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Abstract 

This paper deals with the problem of noninteracting 
force/mot,ion cont.ro1 for manipulat,ion syst,ems with 
possible kinematic defect,ivit,y. A geometric approach 
is a.dopt,ed in t,he paper. The main result of the pa- 
per shows t,hat a. suit.able choice of the outputs exists, 
for which a, structural noninteract,ion property holds, 
a.nd such t,ha,t most, practical manipulation tasks can 
be natura.lly specified. 

1 Introduction 

The coordina.ted use of multiple fingers in a robot hand 
or, similarly, of multiple arms in cooperat,ing tasks; the 
use of t,he inner links of a. robot, a.rm or finger t,o hold 
a.n object,, and the exploitation of parallel mechanical 
struct,ures, a,re examples of non-conventional usa.ge of 
mechmisms for manipulation. We will refer to  such 
devices as “general manipulat,ion syst.ems” . 
The a,spect of general manipulation systems that our 
ana.lysis is most focused on i s  defectivity of their kine- 
matics. In many devices whose design is inspired to the 
pursuit of the least complex solution to a given class of 
manipulation ta.sks. a, “defect” of t,he number of cont.rol 
varia.bles with respect to  the problem dimensionality 
frequently arises. 
The main goal of dexterous ma.nipulation ta.sks con- 
sists of controlling the motion of the manipulated ob- 
ject along with tjhe grasping forces exert,ed on t.he ob- 
ject. In the robot’ics litemture, the general problem of 
force/motion control is known as “hybrid cont,rol”. For 
a broad overview of the manipulat,ion cont,rol problem, 
the reader is referred t.0 [123 and t,he references t,herein. 
The present, paper is aimed at  the synthesis of a non- 
intemcting cont,rol law with respect bo t8he rigid-body 
object, inot,ions and the reachable contact. forces along 
with t.he possible mechanism redundancy. The struc- 
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tural decoupling of motion and force control in manip- 
ulation is of paramount importance whenever advanced 
robotic applications a.re considered, e.g. surgical appli- 
cations or high precision tasks of micro-manipulation. 

In t,his paper a geometric approach (cf. [l], [2], [14], 
[7 ] )  to  t8he control problem is adopted. 

We make use of a linearized model at, an equilibrium 
configuration of the general manipulation mechanisms 
and we prove that  the local noninteraction of “rigid- 
body” object motions and reachable “internal” forces 
is a structural property of general manipulat,ion sys- 
tems. The use of linearized model dynamics in the 
analysis of general manipulat.ion systems is believed t,o 
be a significant advancement with respect to the lit- 
erature, which is almost solely based on quasi-static 
models, expecially for defect,ive systems, and in fact 
provides richer results and bet8ter insight. Furthermore, 
the linearized analysis is considered as a fundamental 
preparatory step t,owards full nonlinear analysis, which 
at the moment appears to  be t,oo complex to achieve 
in full generality. Finally, it  is worth while to  mention 
that t,here exists a subclass of mrtesian manipulators 
where the linearized model provides an exact model of 
the whole system dynamics. 

2 Dynamic model 

The linearized model of t,he dynamics of a ma.nipula- 
tion system is derived. For a detailed discussion of this 
model refer to [9] a.nd [ 5 ] .  
We denote by q E IRq the vector of ma.nipulat,or joint 
positions, T E IR4 t,he vect,or of joint, actua,t,or t,orques, 
U E Rd the vect,or locally describing t.he position snd  
the orientation of a frame at,ta.ched to the object, and 
w E IRd the vector of forces and torques resultant from 
ext,ernal forces a.cting directly on the object. In the 
literature, w is usually referred to as the disturbance 
vector. 
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Figure 1: Vector nottation for general manipulation sys- 
t,em analysis. 

