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Abstract

In this paper, we focus on the problem of control-
ling a manipulator so as to track a desired object tra-
jectory, while guaranteeing that contact forces comply
with contact constraints (friction bounds, etc.). When
dealing with kinematically defective systems, it is not
possible in general to assign arbitrary trajectories of
object motions and contact forces. To understand what
restrictions position and force reference trajectories
should erhibit in order to be feasible by a given sys-
tem, is the central issue of this work.

1 Introduction

The peculiarity of kinematically defective manipu-
lation systems consists of the presence of parts, inter-
acting with the environment, that have fewer degrees—
of-freedom than those necessary to achieve arbitrary
configurations in their operational space. Such sys-
tems occur for instance when dealing with simple
industry—oriented grippers, as illustrated in fig. 1; or
when the whole surface of the manipulator limbs is ex-
ploited to constrain the manipulated object, such as
e.g. in tentacle-like arms or in “whole-arm” manipu-
lation ([10], [2], [7], [11]), see fig. 2. In general, kine-
matic defectivity arises very often when an attempt is
made at minimizing the mechanical hardware of the
manipulator system. (such as e.g. in [5], [8]).

Our focus here is on the problem of tracking a de-
sired trajectory with the manipulated object, while
guaranteeing that contact forces are controlled so as
to comply with contact constraints at every instant.
For kinematically defective systems, this problem is
not solvable in general for arbitrarily assigned trajec-
tories. In the most simple example provided in fig. 3,
not all trajectories of the object can be controlled in
the plane, nor can arbitrary contact forces be applied
on the object. Understanding what characteristics re-
quired trajectories should have in order to be feasible
by a given system is therefore crucial to the design of
any planning and control algorithm for these systems.
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Figure 1: A two—fingered 2 d.o.f. gripper with curling
fingers grasping an object.

Figure 2: Robust hold of an object by means of an
enveloping, “whole-arm” grasp.

The main result of this paper, stated in theorem 1,
provides a geometric description and an algorithm for
evaluating a set of locally feasible trajectories of mo-
tions and forces.

The local nature of our results is due to the lin-
earization approach of the dynamics that is used in
this work. The use of linearized model dynamics in the
analysis of general manipulation systems is believed to
be a significant advancement with respect to the lit-
erature, which is almost solely based on quasi-static
models, and in fact provides richer results and better
insight. Furthermore, linearized analysis is considered
as a fundamental preparatory step towards full non-
linear analysis, which at the moment appears to be
too complex to achieve in full generality.

Such an approach has been motivated both by the
higher readability of the achieved results (w.r.t. the
nonlinear ones) and by the fact that the linearization
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Figure 3: Not all the object trajectories can be con-
trolled.

approach is with no doubt more complete of the quasi-
static one, typically used in this field.

2 Dynamic model

The starting point of our analysis is the linearized
model of the dynamics of general manipulation sys-
tems derived in [9] (see also [3]). In this section we
summarize some of those results for the reader’s con-
venience. We denote by q € IR? the vector of ma-
nipulator joint positions, 7 € IR? the vector of joint
actuator torques, u € IR? the vector locally describing
the position and the orientation of a frame attached
to the object and finally w € IR? the vector of forces
and torques resultant from external forces acting di-
rectly on the object. Let further introduce the vector
t (of dimension ¢) in which all contact force vectors
exchanged at the contacts between the links and the
object are juxtaposed. We assume that contact forces
arise from a lumped-parameter model of visco-elastic
phenomena at the contacts, summarized by a stiffness
matrix K and damping matrix B. The Jacobian ma-
trix J and the grasp matrix G of the manipulation
system are defined as usual as the linear maps relat-
ing the velocities of the contact points on the links
and on the object, with the joint and object velocities,
respectively. Consider a reference equilibrium config-
uration (q = gp,u=u,,q=u=0,7 = 1,,w = w,
and t = t,), such that , = JTt, and w, = —Gt,.
The linear approximation of the manipulation system
in the neighborhood of such equilibrium is written as

x=Ax+ B, +B,w, (1)

where state and input vectors are defined as the de-
partures from the reference equilibrium configuration:
x = [([a-q)" (u—u,)T ¢7 a7]" 7 = 7 = ITt,
and w = w + Gt,, and

0 0
e I _ 0 ] - 0
0 M;!

To simplify notation we will henceforth omit the
apexes in 7/ and w'.

