or a.n arc 

0 
Note t,hat, exisknce of a solut,ion t,o problem 1 is not, 

always gua.rant.eed, as shown by Desaulniers [ 5 ] .  This  
is not, in cont,rast, wit,li t,he minimum principle, which 
only gives necessary conditions. 

Mot.iva.t.ed hy t.lie ahove qualit8at,ive result, on opt,i- 
inal t,raject,ories, we int,roduce t,he following algorit,lim, 
which is described wit.11 reference t o  a generic vehicle: 
Algorithm 1 
a) Draw n circles with radius p = max(pmin, h}  cen- 

tered in the obstacle vertices. Also draw two cir- 
cles with radius pmin passing through [x,, y, 
tangent to  the line through [E, ,  yr] with ang e e, ,  
and an analogous pair of circles for  the final con- 
figuration qg . 

h)  Consider the n+4 circles two at a t ime,  and draw 
the four linear segments belonging to  the common 
tangent lines and comprised between the tangency 
points. Also consider all arcs on circles that join 
any two tangency points. Let a basic path diagram 
(BPD) be composed of two directed segments for 
each of these linear and circular segments. 

% = J;c2+3iz, z ( 0 )  = 0. 

of a. circle of radius pmin. 

1 and 
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c )  The B P D  may contain non-free paths, that is, 
paths that cannot be followed b y  the robot without 
colliding with obstacles. Directed segments are 
then tested singularly and those causing collisions 
are eliminated from the diagram. In general, a 
segment may be free i f  followed in one sense, but 
not otherwise. For robots that are simmetric with 
respect t o  a line through the reference point and 
normal to  the main axis of the robot, the direc- 
tion of motion along a path is not relevant, and a 
simpler basic path diagram can be considered. 

d)  A directed graph G is built f rom the thus emended 
path diagram (EPD) as follows: 

e the start and goal configurations are nodes 

e for  all points of tangency between a linear 
and a circular segment, two configurations 
(corresponding to  the possible orientations 
aligned with the common tangent direction) 
are nodes of G ;  

e two nodes i and j of G are connected with an 
oriented link from i to  j i f  the corresponding 
directed segment on the emended path dia- 
gram exists; 

e a cost equal to  the length of the correspond- 
ing segment is associated to  each link. 

e )  The directed graph G is searched for  a path from 
the start to  the goal configuration using the length 
of the overall path as the cost function. 

of G ;  

T h e  following t.lieorein discusses a pr0pert.y of the 
planner algorit,hm when a.pplied t80 the special class of 
circular r0bot.s above considered: 

Theorem 1 For a circular mobile robot d with radius 
h equal to  the minimum turning radius pmin moving 
in a bidimensional polygonal workspace S ,  a suficient 
condition for  a path to  be the solution of problem 1 is 
that it is a regular output of the proposed planner. 

Proof. Consider t,he problem (Problem 2 )  of finding 
t.lie shortest, element in tlie class of pat,hs composed 
of line segment,s and circu1a.r arcs of radius pnin and 
avoiding t,he obst,acles in the given workspace. A char- 
act,eristic of pat,hs in t,liis class is t.hat t.heir first (last,) 
arc or segment, belong tmo one of the t,wo circles of radius 
pmin tangent in the s tar t  (goal) t o  t,he init,ial (final) 
direct,ion, or on the line through t,he st.art, (goal) with 
the initial (final) direction. 

Path(s)  solving Problem 2 are shorter t,lian, or equal 
t,o, pat,hs solving Problem 1. This  follows t.rivially 
from Proposit,ion 1. Not,e t.hat solutions t o  Problem 2 
may fail t,o meet t,he condition on t,he correct or ienh-  
tion of tlhe vehicle at, the goal configurat,ion. 