The force/torque interaction t, (fig. 1) at the i-th con- 
tact is taken into account by using a lumped-parameter 
(K, .  B, ) model of visco-elastic phenomena. According 
to this model, the cont,act force vector ti is 

where vect,ors hci and *ci describe the postures of two 
contact frames, t,he first on the manipulator and the 
second on t,he object,, where the i-th contact spring 
and damper are anchored. Matrices Ki and Bi are 
symmetric a.nd positive definite (p.d.) and their dimen- 
sion depend on the particular model used to  describe 
the conta.ct interaction (cf. Ell]). To compact notation, 
contact forces and contact points are grouped into vec- 
tors t ,  h~ and “c. Similarly, Ki’s a,nd Bi’s are grouped 
to build the gmsp stiffness and damping symmetric and 
p.d. matrices K and B.  
The Jacobian J and grasp matrix G a.re defined by the 
linea,r maps relating the velocities of vect,ors h~ and “ c  
wit,h the joint, and object velocities q and U, respec- 
t8ively : 

( 2 )  “6 := 54; 0 ’  c = GTU. 

N0t.e t,ha.t, dually, .JTt and Gt represent the effects of 
contact forces t on the manipulation and object dy- 
namics whose nonlinem models are: 

Here, Mh and M, are inertia symmetric and p.d. ma,- 
trices, while Qh and Qo are terms including velocit,y- 
dependent a,nd gravity forces of t.he nianipula.t.or a.nd 
of the object,, respectively. 
Let. q = q,, U = ti,, q = U = 0, T = T,(= JTt,), 
w = w,(= -Gt,), t = to,  be a reference equilibrium 
configiira.t,ion. t.he linea,r approximat.ion of t,he dynam- 
ics in tmhe neighbourhood of such equilibrium point, is 
given by 

x = Ax + B , ~ T  + B,.6w, (4 )  

where state, input and disturbance vectors are defined 
as the departures from the reference equilibrium point: 

x = [ b q T ,  JUT, b q T ,  bUT] = 

( 5 )  
= [(q - qo)T (U - U”)T q T  U’] ; 

JT = T -  JTt,; 

6w = w + G t o  

and the dynamic, input and disturbance matrices A, 
B, and B,, are 

respectively. To simplify notation we will henceforth 
omit the symbol S. Assuming a locally isotropic model 
of visco-elastic phenomena. and assuming that  gravity 
and local variat.ions of the Jacobian and grasp matrices 
are negligible, all the dynamic contributions of terms 
Qh and Q,, can be neglected and simple expressions are 
obtained for the blocks LI, and Lo, as LI, = - M - ~ P I , ,  
and Lb = -M-’Pb where M = diag(Mh, MO). and 

T 
P I , = [  ” ] K [  J - G ’ ] ;  

T 
Pb= J -GT 1 .  

The following grasp properties, based on matrices J 
and G, have a relevant, influence on the dynamic be- 
haviour of t,he manipulation system. 

Definition 1 A grasp (or manipulation system,) i s  
sa id  “defective“ if ker ( . J T )  # 0. 

From (3) JT E Et‘*’*’ where t is the number of com- 
ponent,s of t,he cont,act. force vector t .  Thus, when- 
ever t.he manipulation ;system has less degrees of free- 
dom (DoF’s) q than t ,  it exhibits a defect,ive grasp. 
When t,he system is defedve,  t8here exists direct,ions 
for t which do not influ’ence manipulat,or dynamics (3) .  
Such a scenario ma.y be considered as a common factor 
of all defective manipula.tion systems and t,liis is due 
t,o t,heir intrinsically low number of DoF’s. The reader 
is referrd to e.g. [8] for a, more detailed discussion of 
defectivity. 

Definition 2 A grasp is said “in,deterntinate” i f  
ker (GT) # 0 .  

If the grasp is indet,erminate, t.here exist motions of 
the object,s under which no variat.ions of contact force 
occur (2) .  In other words, indeterminacy implies that 
t.he object, is not, firmly grasped. 

Definition 3 A manzpiilatzon system 2s snzd “gras- 
p a b l e ”  zf ker (G) # 0. 
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If the system is graspable it. is possible to exert contact 
forces with zero resultant forces on the object. Usu- 
ally in the literat,ure the forces belonging to t,he null 
space of G are referred to as “internal forces”. Such 
forces play a f ~ n d a m e n t ~ a l  role in controlling the ma- 
nipulation task. It. is int,uit,ive that,  without internal 
forces squeezing the object, a manipulat.or only acconi- 
niodates t,he object. rather than grasping it.  PVhenever 
the effect of a dist,urhance action on the object is in t,he 
tangential direct,ion of a manipulat,or contact. t,he sys- 
t.em cannot reject such a disturb by simply opposing a 
contact force. It, must generate a n  addit,ional internal 
force t o  keep the total contact force in the frict,ion cone 
and t.o keep t,he contact,. 