Neglecting gravity, assuming a locally isotropic
model of viscoelastic phenomena, and assuming that

ker(JT) £0 | ker(J)£0 | ker(JT) £ 0

(ker(JT) = 0)

Table 1: 3—joint planar manipulation: defective, re-
dundant {non-defective) and singular configurations.

local variations of the jacobian and grasp matri-
ces are small, simple expressions are obtained for
L, = -—:M—IPk and Ly, = -—M_lpb, where M =
diag(Mp,M,), Pr = STKS, P, = STBS, and S =
[J - GT].

To our purposes, three possible combinations of
states are of interest as outputs, namely object po-
sitions, joint positions, and forces. The corresponding
output matrices are, respectively,

C,=[{0 1 0 0];

C,=[1I 0 0 0];

C.=| KJ -KGT BJ -BGT |.

A few definitions are useful for general manipula-
tion systems (see [3]),
Definition 1 A manipulation system is said “defec-
tive” if ker(JT) # 0; “indeterminate” if ker(GT) # 0,
“redundant” if ker(J) # 0, “graspable” if ker(G) £ 0
and “hyperstatic” if ker(JT) Nker(G) # 0
Observe that the manipulation system is kinemati-

cally defective if at least one of the links touching the
object possesses less degrees—of-freedom than those
necessary to move its contact point in arbitrary di-
rections, or, in terms of forces, if there exists at least
one direction of the contact vector t that does not
affect the manipulator dynamics. Whenever the num-
ber ¢ of components of contact forces is larger than the
number ¢ of joints, the system is defective. Note also
that if the manipulator is in a singular configuration,
ker(JT) # 0 as well. Table 1 pictorially illustrates
such definitions.

3 Stability and stabilizability

We consider some aspects related to the analy-
sis of the stability of the linearized model of a ma-
nipulation and grasping system. The characteristic
polynomial of the linearized system is: det(sI — A) =
det(s?M + sPy + Pg). Recalling that M is positive
definite (p.d.) and noting that Py, P, are positive
semidefinite (p.s.d.) matrices, the eigenvalues of the
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linearized system lie in the union of the open left-half-
plane and the origin.

Due to the existence of a nullspace of the dynamic
matrix A, no conclusion can be drawn about the lo-
cal stability of the full, nonlinear dynamics about the
equilibrium configuration However, the following re-
stricted stabilizability lemma is of practical relevance:
Lemma 1 The dynamics of a non-indeterminate ma-
nipulation system, i.e. G is full row rank (fr.r.), is
made locally asympiotically stable by a constant linear
state feedback of joint displacements and rates only,
with feedback matriz R/ = [ R, 0 R; 0] pro-
vided that Ry and Ry are p.d. matrices.
proof: Recall that det(sI — (A —B,R)) = det(s*M +
sP, + Pj), where P}, = Py + diag(Ry,0) and Py =
P, + diag(R4.0). Being P, P, p.d., putting K =
KT/?K!Y/2 we have that xTP,x = (KY/2Jx; —
K'2GTx,)T(K/2Jx, — K'/2GTx,) + xT Ryx; > 0,
and analogously for P}.00

4 Functional controllability

As already pointed out, we are interested in the
problem of following a desired trajectory with the
manipulated object, while guaranteeing that contact
forces are controlled so as to comply with contact con-
straints at every instant. In system theory this prob-
lem is known as “functional controllability”. Although
functional controllability is generally approached by
state-space methods, for linear systems it is most sim-
ply studied in terms of input-output representations.
A well-known necessary and sufficient condition for
the output functional controllability of linear system
is reported in the following proposition
Proposition 1 Let Z(s) be the (d x q) transfer func-
tion matriz of a given linear system. A necessary and
sufficient condition for the functional controllability of
d arbitrary smooth (C*°) outputs by q smooth inputs
is that the transfer function matriz Z(s) is f.r.r. over
the field of complexr numbers.

Explicitly note that the output functional control-
lability requires that at least as many inputs are avail-
able as there are outputs of concern.

Consider the linearized model in sec. 2 with feed-
back R, from joint positions and Ry from joint veloc-
ities. A and 7 will henceforth indicate the dynamic
matrix with feedback and the reference input, respec-
tively. Let u be the system output, in the Laplace
domain the input-output representation is u(s) =
Zow +(5)7(8) + Zoy yw(s), with Z,, ; = =D~ BT X and
Zyw= (D~ BT A~1B)~! where

A= >Mp +s(JTBI + Rg) + ITKI + Ry;
B=-3J"BGT - JTKGT;

D = s?M, + sGBGT + GKGT;

X = (A—BD"'BT)",

Obviously at least d joints are necessary to track ar-
bitrary object trajectories in a d—dimensional space.

