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Abstract 

In thzs paper, we focus on the problem of control- 
lang a manzpulator so as to  track a desired object tra- 
jectory, whzle guaranteeang that contact forces comply 
wath contact constraants (frzctzon bounds, etc ). When 
dealing wath kznematzcally defectawe systems, zt as not 
possable an general to  asszgn arbatmry trajectoraes of 
ob.fect motaons and contact forces. To understand what 
restrzctaons posztzon and force reference trajectories 
should exhibzt rn order to be feasable by a gauen sys- 
t em ,  zs the central zssue of thzs work 

Figure 1: A two-fingered 2 d.0.f. gripper with curling 
fingers grasping an object. 

1 Introduction 
The peculiarity of kinematically defective manipu- 

lat,ion systems consist,s of t,he presence of parts, inter- 
act,ing with tzhe environment, that have fewer degrees- 
of-freedom tha.n those necessary to achieve arbitrary 
configurations in t.heis operational space. Such sys- 
t,ems occur for inst,ance when dealing with simple 
industry-oriented grippers, as illustrated in fig. 1; or 
when t,he whole surface of the ma.nipulat,or limbs is ex- 
ploited to constrain the manipulated object, such as 
e.g. in t,entacle-like arms or in “whole-arm” manipu- 
lation ([lo], [ 2 ] ,  [7], [ll]), see fig. 2 .  In general, kine- 
mabic defectivity arises very often when an attempt, is 
made at. minimizing the mechanical hardware of the 
mmipulator system. (such as e.g. in [5], [8]). 

Our focus here is on t.he problem of tracking a de- 
sired trajectory with t8he manipulated object, while 
guaranteeing that contact forces are controlled so as 
t,o comply with cont,act constraints a t  every instant,. 
For kinematica.lly defect,ive syst.ems, t,liis problem is 
not solvable in general for arbitrarily assigned t.rajec- 
tories. In the most simple example provided in fig. 3, 
riot a.11 trajectories of the object. can be controlled in 
t,he plane, nor can arbitrary cont,act forces be applied 
on t,he object,. Uiiderst,anding what characteristics re- 
quired t,rajectories should have in order to be feasible 
by a given syst.ein is therefore crucial to t,he design of 
any planning and control algorit,hm for these systems. 

Figure 2: Robust hold of an object by means of an 
enveloping, “wholearm” grasp. 

The main result of this paper, stated in theorem 1, 
provides a geometric description and an algorithm for 
evaluating a set of locally feasible trajectories of mo- 
tions and forces. 

The local nature of our results is due to  the lin- 
earization approach of the dynamics that is used in 
this work. The use of linearized model dynamics in the 
analysis of general manipulation systems is believed to  
be a significant advancement with respect to the lit- 
erature, which is almost solely based on quasi-static 
models, and in fact provides richer results and bet,ter 
insight,. Furthermore, linearized analysis is considered 
as a fundamental preparatory step towards full non- 
linear analysis. which at the moment appears to  be 
too complex to achieve in full generality. 

Such an approach has been motivated both by the 
higher readability of the achieved results (w.r.t. the 
nonlinear ones) and by the fact that the linearization 
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Figure 3: Not all t,he object trajectories can be coil- 
trolled. 

approach is with 110 doubt more coniplette of the quasi- 
sta,tic one, typically used in this field. 

2 Dynamic model 
The starting point of our analysis is the linearized 

model of t,he dynamics of general mariipulatsion sys- 
tems derived in [9] (see also [3]). In this section we 
summaize  some of those results for the reader’s con- 
venience. We denote by q E Rq the vector of ma- 
nipula.t,or joint, positions, T E R? the vector of joint 
act,uat,or t,orques, U E Rd the vector locally describing 
tjhe position and the orientsation of a frame attached 
t,o the object, a.nd finally w E Rd the vector of forces 
a,nd torques resultant from ext,ernal forces acting di- 
rectly on the object. Let further introduce the vector 
t (of dimension b )  in which all conta.cit force vectors 
exchanged a t  t.he contacts between the links and the 
object are juxt,a.posed. We assume that contact forces 
mise from a lumped-parameter model of visco-elastic 
phenomena at, the contacts, summarized by a stiffness 
matrix K and damping matrix B.  The Jacobian ma- 
trix J a.nd the grasp matrix G of the manipulation 
syst,em are defined a.s usual as tthe linear ma.ps relab 
ing t,he velocit,ies of t,he contact points on t,he links 
a.nd on the object, wit.11 t’he joint and obiect velocities, 
respect,ively. Consider a reference equillihrium config- 
uration (q = q,,u = u,,q = U = O , T  = r, ,w = w, 
and t = to),  such that r, = JTt, and, w, = -Gt,. 
The linear approximation of the manipulation system 
in t,he neighborhood of such equilibrium is written as 