Final1 y .  t.hr well-known notion of manipulat,or redun- 
dancy is formalized as follows. 

Definition 4 -4 grasp 1s snzd “redundanl“ zfker ( J )  # 
0 .  

The concept of general manipulation system is formal- 
ized as follows: every manipulation system, in a given 
grasp configuration. defective or not ~ indet,erminat,e or 
not. graspable or not and finally redundant. or not is re- 
ferred to  as a “general” manipulation system. In ot,lier 
words thP generality of a nianipulation syst,em is related 
to its .Jacobian and grasp ~nat~rices. 
As far as st,abilizability of t,he linearized dynamics is 
concerned r re  report the following proposit,ion stat,ed 
in [8] 

Proposition 1 If I h t  syslcm i s  no1 indeierminaie.  2.e. 
ker (G’) = 0. f h e n  t h e  mtn7mol A-iitvnrtnnl subspace 
c o n l n t n i n g  i h r  im(Br) ,  min Z ( A , B , ) .  1s erlernally 
s loblc .  

From  no^ on we will assume that there is not inde- 
terminacy. i.e. ker (G’)  = 0. Such an assuiiiption is 
needed for the stabilizability of the n~anipulation sys- 
tem dynamics ( 4 ) .  

3 Force/motion control 

The iriain goal of manipulation tasks consists of con- 
trolling the motion of the manipulated object. The 
stimulating aspect of manipulation control is that the 
manipulated ohject is not anchored to  the robotic de- 
vice. but this one acts on the object through passive 
(not directlv actuated) “joints” consisting of a mechan- 
ical unilateral contact. Since contact constraints ensure 
both tlie ohject gra.sp a n d  motion control. their 11011- 

\-iolation is of paramount importance. 
.Assuming that a general task specification is gix-en i n  
terms of object motion. the remaining degrees of free- 
dom by n-liich contact phenomena can he controlled 

,“ /j I I  I I  I I  / I  

Figure 2: Representative motions for the subspace 
im [r;c r ~ ~ ] ~ .  

correspond to  t.he “internal forces“. These forces be- 
long t.o the null space of the grasp matrix G and, as 
already poinQed out. they are called “internal” as their 
resulhnt ad ion  on the object dynamics is null. 

In order to pursue our investsigat,ion int,o force/motion 
cont.rol. the out,put,s of the dynamic system (4) must 
be defined. In t,he spirit of [8] we consider the “rigid- 
body coordinat,e object, mot.ions“ , the “reachable in- 
ternal cont.ach forces” and t.he “manipulator dynamic 
redundancy”. 

3.1 Rigid-body coordinate object motions 
Rigid-body kinematics are of part,icular interest in the 
control of manipulation systems. Rigid-body kinemat- 
ics have been st,udied in a quasi-static set,t,ing in [4] and 
in t,erins of unobservable subspa.ces in [ 5 ] .  In both cases 
rigid kinemat.ics were described by a matrix I’ whose 
columns form a basis for ker [J - G*] = im (I?) where 

with Jr,, = GTI’,, 

being rr a basis matrix (b .m. )  of the subspace of re- 
dundant manipulator motions k e r ( J ) .  rf a h.m.  of 
the subspace of indeterminate object motions ker ( G * ) .  
and rqc and rzrc conformal partitions of a complemen- 
t.ary basis matrix’ (c.b.m.).  

The column space of rC = [ ::: ] consists of coor- 

dinated rigid-body motions of the mechanism. for the 
manipulator ( rqC) and the object ( components. 
Physically rigid-body displacements are those that do 
not involve wriation of contact forces. from which tlie 
name ‘rigid.. Figure 2 shows such subspaces for a sini- 
ple devices. 

The following proposition. proven in [?I]. shows that 
rigid-body motions are reachable. i.e. tliel- belong to 
the space of reachability of linear system ( 4 )  Lvith input 
the vector of joint torques T .  

’W i s  callprl a complementary basis matrix of  L’ t o  . I ’  if i t  is 
f .c . r .  and im (W) i L’ = . I , .  
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Proposition 2 Let the subspace of rtgad-body posiiaoias 
and aelocattes he defined as ihe column space of T,, 

fhen if holds im (T,.) 