Analogous considerations apply for contact forces,
t(s) = Z¢ - (s)7(s) + Zt,ww{(s), with
Z:ir = Cy (sI— A)"! B, = (K + sB)(JX — GT2)
and X
Ziw = Ci (sI—A)"' B, = (K+sB)(JY - GTW),
where Z = =D 1BTA, W = (D — BTA™'B)~! and
Y = —A"'BW. Being IR! the space of contact forces,
in absence of disturbances w, at least ¢ joints are nec-
essary to track arbitrary contact forces. This is not
possible in defective systems.

In this paper we will focus on the definition of a new

set of outputs that is functionally controllable and rel-
evant to the task of manipulation. In order to do this,
the concept of “asymptotic reproducibility” [4] is in-
strumental. Asymptotic reproducibility investigates
output tracking for a particular class of trajectories,
those constant in time. The following definition for-
malizes the notion of asymptotic reproducibility.
Definition 2 Let y(s)/7(s) = Z(s) be the transfer
matriz of an asymptotically stable system, the subspace
of asymptotic reproducibility is defined as the column
space of Z(0). The system output is asymptotically re-
producible if the gain matriz Z(0) is for.r..
Remark 1. The asymptotic reproducibility of the
outputs of an asymptotically stable system is a suf-
ficient condition for the functional reproducibility of
the same outputs.

In the sequel, we assume that the manipulation sys-
tem has no indeterminate modes (G is f.r.r) and that
joint position and rates have been fed back such that
all modes of the system are asymptotically stable.

4.1 Contact forces

Under the above assumptions, the steady-state gain
matrix for contact forces from joint inputs can be eval-
uated, after some algebraic manipulation, as

Z:.(0) = —CtA™'B, = —(I- GLG)KJ, (2)

where G+K is the K-weighted pseudoinverse of G,
and K"' =K~ + JR;lJT is the equivalent stiffness
matrix including the effect of proportional control
on joint positions (cf. [6]). The subspace Fp, =
range(Z; ;(0)) is defined as the subspace of “asymp-
totically internal forces” and consists of all the contact
forces that are reachable at steady—state. Observe
that Fp, C ker(G): these forces are self-balanced
and their resultant action on the object dynamics is
null. In robotic grasp literature, forces t € ker(G)
are customarily defined “internal”, and play a fun-
damental role in grasp contact stability. The impor-
tance of the controllability of internal forces in grasp-
ing was put into evidence in a previous work by Bicchi
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Figure 4: Example of asymptotic reproducible contact

forces (Fp, C ker(G)).

[1] where the principle of virtual work was used in a
quasi—static approach to describe the subspace of “ac-
tive” internal forces. Simple calculations show that
such subspace coincides with Fp.. The example in
figure 4.1 illustrates asymptotically internal contact
forces. While the subspace of internal forces (ker(G))
is 3—dimensional, as depicted on the left side of the
picture, only a one-dimensional subspace is asymp-
totically reproducible.

It should be pointed out that, in general, asymp-
totically reproducible internal forces are internal only
at steady—state, and it might not be possible to apply
them without a transient phase affecting the equilib-
rium of the object. Consider for instance the example
in fig. 4: when a step of torque is applied at the joint
to “squeeze” the object, it causes the motion of the
object, which recovers a (displaced) equilibrium only
after the transient is finished. In other cases, due to
symmetries in the mechanism, it might be possible to
apply internal forces that remain such during the tran-
sients as well. Such “dynamically internal” forces have
been investigated in detail by Prattichizzo [9].

4.2 Object motions
The subspace U, = range(Z, ;(0)), where

Z.,(0) = —C,A™'B, = (GKGT)"'GKJ, (3)

is comprised of all asymptotically reproducible dis-
placements of the object from joint torques. In the
sequel, it will be shown that every displacement of
the object complying with a rigid-body model of the
system 1s asymptotically reproducible.