X = AX + B T ~ ’  + B,,w’, (1) 

where stsate and input, vectors are defined as the de- 
partures from the reference equilibrium configuration: 
x = [ ( 9 - d T  ( U - % )  T q ’ T  ‘T ] 
and w’ = w + Gt,, and 

,7‘ T - JTt, 

To simplify notation we will henceforth omit the 
apexes in r’ and w’. 

Neglecting gravity, assuming a locally isot,ropic 
model of viscoelastic phenomena, and assuming that 

i- 
ker(IJT) # 0 

ker(J) I- # 0 

(ker(JT) =: 0) 

ker(JT) i:- # 0 

Table 1: 3-joint planar manipulation: defective, re- 
dundant (non-defective) and singular configurations. 
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local vaiciations of the jacobian and grasp matri- 
ces are small, simple expressions are obtained for 
Lk = -:M-lPk and Lb = --M-lPb, where M = 
di.ag(Mh.,M,), P k  = STKS, Pb = STBS, and S = 
[J - G7]. 

To our purposes, three possible combinations of 
states are of interest as outputs, namely object po- 
sitions, joint positions, and forces. The corresponding 
output matrices are, respectively, 

cu = [  0 I 0 0 1 ;  
C q = [  I 0 0 0 1 ;  
let= [ KJ - K G ~  BJ - B G ~  1 .  

A few definitions are useful for general manipula- 
tison systlems (see [3]), 
Dlefinition 1 A manipulation system as said “defec- 
tive” if ker(JT) # 0;  “indeterminate” i f  ker(GT) # 0; 
“redundant” if ker(J) # 0, “graspable” if ker(G) # 0 
and “hyperstatic” if ker(JT) n ker(G) # 0 

Observe that the manipulation system is kinemati- 
cally defective if a t  least one ad the links touching the 
object possesses less degrees- of-freedom tha,n those 
necessary tro move its contact point in arbitrary di- 
rections, or, in terms of forces, if there exists at least 
one direction of the contact vector t that does not 
al’fect the manipulator dynamics. Whenever the num- 
ber t of components of contact forces is larger than the 
nisinber 19 of joints, the syst8em is defective. Note also 
that if tlie manipulator is in a. singular configuration, 
ker(JT) :f 0 as well. Table 1 pictorially illustrates 
such definitions. 

3 Stalbility and stabiliizability 
We consider some aspects related to the analy- 

sis of the stability of the linearized model of a ma- 
ni~pulation and grasping system. The characteristic 
polynoi~~iial of tlie linearized system is: det(s1 - A) = 
det(s2M + sPb + Pk). Recalling that M is positive 
definite (p.d.) and noting that P k ,  P b  are positive 
stmidefinite (p.s.d ) matrices, the eigenvalues of the 
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linearized syst,em lie in the union of the open left,-half- 
plane and the origin. 