Notmice t,lia.t, t,he rigid-body subspa.ce is only a. subspace 
of the reproducible one which also contains mot,ions 
due t.0 deforinationrr of elastic element,s in t.he model. 
Rigid-body kinema.tics are of pa.rticu1a.r int>erest in the 
control of ma.nipulation syst,ems. Since they do not 
involve visco-elast,ic deformations of bodies, h e y  can 
be regarded a,s low-energy motions. In a few words, 
they represent. the easiest, way t.0 move t.he object. 

The object-posit,ion regulated output euc is chosen as 
t,he projection, t'lirough of object positions U onto 
t,he subspace of rigid-body object motions im (I'uc): 

min Z (A,  B,). 

etle = ETAcx; with E,, = I?:, [0 I 0 01 

where := ruc(r;crue)-lr~e. (9) 

3.2 Reachable internal contact forces 
The c,ont,rol of con1,a.ct forces t is a fundament,al pa.rt 
of t.he manipulat,ion conttrol problem. Conta.ct forces 
a.re &le t,o ma.intta.in the grasp, to  reject, disturbance 
wrenches w a,nd to1 control the object motion. In [9] 
t,he reacha,ble subspace of cont,act forces as outputs of 
the dyna.mic system. (4) wa.s st,udied. The ma.in releva.nt, 
result* is reported in t,he next, proposition. 

Let us define 6t as the departures of conta.ct force 
vect,or t from the reference equilibrium to (5). Its 
first order a.pproximation can be ea,sily evaluated 
by subst,itut,ing dijfferential kinematics (2) in t ,  the 
grouped vect,or of ti's (1). Hence t = Ctx where 
Ct = [KJ - KGT BJ  - BGT]. 
We a.ssunie that  stifhess mat,rix K a.nd damping mat,rix 
B a.re proport,ional (cf. [SI). Such a.n assumpt,ion allows 
us t.0 extend easily some results obtained in previous 
works ([9] a,nd [5]), to  the cases where B # 0. Under 
the assumption of proport,iona.lity, those geometric re- 
sults depend only on t,he im (K) = im (B), thus we will 
hencefort,h disregxd the explicit dependence on B.  

Proposition 3 
The reachable subspace of contact forces t i s  Rt,, = 
Ctmin Z(A,B , )  -= min Z(KGTMi1G,KJ) 

In t,liis work we a.re int,erest,ed in cont,rolling those con- 
tact forces belonging to  the null space of the grasp ma- 
trix G. In general the null space of G is not, com- 
plet.ely rea.chable. The importance of the rea.chabi1- 
it8y of internal forces in grasping wa.s clarified in [3], 
where t#he principlle of virtual work was used to  de- 
scribe the subspace of active int8ernal forces, a.nd in [8] 

where t,he asymptotacallgr reachahle internal forces were 
studied as steady state behaviour of a suitable transfer 
function. Here we want to  characterize the reachable 
anfernal forces subspace Rti,, as the intersection: 

R.ti,T = 'R,,, n ker (G). 
I 

The following theorem, proven in [lo], provides an ex- 
plicit formula for the reachable internal forces subspace: 

Theorem 1 

Rt, , = im ( P N ~  Ct) = im (PNc: KJ)  
7UZth pNG = I - K G ~ ( G K G ~ ) - ~ G .  

According to this result, the subspace of reachable in- 
ternal forces is obtained by the projector on the null 
space of G, PNC;, actiiiig on the column space of Ct.  
Notice that Theorem 1 states the equality of RtE,, with 
the active forces in [3] and with the asymptotically 
reachable forces in [8]. 
In order to  specify consistent control outputs, we follow 
the suggestion of Theorem 1 and choose as regulated 
force output et, the projlection of the contact force vec- 
tor t on the null space of G,  i.e. the reachable internal 
contact forces: 

et, = Et,x; with Et, = P N G C ~  = [Q 0 Q 01 

where Q = (I - KG'"(GKG*)-'G)KJ. 
(10) 

4 Noninteraction as a structural property 

The present section is aimed at the analysis of the 
noninterac,ting control pr0pert.y for grasping niecha- 
nisms with respect t>o t,he rigid-body object. motions 
and the reachable conta.ct forces together with the pos- 
sible mechanism redundancy. The geometric approach 
is used in such ana,lysis. It should be remarked that the 
earliest geometric approaches to  noninteracting control 
a.re due to  B a d e  a.nd Rnarro ([l]. [2]) and t,o Wonham 
and Morse ([14], [7] 1131). The result of this section 
regards the local force,/motion nonint,era.cting control 
of general manipulation mechanisms and is bmed on 
necessary and sufficient! conditions for t,he existence of 
the noninteraction control law given in [a] and [l]. 