It, will now be proved that. t,he pat,h provided 1)y 
t,he planner algorit,hm 1, whenever is regular (wit,hout$ 
cusps), coincides with the solut,ion of Prohlem 2.  In 
fact,, the E P D  corresponds to  a generalized visihilit'y 
diagram built t.aking int.0 considerat,ion t,he original 
obstacles grown by pmin a.nd t8he two pairs of circles 

~ ~~ ~~ 

Figure 2: Impossibility to maneuver with too  few ob- 
stacles. 

tangent in the start  and in t,he goal t o  the initial and 
final direction. Shortest paths on a generalized visi- 
bility diagram are proved t o  be shortest feasible paths  
and to  be always regular (see e.g. La tombe [lo ). T h e  

pat,li on t,he E P D .  if regular, coincides with the short- 
est path on the visibility diagram and therefore is the 
solution of Problem 2. 0 

thesis then follows from observing t h a t  the s h ortest 

3 Discussion 
Although ofsome relevance t o  the as yet unexplored 

problem of global optimal path planning amidst ob- 
stacles, Theorem 1 only provides sufficient results for 
a particular vehicle. I n  this section we list some of 
the pitfalls of the proposed method along with simple 
heuristics t ha t  may help in applying the planner t o  
more realistic robots. 

Remark 1. Only sufficiency results have been es- 
tablished because of t,wo main reasons. Firstly, if the 
planner result,s in a path that  contains reversals, visi- 
bilit,y graph argument.s can not be applied in the proof. 
Piecewise optimality of pat,hs between reversals can 
stfill be argued, but global path optimalitmy rema.ins 
unsolved. 

Secondly, t.he method is not, pat,h-complete. For the 
circular robot. of concern in theorem 1, incompleteness 
may be caused by t,he ii1ipossibilit.y t o  maneuver witli- 
out the support  of an obst,acle vertex. Consider for 
inst,ance the case depicted in fig. 2, where the robot 
can use neither any of the obstacle circles t o  make t,he 
necessary reversal, nor the st.art and  goal pairs of cir- 
cles because of space limit,ations. A simple heurist,ic 
solution t o  this problem is t o  find a cell in free space 
where a R,eeds/Shepp inversion pa.tt.ern (see fig. 3) can 
be a.ccomodat~ed for, and t,o consider the corresponding 
additional pair of circles in t,he algorithm. In building 
t,he Reeds/Shepp inversion pattern,  existing circles are 
considered first,, as this usually requires less clearance. 
Notice tha t  introduction of auxiliary circles produces 
a graph G' t,hat, includes t,lie origina.1 graph G, hence 
the search on G' provides a pa.th whose length is a t  
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Figure 3: A Reeds/Shepp inversion pattern ( a )  can he 
introduced t,o solve t8he deadlock of fig 2 (h).  

least equal t o  the shortest pat’h on G.  
In fact, a, charact,erist,ic of t.he proposed planner is 

its suitability to highly clut,tered environment,s, where 
it, accomplishes its best performance. The  method’s 
wea,knesses are more evident when the .sca.rceness of 
obst,acles does not, offer support t.0 enough circles and, 
t,herefore, maneuver possibilit,ies. An instance of such 
a. problem is put  int.0 evidence by the para.lle1 parking 
problem. In fact, t,he proposed algorithm can park 
a circular robot of radius R if t,he clexance is 1a.rger 
than three times R, while from the above mentioned 
controllability resu1t.s we know tha.t, parking is theo- 
ret,ica,lly possible in slots just. larger t’lian 2R. There 
is proba.bly no ea.sy fix t80 this problem, as its solu- 
t.ion is only possible by approxima,t,ing a non-feasible 
tra.jectory wit#h a very high number of nonholonomic 
maneuvers (this is actudly what, the met.liod of Jacobs 
et  al. [PI does in t.liis case). 

Remark 2. If pmin # h, the circular segments of 
BPD are drawn with radius p = niax{p,i,,h). If 
pmin < h,  the algorithm is applied similarly, except 
for circles a t  the s t x t  and goa.1, t,liat are drawn wit,h 
radius pmin. T h e  optima.lit,y propertries of algorithm 1 
are &ill retained in t,his case. Also Reeds/Shepp iii- 
version pat,terns can be introduced, if necessary, using 
circles of radius pmin. 