Due to the exist,ence of a nullspace of the dynamic 
matrix A ,  no conclusion can be drawn about the lo- 
ca.1 sta.bilit,y of t.he full, nonlinear dynamics about the 
equilibrium configuration However, the following re- 
stricted stabilizabilzfy lemma is of practical relevance: 
Lemma 1 The dynamics of a non-indeterminate ma- 
nipulatzon system, i.e. G is fu l l  row rank (f.r.r.).  is 
made locally asymptotically stable by a constant lrnear 
state feedback of joint  displacements and rates only, 
with feedback matrix R’ = [ R, 0 R, 0 ] pro- 
zrzded that R, and RQ are p.d. matrzces. 
proof: Recdl that det(s1- (A -B ,R) )  = det(s2M+ 
S P ~  + Pi) ,  where Pi = Pk + diag(R,, 0)  and Pb = 
Pb + diag(R4,O). Being Pk, Pi p.d., putting K = 
KT/2K1/2, we have that xTP;x = (K’/’Jxl - 
K 1 / 2 G T ~ 2 ) T ( K 1 / 2 J ~ 1  - K1l2GTx2) + xTR,xl > 0,  
and analogously for P b . U  

4 Functional controllability 
As already pointed out, we are interest,ed in the 

problem of following a desired trajectory with t.he 
manipulated object, while guaranteeing that contact 
forces are controlled so as to comply with contact con- 
straints a t  every instant. In system theory this prob- 
lem is known as “funct,ional controllability”. Alt,hough 
functional controllability is generally approached by 
date-space methods, for linear systems it is most sim- 
ply studied in terms of input-output representations. 
A well-known necessary and sufficient condition for 
the output functional controllability of linear system 
is report,ed in the following proposition 
Proposition 1 Let Z(s) be the ( d  x q )  transfer func- 
t ion matrix of a given linear system. A necessary and 
stificient condition for the functional controllability of 
d arbitrary smooth (P) outputs by q smooth inputs 
i s  that the transferfunction m,atrix Z(s) is f.r.r. orrer 
the field of complex numbers. 

Explicitly note that the output functional control- 
labilit,y requires that at least as many inputs are avail- 
able as there a.re output,s of concern. 

Consider the linearized model in sec. 2 with feed- 
back R, froin joint. positions and RQ from joint- veloc- 
it,ies. A and T will henceforth indicat,e t’he dynamic 
mat,rix wit81i feedback and trhe reference input , respec- 
t>ively. Let U be the system output, in the Laplace 
domain t.he input-out,put represent,ation is u(s) = 
Zu,T(s)~(.s) + Z u , w w ( s ) l  with Zu,T = -’P-’BTX and 
Z,,,,, = ( E  - BTA-lB)-l where 

A = . A f h  i- . 3 ( ~ T ~ ~  + R ~ )  + J ~ K J  + R,; 
n = - . 9 ~ T ~ ~ T  - J ~ K G ~ ;  
2, = s2M, + .$GBGT + GKGT; 
A‘ = ( A  - L?D-’BT)-’. 

Obviously at least d joints are necessary to track ar- 
bitrary object trajectories in a d-dimensional space. 

Analogous considerations apply for contact forces, 
t (s)  = Zt> , ( s ) r ( s )  + Z t , w ~ ( ~ ) ,  with 
Zt,,  = Ct (SI - A)-’ B, = (K + sB)(JX - GTZ) 
and 
Zt,uJ = Ct (SI - A)-’ B ,  = (K + sB)(Jy  - GTW), 
where Z = -D- ’BTX,W = (2) - B T A - l B ) - ’  and 
y = -A-lBW. Being R’ the space of contact forces, 
in absence of disturbances w ,  a t  least t joints are nec- 
essary to t,rack arbitrary contact forces. This is not 
possible in defective systems. 

In this paper we will focus on the definition of a new 
set of outputs that is functionally controllable and rel- 
evant t o  the task of manipulation. In order to do this, 
t,he concept of ‘hsymptotic reproducibility” [4] is in- 
strumental. Asymptotic reproducibility investiga,tes 
output tracking for a particular class of trajectories, 
those constant in time. The following definition for- 
malizes the notion of asymptotic reproducibility. 
Definition 2 Let y ( s ) / r ( s )  = Z(s) be the transfer 
matrix of an asymptotically stable system, the subspace 
of asymptotic reproducibility is defined as the column 
space of Z(0). The system output is asymptotically re- 
producible if the gain matrix Z(0) is f .r .r . .  
Remark 1. The asymptotic reproducibility of t’he 
outputs of an asymptotically st8able system is a suf- 
ficient condition for t,he functional reproducibility of 
the same outputs. 