Before at,tacking the piroblem of the structural nonin- 
teract,ion, let us int,roduce the t.hird out,put vector eqr 
to take into account the possible redundancy of the 
mechanism. Whenever. the a.nalysis is not static, t.he 
inert,ia ma.t,rix Mh p1a.y a key role in chara.cterizing t,he 
redundance disp1acement.s of the ma.nipulat<or. There- 
fore, we define the redundancy output matrix E,, as 

e4,. = E,,x; witah Eq,. = [rrMh, 0 0 01 (11) 
where rp is the projection matrix onto ker (J)  whose 
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Definition 5 A control law for the  dynainzc system 
( 4 )  IS noiiinteracting iilzth respect t o  f h e  regulated oii f-  
puts  e,,, ,et,  a n d  eqT zf t h e r e  e r i s i s  a par f i f zon  rur% rtZ 
and rqr of ihe ziiput elector r such that f o r  zero znz- 
t in l  condi t ion ,  ench inpiif  T( , ( i t z fh  a11 the  o ther  inp i i f s ,  
ideii f icnlly zero)  on ly  a f e c f s  the corresponding oit tpuf 
E (  I 

The following theorem shows that the noninteraction of 
the regulated outputs e,,,,et, and e,, for the dynamic 
system (4) .  is an intrinsic structural  propeity of general 
(iioii-indeterminate) manipulation systems 

Assuiiie that 
H1: The manipulation mechanism is not indetermi- 
nate. ker (G') = 0. 
H2: i m ( r q c )  1s M;JTKJ-invariaiit and is 
MT GKGT-invariant, 
then, the following theorem holds 

Theorem 2 (Noninteraction) C'onszder the  lzn- 
esrtzed inanzpiilnfzon syslem (4) .  Under the  hypothesas 
H1. there ex is t s  a ~ ionin ternc fz i tg  conirol law decou- 
plzng the  fo l lo i iwg  ou fpu t s :  

a )  rigid-body object rnofzoiis e,,,; 
h )  rfachable in ternal  forces eta;  
e )  riieciianrsm reditndancy eqr, 

Remark 1 The technical hypothesis H2 is introduced 
in order to simplify the proof of the t,heorem. 

Remark 2 In [PI t,lie a.ut'liors discussed t,he consis- 
t,ency of t~he out.put,s chosen in Theorem 2, where for 
consist,eiicy me mean that, the wliole set, of out,put.s is 
point,wise cont~rollable and t,hat, it. direct,ly a.ccommo- 
dat~es for specification of manipulat,ion t,asks. More- 
over, in [PI it. mas shown that, t,hese out,put,s. e,,c3 et< 
and eq,. , are funct,ionallp coiit,rollable a.nd exhaust. t,he 
control capahilit.ies. i.e. the input.-out,put, represents.- 
t,ion is invert,ible aiid square. In t,liis paper we show 
t,lia.t, there always exists an observer-based coiit#rol law 
which is locally n o i ~ i n t e m c t i n g  with respect, t,o t.liese 
outputs. The theorem on nonint'eract,ioii is st'a.t,ed for 
t,he whole chss of general (iioii-iiidet,erniiiia.te) ma,nip- 
dat.ion systems, i.e. what,ever be t,lie .Jacobian aiid 
grasp matrices (m7it.h ker ( G T )  = 0)  but.. as pointed out, 
elsewhere. we underline t,he relevance of Theorem 2 t,o 
the subclass of defect.ive syst,eiii characterized by a low 
number of cont.rol variables. 

5 Noninteraction: sketch of the proof 

In this section the proof of the main result is sketched. 
It is based 011 the analysis of the system-theoretic 

st~ruct,ural properties of manipulation systems, summa- 
rized in a standard form for t,he linearized dyna.mics, 
given in [5] and [Y]. 

A detailed proof of the Nonint.eraction Theorem, is 
given in  [lo]. 