Rigid-body kinematics are of particular interest in
the control of robotic manipulation systems, because
the extent to which displacements from the reference
equilibrium comply with the linearized model is much
limited for motions that involve visco—elastic defor-
mations of bodies. Rigid-body kinematics have been
studied in a quasi-static setting [2] and in terms of un-
observable subspaces in [3]. In both cases rigid kine-
matics were described by a matrix I' whose columns
form a basis for ker [J - GT]. In our present assump-

Table 2: Representative motions for the subspace
~7 T 1T
range ([] 2¢ I‘uc] )

tion that the system is not indeterminate, it is

I‘:ker[J —GT]::[I(‘]T i“qc:l’ (4)
ue

where T, is a basis matrix of the subspace of redun-
dant motions ker(J), and I'ye and Ty, are conformal
partitions of a complementary basis matrix. The im-
age spaces of I'gc and I'y,. consist of coordinated rigid—
body motions of the mechanism, for the links and the
object parts, respectively. Table 2 illustrates such sub-
spaces for two simple devices.

It can be shown that rigid-body coordinate mo-
tions of the object are asymptotically reproducible
from joint torques,

range(I'y.) € range((GKGT) 'GKI) = U,. (5)

Notice that rigid—body motions are not the only as-
ymptotically reproducible object motions; Y, also con-
tains motions due to deformations of elastic elements
in the model, as for instance, horizontal motions of
the object in the device of figure 4.

4.3 Functional controllability of contact
forces and object motions

In general, not all the object motions are function-
ally controllable by joint torques. Object trajectories
uges can be executed if they remain within the sub-
space U, and analogously, arbitrary contact force tra-
jectories tg., can be executed if they evolve within
the subspace Fj,. In manipulation, however, due to
the presence of friction constraints, task specifications
can not be given disjointly in terms of either object
positions or contact forces.

Clearly, conditions uges € U, and tge;, € Fp, are
only necessary, but no longer sufficient, for joint func-
tional controllability of object motions and contact
forces. Moreover, specifications of jointly functionally
controllable object motions and contact forces may not
exhaust the control capabilities of the system.

Our goal is therefore to define a set of outputs for
a general manipulation systems that is guaranteed to
be feasible, that fully exploits the control inputs and
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that is convenient for the specification of the tasks.
The first requirement implies that the new outputs are
functionally controllable; the second that the input-
output system is square and the third that the new
outputs incorporate the typical priorities of a manip-
ulation task with its priorities:

a) object trajectories that can be accommodated for
by the mechanism;

b) contact forces that can be steered so as to avoid
violation of contact constraints;

¢) reconfiguration of limbs in presence of redundancy.
The following theorem proposes a functionally con-
trollable and task-oriented set of outputs for general
manipulation systems

Theorem 1 In the hypothesis that ker(GT) = 0, con-
sider the linearized dynamics described by the triple
(A,B;,C), where A and B; are as in sec. 2, and the
output matriz C is defined as

| o
C = E+ Ct
TiC,

: (6)

where T', and T, have been defined in (4), and E is
a basis matriz for Fp.. Then, for any constant linear
state feedback R. such that A — B, R is asymptotically
stable, the system (A — B;R, B, C) is square and
functionally controllable.

proof: Note that the existence of such feedback ma-
trix R is guaranteed by lemma 1.

a) The system is square if the number of columns of
CT | denoted by #(C), is equal to the input space di-
mension, i.e. if #(Lyc) +#(E)+#(I'r) = ¢. Since T'r,
Tue, and E are f.c.r. by definition, from (4) we have
#(Tye) +#(Tr) = dim(ker([J —GT))) —dim(ker(GT)).
Observing that ker((I — G G)) = range(KGT), from
(2) we obtain

#(E) = #(J) — dim(ker(J)) — dim(range(J) N range(G7)) =
= g — dim(ker(J)) ~ [dim(ker([J ~-GTY
—&mﬂﬂuﬂ—dmﬂthTﬂ}=q—#ﬂ¥)—#ﬂ@ﬁ
b) To prove output functional controllability of the
system (A — B,R, B,, C), it will be shown that
Zc(s) = C(s1 — A + B;R)"!B; has rank ¢ over the
complex field. The steady-state gain matrix Z¢{0)
results
rt.(GKG")"'GK3J
EYH(1- KGT(GKGT)T'G)KJ | =
rt

where = =

Zc(O) =

3

—(JTKJ + R, — JTKGT - R,)(GKGT)"'GKJ) .

From remark 1, the f.r.r. of Z¢(0) is a sufficient con-
dition for functional controllability, that can be shown
by proving that ker(Z¢ (0)7) = 0.

Transposing Z¢ (0), we get that

y ¥ Y
- [

Case 2 Case 3 Case 4

Table 3: Four simple planar manipulators.