In t,he sequel, we assume that the manipulation sys- 
tem ha.s no indeterminate modes (G is f.r.r) and t,hat. 
joint position and rates have been fed back such that 
all modes of the system are asymptotically stable. 

4.1 Contact forces 
Under the above assumptions, the steady-state gain 
matrix for contact forces from joint inputs can be eval- 
uated, after some algebraic manipulation, as 

zt,,(o) = - c ~ A - ~ B ,  = -(I - G;G)KJ, (2) 

where Gi. is the K-weighted pseudoinverse of G,  
and K-’ = K-l + JRi lJT  is the equivalent, stiffness 
mat,rix including the effect of proportional control 
on joint positions (cf. [SI). The subspace F h r  = 
range(Zt,,(O)) is defined as the subspace of “asymp- 
t#ot,ically internal forces” and consists of all the contact 
forces that are reachable at steady-state. Observe 
that 3 h , .  C ker(G): these forces are self-balanced 
and their resultant action on the object dynamics is 
null. In robotic grasp literature, forces t E k e r ( G )  
a.re customarily defined “int,ernal”, and play a. fun- 
damental role in grasp contact st,ability. The impor- 
tance of t,he controllability of internal forces in grasp- 
ing was put. into evidence in a previous work by Bicchi 
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Figure 4: Example of asymptotic reproducible contact 
forces (Fh,. C_ ker(G)). 

[1] where the principle of virtual work was used in a 
quasi-static approach to  describe the subspace of “ac- 
tive” internal forces. Simple calculations show that 
such subspace coincides with Fhr .  The example in 
figure 4.1 illustrates asymptotically internal contact 
forces. While the subspace of internal forces (ker(G)) 
is 3-dimensional, as depicted on the left side of the 
pict we, only a one-dimensional subspace is asymp- 
totically reproducible. 

It should be pointed out that, in general, asymp- 
totically reproducible internal forces are internal only 
at steady-state, and it might not be possible to  apply 
them without a transient phase affecting the equilib- 
rium of the object. Consider for instance the example 
in fig. 4: when a step of torque is applied at the joint 
to “squeeze” the object, it causes the motion of the 
object, which recovers a (displaced) equilibrium only 
after the transient is finished. In other cases, due to 
symmetries in the mechanism, it might be possible to 
apply internal forces that remain such during the tran- 
sients as well. Such “dynamically internal” forces have 
been investigated in detail by Prattichizzo [9]. 

4.2 Object motions 
The subspace U,. = range(Z,,,(O)), where 

is comprised of all asymptotically reproducible dis- 
phcements of the object, from joint torques. In the 
sequel, it, will be shown that, every displacement, of 
the object complying with a rigid-bod:y model of the 
syst8em is asympt,ot,ically reproducible. 

Rigid-body kinemat,ics a.re of pa.rticular int,erest~ in 
t,he control of robotic manipulation systems, because 
the extent, t,o which displacements from the reference 
equilibrium comply wit,h tlhe linearized model is much 
limited for motions that involve visco-elastic defor- 
niat,ions of bodies. Rigid-body kinematics have been 
st8udied in a quasi-st,atic sett,ing [a] and in terms of un- 
observable subspaces in [3 ] .  In both cases rigid kine- 
matics were described by a matrix I’ whose columns 
form a. ba.sis for ker [J - G T ]  . In our present, assunip- 

Table 2: 
ralnge (~1::~ r:JT). 

Representat,ive mot,ions for the subspace 

tion that, the system is not indeterminate, it is 

where rip is a basis matrix of the subspace of redun- 
dant motions ker(J), and rqC and rUc are conformal 
partitions of a complementary basis matrix. The im- 
a.ge spaces of rqC and rUc consist of coordinated rigid- 
body motions of the mechanism, for the links and the 
object parts, respectively. Table 2 illustrates such sub- 
spaces felt two simple devices. 

It can be shown that rigid-body coordinate mo- 
tions of the object are asymptotically reproducible 
from joint torques, 

range(r,,) E range((GKG’r)-lGKJ) = U,.. ( 5 )  

Notice that rigid-body motions are not the only as- 
yi.nptotically reproducible object motions; U, also con- 
tains motions due to deformations of elastic elements 
in the model, as for instance, horizontal motions of 
the object in the device of figure 4.  