If pmin > h ,  pat,h-completeness of t,he method is 
furt,her reduced in cases such as tha.t, depicted in fig. 4,  
where the vert,ex-to-vert,ex dist,ance L is such tha.t> 
2 * h < L < h -I- pmin. An heuristic fix t,o t,liis prob- 
lem consists in rephcing t,he circle drawn a t  each ver- 
tex with t h e e  circles of the same radius pmin. The 
center of t,he first circle lies on t.he hisect,or of the 
angle between hlie edges concurring in X i ,  at, a dis- 
tsance D = pmin - h from the vert,ex (see fig. 5-a). 
The  cent.ers of the second and t.hird circles lie on t,he 
Iines normal in Xi to  the obstacle edges, a t  a distance 
D = pmin - h (fig. 5-b). The  ra.tiona.le behind this 
heuristic is that  the three circles approximate the en- 
velope to the family of pa.ths t,hat, “graze” the obstacle 
vertex. In  fa.ct, such envelope provides the short.est, 
pat,h on the extended visibilit?y diagram (not necessar- 
ily t,he shortest hounded curvat,ure pat,h). 

Remark 3. For a polygonal vehicle, the proposed al- 
gorithm and heuristics can he applied without, major 

I J 

Figure 4: A possible deadlock for the algorit,hm 

Figure 5: Modifications to  t.he method t o  fix the dead- 
lock in fig. 4 

niodificatioiis obt,aining qualit,at#ively good results, as 
it has been verified in a number of simulations and 
experiments ( see  sect,ion 4) .  Consider for inst,ance the 
simple planning problem for a Lahmate in t,he envi- 
ronment depicted in fig. 6 .  The EPD obtained as- 
suming pmin = h is reportsed in fig. 6-a. Note that,,  
due t,o the axial siminetry of t,he Labmate, all seg- 
ment#s in EPD can be followed either way. In  fig. 6-b 
the corresponding shortest path on the EPD is shown. 
Finally, fig. 6-c shows the path resulting from a.ppli- 
ca.tion of the heuristic discussed in remark 2 in the 
case t h a t  pmin = 1%. Not,e tjhat, in spite of the con- 
siderable increase of t,he minimum turning radius, the 
path is still very close to  the intuit,ive optimum. The  
described path pla,niier can also provide a solution for 
car-like robots. The  EPD of a para,llel pa.rking ma.neu- 
ver is reported in fig. 7-a (orient,ation of segn1ent.s is 
not, shown). The resulting maneuver looks quite nat- 
ural, a.s shown in fig. 7-b. A more complex planning 
problem for a car-like vehicle is shown in fig. 8. 
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(c) 

Figure 6: Planning the pa th  of a Labmate with dif- 
ferent, turning radii. a )  E P D  for pmin = h; b) corre- 
sponding path;  c) pat,h corresponding to  pmin = 1.5h. 

I I 

(3) 
Figure 7: E P D  (a)  and final pat,h (b)  for the parallel- 
parking maneuver of a car-like vehicle. 

4 Experimental 
Experimenta.1 verificat.ion of the practical feaibil-  

ity of the proposed pla.nner has been ca,rried out in ou r  
laboratory using a LABMATE robot of Transit.ion Re- 
search, Inc.. The  LABMATE kinemat.ics are those of a 
unicycle, and  i ts  driving input,s are the  torqiies applied 
t,o t.wo independent wheels. The s h p e  of tlie vehicle 
is loosely square, centered in the middle of t,he wheel 
axle. In order t.0 accurately track planned trajecto- 
ries: a Lya.punov-based closed loop control scheme 
has been employed, as described in [l]. The  scheme 
showed good performance and robnst,ness wit8h respect 
t,o inaccuracies in the odoinetric measurement of posi- 
tions caused by slippage a t  the wheels. The  goal of our 
experiments was to  verify the prelimimr feasibilit,y of 
a n  “automatic valet pak ing”  of car-like vehicles ‘ in  
both a front, arid para.llel parking lot,. To this purpose, 
t,lie shape of t,he LABMATE has been modified t,o re- 
semble t.liat, of a car (in scale, a.pprox. 80 x 160cm), 