Under the hypothesis H1, the couple (A, B7)  is stahi- 
lizable (cf. Proposit,ion 1) and under H2 t.he linearized 
syst,eni ( 4 )  is det,ect,able from the informat,ive output* 
y = (q', tT)T  (cf. [5]). Then, according to  [2], there 
exist.s an observer-ha.sed controller noninteracting with 
respect t,o t,he regulated out,puts (9), (IO) a.nd (11): 

etls = E,,.x = [0 l'cc 0 01 x; ( 1 3 )  
el;  = Etix = [Q 0 Q O]x; (14) 

eqr = E,,x = [I'rM, 0 0 01 x (15) 

if and only if 

where 
KtLC = ker (Et, ) n ker ( E q T ) ;  
Kt ,  = ker (Ettc) n ker (Eqr)? (17) 
K,, = ker (Etz) n ker (Euc ) 

By we denote the )-constrazned controllabzlity 
subspace which is the subspace of all the points reach- 
able through trajectories leaving the origin and belong- 
ing to  K(  ) 
In what follows we focus on equalities (16) and to 
simplify the proof, we replace the intersection sub- 
spaces K,,, Kt, and K,,. in (17) with suitable subspaces 
irn (But)? irn ( B t f )  and im (BqT) whose constrained con- 
trollability sets do suffice for complete noninteracion 
Proof of a) It can be shown that 

ti,, 2 im (Bur) with 

r roc o rqc o 1 

Clearly RB,,, tlie B,,,-constrained controllability sub- 
space. is only a subset of Rn,, but it will suffice to 
prove a )  

In order to evaluate RB,,  we must face the iterative 
nature of tlie algorithms (see [2]) computing the mar- 
f ina l  controlled ini1arznnts maxV ( ) ' s  and the mznznial 
conddroned in7~ar inn f s  minS ( )'s In fact the mnnimal  
self-boicnded controlled inziarznnt RB., is computed 
as foiloms RB., = maxV(A,im(B,),im(B,,,)) n 
minS(A.  im(Bt,,). im(BT) )  

After some algebraic nianipulations reported, we oh- 
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To complete the proof it remains to verify that 
E,,RB,, = im(E,<.) and this is trivial since from (9) 
E,, = rlLe(r:crue)-l [o Ce 0 03 

Proof of b) Analogously, 

K t ,  2 im (Eh,) with 

rh o s , o  0 0  

where P = ker(r‘Tc) n S, and S, is the b.m. of 
min Z(MTIJTKJ. MilJTKGT) while S, is the b.m. 
of min z (M;~GK:G~,  M;~GKJ).  
As before, R B ~ ,  = maxV (A,  im(B7) ,  im (Bti)) n 
minS (A ,  im (Bti), iim (BT)) is a subset of R K ~ ,  but it 
will suffice for this proof. We obtain (cf. [lo]) that 

r rh o s,z 0 1 
0 0 0  I R.B~, 2 im 

L o  0 0 O J  

where Z = ker(I’T,M;lGKJS,). To complete the 
proof we must verify that  EtiRgt, = im(Eti), which 
is equivalent to im(Q [ I’h S,Z 1 )  = im(Q), proven 
in [IO]. m 

Proof of c) Condition c) is the easiest to  prove. In 

and since from (12) 

condit.ion c) is verified and the proof of c) ends. 

6 Conclusions 

In t,his paper we considered the problem of controlling 
general manipulation systems. Due to  the presence of 
defective manipulators as a relevant subclass of the gen- 
eral ones, t,he choice of the reguhted out,put,s requires a, 
particular attention, In fa,ct in defect.ive nia.nipulat,ors, 
cont,a.ct forces are not complet.ely reachable and t,his 
involves a certain complexity in controlling the whole 
system. 

After chara.ct,erizing t,he system outputs as the rigid- 
body object, motions, the reachable cont,act forces and 
t,he possible mechanism redundancy, we focused on the 
problem of force/inotion nonint,eract,ing cont.ro1. 
The geomet*ric approach is used t.hroughout t,he paper 
whose main result, stfates t,ha.ts there a.lways exists an 

observer-based control ‘law that is locally noninteract- 
ing with respect to  the aforementioned outputs. 

Notice that the local force/motion noninteraction can 
be considered as a structural property of manipulation 
systems. 
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