4.3 Functional controllability of contact 

In general, not all the object motions a.re function- 
ally controllable by joint torques. Object trajectories 
Udes can be executed if they remain within the sub- 
space U,. and analogously, arbitrary contact force tra- 
jectories t d e s  can be executed if they evolve within 
the subspace 3 h r .  In manipulation, however, due t,o 
t,lie presence of friction constratints, task specifications 
can not be given disjointly in terms of either object 
posit,ions or contact forces. 

Clearl:y, conditions Udes E U,. and t d e s  E F h r  are 
only necessary, but no longer mfficient, for joint func- 
t,ional controllability of object motions and cont,act 
forces. Moreover, specifications of jointly functionally 
controllalble object motions and contact forces may not 
exhaust the control capabilit$ies of the syst,em. 

Our goal is therefore to define a set of outputs for 
a, general manipulat,ion systems that is gua.ra.nt,eed to 
be feaibde, t,hat, fully exploits the control inputs a,nd 

foirces and object motions 
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that is convenient for t,he specificat,ion of the tasks. 
The first requirement, implies t.hat the new outputs are 
functionally cont,rollable; t,he second t,hat the input- 
output, syst.em is square and the t,hird that t,lie new 
outputs incorporat,e the typical priorities of a manip- 
ulation ta.sk with it,s priorities: 
a) object trajectories that can be accommodated for 
by the mech an isin ; 
b) cont,act forces that can be st,eered so as to avoid 
violation of contact constraints; 
c )  reconfiguntion of limbs in presence of redundancy. 
The following t,heorern proposes a fiinct,ionally con- 
t.rolla.ble a.nd t,a.sk-oriented set of out,put,s for general 
nia.nipula~tion systems 

Theorem 1 In  th,e hypothesis that ker(GT) = 0, con- 
sider the linearized dynamics described by the triple 
(A,  B,, C ) ,  where A and B, are as in  sec. 2, and the 
output matrix C is defined as 

Case 1 Case B h f l  2 Case 3 

where and rue have been defined in  ( d ) ,  and E is 
a basis matrix f o r  F h r ,  Then,  f o r  any constant h e a r  
state feedback R such that A - B,R is asymptotically 
stable, the system (A - B,R, B, ,  C) is square and 
functionally controllable. 

proof: Note that the existence of such feedba.ck ma- 
trix R is guamnteed by lemma. l. 

a) The system is square if t,he number of columns of 
C T ,  denoted by # ( C ) ,  is equal to the input space di- 
mension, i.e. if #(r,,)+#(E)+#(r,) = q .  Since r T ,  
F t l c ,  and E are f.c.r. by definition, from (4) we have 
# ( Lc) + # (r, ) = dim (ker( [J - GT])) -dim( ker ( GT)) . 
Observing that ker((1- GgG))  = range(KGT), from 
(2 )  we obt,ain 

#(E) = # ( J )  - dim(ker(J)) - dim(range(J) n range(GT)) = 
= q - dim(ker(J)) - [dim(ker([J 

- dim(ker(3)) - dim(ker(GT))] = g - #(rr) - #(rUc), 
- G T ] ) )  

b) To prove outsput functional cont,rollability of the 
syst,ein ( A  - B,R, B,, C) ,  it will be shown that 
Zc(s) = C(s1 - A + B,R)-'B, has rank q over the 
complex field. The st,ea.dy-stat,e gain matrix Zc(0) 

Case 4 

I results 
r;JGKGT)-'GKJ 

- KGT(GKGT)- 'G)KJ Z, 

Table 3: Four simple planar manipula.tors. 