Figure 8: EPT) (a) and resulting pa th  (b) for a car-like 
vehicle in a cluttered environment. 

and soft,ware has been writ.ten t,o implement a bound 
on the minimum t.urning radius of the vehicle (set, t,o 
40 cm).  Det,ect,ion of obstacles has been realized by 
using a set, of US det,ect,ors available with the vehicle. 
US images a.re pre-processed and sent to  the host com- 
put,er (an Intel-480 based PC), via a radio se rk l  link 
at  9600 baud. The host computer builds a simple 2D 
dept,h map of the scene and updates it while t,lie vehi- 
cle moves down the parking lot, corridor looking for a 
vacant slot,. When room enough t o  maneuver the vehi- 
cle into is found, t.he planner process is started on the 
salient, features of the map,  and tlie resulting plan is 
execut,ed directly aft.er. In fig. 9 an experiment on par- 
allel parking is described by t,he tempora.1 sequence of 
phases. The updat,ing of the experimental dept,h m a p  
superimposed to  a pict,ure of tlie actual environment 
configuration is shown in fig. 9 (a)  through (c). I t  
can be not,ed tha,t sensor rea.dings are rather accurate, 
except for a. certain number of outliers, which have 

illustrates the const,ruct,ion of t8he E P D ,  while Fig. fig. 9 Y (e 
been taken ca.re of by suitable processing. 

shows the resulting parking maneuver. In fig. 9 ( f )  the 
t.raking error between t,he planiied pa th  arid the t,ra- 
ject~ory a.ctually followed by the Lahmate is reported. 
The planning phase of such and similar experiinent,s 
t,ook less t,lian 2 seconds, while t,he complete park- 
ing det,ection, planning, and execution took about 2 
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Figure 9: Sequence describing an experimental auto- 
mated parallel parking maneuver. (a), (b), (c): US 
sensor signals are used to build a depth m a p  of the 
parking lot a s  the vehicle scans the row; (d): Emended 
Pa th  Diagram built by the planner; (e). parking ma- 
neuver; ( f ) :  planned path (solid) and actual trajectory 
(dashed). 

minutes. This was mainly due t.0 the necessity of pro- 
ceeding very slowly in tlie detect,ion phase to  avoid 
excessively large errors from the US sensors, and also 
slippage of wheels. The sensorial equipment of tlie ve- 
hicle resulted as one of the most critical components 
in the experiment,. On tlie overall. t,he a.bove reported 
experimenta.1 resulk confirmed t,he suit,abilit,y of the 
proposed planner t80 real-time a,pplications in near- 
future intelligent. cars. 

5 Conclusion 
In t.his paper we have discussed a planning al- 

gorithm for nonholonornic, hounded curva.ture path 
planning among obstacles whose output, is the short- 
est feasible regular pat,li for a. part.icular vehicle. Al- 
though the proposed met.hod is not complete, nor it.s 
optimality properties are trivially carried over to  more 
general vehicles, very reasonable paths are generated 
bv using only a few additional simnle heuristics. 

V I  

As compa.red wit,h other methods known in the lit,- 
erature, the proposed planner does not, need t,o build a 
support,ing free pat8h by mea.ns of configura.tion space 
methods nor does it require discretization of the con- 
figuration space. Pat.lis generated by our method are 
typically very simple conca.tenat.ions of Reeds/Shepp 
paths. An important quality of the proposed niet,hod 
is tha t  it can be easily implement,ed even in clut,t8ered 
workspaces, where t.he method actually performs com- 

parat’ively best, 
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