I+, (GKGT)"'GKJ 17

ker(Zc (0)T) = ker[ E:(I—G;(,G)KJ }
rT

Observe that each row block of the matrix on the

right-hand side of equation above is f.c.r., in fact

i: range(Ty.) C range((GKGT)"1GKJ), directly

from (5).

ii: E is a basis for range((I - GLG)KJ) (cf. (2)).

iii: T, is a basis matrix for ker(J);

Hence, to prove that ker(Z¢c(0)T) = 0 it suffices to

show that the raw spaces of the three blocks are also

mutually linearly independent:

iv: The columns of the third block span ker(J), while

the span of the columns of the first two blocks lies

within range(J7);

v: range(G}Ty.) and range(I — GLG)KE) are dis-

joint, then so are the spans of the columns of the first

and second blocks. O

Note that the task—oriented priority order, in the
choice of outputs, is reflected in the top—down ordering
of outputs. In fact, the first group of outputs are coor-
dinates for the subspace of rigid—body displacements
of the manipulated object (in the basis I'y.); similarly
the second group of outputs for the subspace Fp, of
active internal contact forces (in the basis E), and the
third group for the subspace of redundant degrees—of-
freedom (in the basis I';). As a result of theorem 1, all
of these three subspaces are functionally controllable,
and so is their direct sum. In this sense, the chosen
outputs provide a basis of the set of all functionally
controllable outputs, that exactly corresponds to the
task specifications introduced above.

5 Examples

Theorem 1 has been applied to the simple four pla-
nar devices reported in table 3. For each example, it is
assumed that the manipulated object is a disk of unit
radius, mass, and barycentral moment of inertia and
that link masses with their distributions are such that
the inertia matrix of the manipulator My(-) is equal
to the identity matrix. Moreover links are assumed
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to have unit length except for the link of the second
finger in case 4 (its length is 3cos(w/4)). The length
of a link involving contact with the object is meant
to be measured between the joint axis and the contact
point. Finally matrices K, B, R, and Ry are assumed
to be normalized to the identity matrix.

Casel: T'=0and E={10 -1 O]T . Being matrix T’
null, there are neither redundant motions for the ma-
nipulator nor rigid-body coordinate motions for the
objects. The device can only apply force trajectories
lying on range(E). According to theorem 1, the output
matrix C has onerow, namely C =[1[0001{1]000].
Case 2: In this case the manipulator has 2 joints,
and at most two outputs can be functionally control-
lable. These can be specified according to the pro-
posed method as one rigid—body coordinate motion of
the object in the horizontal direction and one control-
lable internal forces:

F=[Ffe]=[11)100"; E=[10-10]".

Then the output matrix results
C:[u o {1 o ofo 0o o o o]

i —-1[6 o o1 —-1]06 0 0 ]-

Case 3: The angle between the links is 30deg.

a 6.2 o
6.8 —6.5 o L
r 2.7 2.7 1 0
= [ qc ] — 1 1 —-2.2 E =
Tac ) 1
—7.6 7 o °
1 1.2 1
—3.4 1 1

Being I',,. f.r.r., it follows that the device can execute
arbitrary object trajectories in R? along with arbi-

trary internal contact forces trajectories (range(E) =
ker(G)).

o ¢ o oo .2-20 0o 0o o}lo o @

C — o o o o .1 .2 ~.21 0 0 0 ] [¢] 0 o
= o o o o|-1 .5 510 0 0 o0}o0 0o o0 |3

22 1 -22-1]0 @ o022 1 —-22-1{0 0 0

Case 4: The manipulator is redundant and the angle
between the consecutive links is equal to +£90deg. The
theorem output organization suggests to use two input
degrees-of freedom to control rigid-body coordinate
motion, one for internal contact forces (range(E)) and
the last one for redundancy. In fact

0 0 0 0 1 -1.3 2.86! O o 0 0 o o 0

(‘v —_ 0 0 a 0 2.5 1 —-21 0 0 [$] 0 o 0 0

- T 2 2 1 —3| 0 a ) 3 2 1 -31{ 0 3] 5] :
1 -1 =1 0 0 ] 0 0 0 V] o 0 0 0

6 Conclusions

This paper analyzes the problem of controlling mo-
tions of objects manipulated by kinematically defec-
tive mechanisms. Our main result consists in the sug-
gestion of an organization of the vector of output vari-
ables for the dynamic system, that incorporate the

constraints as well as the task requirements for the
system. The approximate linearization method em-
ployed to study the problem renders our result valid
only locally around an equilibrium point. The problem
of generalizing this to the full nonlinear model is an
interesting, if probably difficult, problem, especially
in connection with the inclusion of rolling (nonholo-
nomic) phenomena in the model.
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