I'ic(GKGT)-'GKJ 
Et(I - G$G)KJ ker(ZC(0)T) = ker 

Observe t~hat each row block of the matrix on the 
right-hand side of equation above is f.c.r., in fact 
i:  range(I',,) C range((GKGT)-lGKJ), directly 
from (5) .  
ii: E is a basis for range((1- G$G)KJ) (cf. (2) ) .  
iii: rr is a basis matrix for ker(J); 
Hence, to prove that ker(Zc(0)T) = 0 it suffices to  
show that the raw spaces of the three blocks are also 
mutually linearly independent: 
iv: The columns of the third block span ker(J), while 
the span of the columns of the first two blocks lies 
within range(JT); 
v: range(G&F,,) and range(1 - GiG)KE)  are dis- 
joint, then so are the spans of the columns of t,he first, 
and second blocks. 0 

Note that the task-oriented priority order, in the 
choice of outputs, is reflected in the top-down ordering 
of outputs. In fact, the first group of outputs are coor- 
dinates for the subspace of rigid-body disphcements 
of the manipulated object (in the basis similarly 
the second group of output,s for the subspace of 
active internal contact forces (in the basis E), and t.he 
third group for the subspace of redundant degrees-of- 
freedom (in the basis r,). As a. result> of theorem 1, all 
of these three subspaces are functionally controllable, 
and so is t,heir direct sum. In this sense, the chosen 
outputs provide a basis of the set of all functionally 
controllable outputs, that exactly corresponds to the 
t.ask specifications introduced above. 

[ r: 

5 Examples 
Theorem 1 has been applied to  the simple four pla- 

nar devices reported in table 3. For each example, it is 
- (JTKJ + R, - (JTKGT - R,)(GKGT)-lGKJ)-l ,  
From remark 1, the f,r.r.  of Zc(0)  is a sufficient con- 
dition for f~nc t~ iona l  controllability, that. can be shown 
by proving t,ha.t ker(Zc:(0)T) = 0. 
Transposing Z c  ( O ) ,  we get t'hat 

assumed t,hat-the manipulated object is a disk of unit 
radius, mass, and barycent,ral moment of inertia and 
t81iat link masses with their distributions are such that 
the inertia. matrix of the manipulator Mh(.) is equal 
to the identit,y ma.trix. Moreover links are assumed 
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to have unit lengt,h except for the link of the second 
finger in case 4 (its length is k o s ( ~ / 4 : l ) .  The length 
of a link involving conta.ct with the olbject. i s  meant 
t.0 he measured between the joint axis and the contact 
point,. Finally niat,rices K, B,  R, and Fit, are assumed 
t,o he normalized to the identitmy matrix. 
Case 1: r = 0 a,nd E = [l 0 - 1 01 . Being ma.trix r 
null, t.here a.re neither redundant motions for the ma- 
nipulat,or nor rigid-body coordinat,e mot,ions for t.he 
object,s. The device can only apply force trajectories 
lying on range(E).  According t,o theorenn 1, the output 
ma.t,rix C has one row, namely C = [l 10 0 0 11 10 0 0 ] . 
Case 2: In t,liis case the manipulator has 2 joints, 
and at, most. two out,put,s ca.n be funct,i,onally cont.ro1- 
1a.ble. These can be specified according to the pro- 
posed method as one rigid-body coordinate motion of 
the o1)ject in the horizontal direct,ion and one control- 
lable int,ernal forces: 

Then the output matrix results 

Case 3: The angle between the links is 30deg. 

T 

r = [  : : : ] = [ i 1 j i o o j T ;  ~ = [ i o - i o j ?  

c = [ :  - O l i o  0 0 1 1  - 1 1 t - I .  
l o o 0  0 I O 0 0  

r n 6 . 2  n 1 

.=[. 0 0 0 

2 2  1 - 2 2 - 1  
0 0 0 0 - 1 5 5 0 0 0 0 0 0 0  

o o n n o ~ - 2 n n o o o o o  

0 0 0 2 2  1 - 2 2 - l l  0 0 0 

1 2 - 2 0  0 0 0 1 0  0 0 

o n o o 
0 0 0 0 
3 2 1 - 3 0  
1 - 1 - 1  0 

tonstraint,s as well as the task requiremenh for the 
system. The approximate linearization method em- 
ployed to study the problem renders our result d i d  
oiily loca.lly around an equilibrium point. The problem 
of generalizing t.his to the full non1inea.r model is an 
interesting, if probably difficult , problem, especially 
in connection with the inclusion of rolling (nonholo- 
nomic) phenomena. in the model. 
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