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Abstract 
The geometric approach to the control of internal forces 
for robotic grasping is explored. Since the manip- 
ulation of deformable objects is a frequently occur- 
rence (medical applications, manipulation of rubber 
and plastic in industry), manipulation systems with 
significant contact elasticity are studied. The presence 
of non-negligible compliance at the contacts, implies 
that the object dynamics cannot be neglected when 
attempting to control internal forces without affecting 
the object position. 
A geometric approach to derive a control law decou- 
pling the internal force control action from the object 
dynamics is proposed. 

1 Introduction 

In robotic literature terms as “whole-arm” and “en- 
veloping” or “power” grasps are representative of all 
those situations where the manipulator touches the 
gripped object with its own inner parts and not only 
with the end-effectors, cf. [ll, 4, 121 and references 
therein. 
In order to execute power grasps, robotic manipulators 
must be equipped with appropriate hardware. In fact, 
inner parts must be sensorized as well as fingertips. As 
a consequence the complexity of the analysis and the 
control synthesis increases consistently. For instance, 
particular attention must be devoted to specify consis- 
tent control goals. In [8] it was shown that in general 
a power grasp cannot move the manipulated object in 
any direction of its configuration space. 
From an analytical point of view, power grasps involves 
the presence of kinematical deficiency [9, 101. In other 
words, in power grasps usually at least one of the links 
touching the object possesses less degrees-of-freedom 
than those necessary to move its contact point in ar- 
bitrary directions. Thus there exists a non-zero null 
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Figure 1: Micro manipulation of internal tissues in 
surgery or laparoscopy. 

space of the Jacobian transpose, ker (JT) # 0,  and the 
manipulation system is said kinematically defective. 
This work is focused on the control of internal forces 
for kinematically defective manipulation systems with 
non-negligible contact elasticity. In [9] it was shown 
that such a class of manipulators is enough general to 
include a wide variety of manipulators and cooperating 
robots. 
Internal forces are defined as those having no action 
on the object dynamics. They are self-balanced forces 
and belong to the null space of the grasp matrix (cf. 
e.g. [9]). Internal forces play a key role in controlling 
the grasp. 
Frequently, in advanced robotics, contact (object 
and/or fingertips) elasticity cannot be neglected. In 
-industry this occurs whenever there is a need of assem- 
bling and manipulating non-rigid (rubber or plastic) 
parts. In medical applications, as the micro manipula- 
tion of tissues in surgery or in laparoscopy, for instance 
there could be the need of squeezing the tissue part of 
the patient’s organ in order to exert a cutting action, 
see fig.1. Moreover note that modelling contact elastic- 
ity is mandatory not only for deformable manipulated 
parts but also for soft fingertips as those of Akella and 
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Figure 2: Deforma'ble contacts: squeezing action of the 
prismatic joint. 

Cutkoski [l]. 
If the manipulation system can be modelled by rigid- 
body contacts, usually the object dynamics is inten- 
tionally ignored to  synthesize the internal-force con- 
troller. On the other hand, for the aforementioned ex- 
amples of advanced manipulation tasks, the object dy- 
namics cannot be disregarded at all in synthesizing the 
internal-force controller. As an example consider the 
manipulation system of fig.1 and model the complaint 
contacts with visco-elastic lumped parameters as d e  
picted in fig.2-a). A control policy ignoring object dy- 
namics, for instance a force step on the prismatic joint, 
squeezes the manipulated object but an undesired and 
dangerous transient motion of the object arises. 
In this paper a state-feedback controller that perfectly 
decouples the internal force control loop from the ob- 
ject dynamics is proposed. 

2 Background 

This paper is related to  previous works by the authors 
[8, 9, 101 where the linearized dynamics of manipula- 
tors with general kiniematics and their system-theoretic 
structural properties were investigated. Some of these 
results along with notation are here summarized for the 
reader's convenience. 

Let q E Rq be the vector of joint positions, T E lRq the 
vector of joint generalized forces, U E Rd the vector 
locally describing thLe position and the orientation of 
a frame attached to  the object and finally w E Rd 
the vector of forces and torques resultant from external 

Let further introduce the vector t E lRt whose compo- 
nents include contac:t forces and torques. We assume 
that contact forces arise from a lumped-parameter 
model of visco-elastic phenomena at the contacts, sum- 
marized by a stiffness matrix K and a damping matrix 

forces acting on the object. 

B. Note that the lumped parameter model of contact 
interactions makes the identification procedure feasible 
with a reasonable amount of computations. 

The Jacobian J and the grasp matrix G are defined 
as the linear maps relating the velocities of the contact 
points on the links and on the object, to  the joint and 
object velocities, respectively, cf. [5]. 

The linear approximation of the manipulation system 
dynamics in the neighbourhood of such an equilibrium 
configuration, (9, U, 4, fi, 7, t) = (so, U,, 0, 0,707 to), 
can be written as 

x = Ax + B,T' + Bww', (1) 

where state and input vectors are defined as the de- 
partures from the reference equilibrium configuration: 

w' = w + Gt,, and 
x = [(q-q,)T ( U - U ~ ) ~  GT liTIT77' = T - J T to 

r o i  r o i  

being Mh and MO the inertia matrices of themanipu: 
lator and the object, respectively. To simplify notation, 
the prime in T' and w' will be henceforth omitted. 

Assuming that local variations of gravity forces on sys- 
tem dynamics, of the Jacobian and of the grasp matri- 
ces are negligible for small displacements du, dq, simple 
expressions are obtained, [8] for 

Lk = -M- 'Pk, L b = - M -  l P b  

where M = diag(Mh,M,), P k  = STKS, Pb = 
STBS, and S = [J - GT]. 
The framework throughout is the geometric approach 
to  the structural synthesis of multivariable systems. 
Such approach, pioneered by Basile and Marro [2, 31 
and Wonham [13], has been used to  obtain structural 
geometric decoupling conditions in the state space. 

3 Internal forces as controlled outputs 

The control of contact forces t is a fundamental part 
of the manipulation control problem. Contact forces 
allows the manipulator t o  maintain the grasp, reject- 
ing external disturbance w and controlling the object 
motion. 
Consider the departures of contact force vector t from 
the reference equilibrium to. Let t' (henceforth t) be its 
first order approximation which in [9] was computed as 
an output of the linearized model (1): t = Ctx where 
Ct = [KJ - KGT BJ - BGT]. 
Assume that stiffness matrix K and damping matrix 
B are proportional, this is customary in mechanical 
vibration analysis [SI. It follows that im (K) = im (B) 

1943 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 17,2010 at 08:43:45 UTC from IEEE Xplore.  Restrictions apply. 



and that all the geometric results of this paper can be 
expressed only as functions of K. 
In [4] it was shown that, in kinematically defective 
grasps, not all the internal forces are controllable. Thus 
an analysis of their reachable set is needed in order t o  
specify consistent control goals. In [lo] the authors, 
starting from the linearized dynamics, define the reach- 
able internal forces subspace Rti,, as the intersection 
between the reachable subspace of all the contact force 
and the null space of the grasp matrix: 

Rti,7 = Rt,, r l  ker (G). 

Moreover, in terms of column spaces, they showed that 

Gi,, = im (PNG Ct) = im (PNG KJ) 

where PNG = I - KGT(GKGT)-lG. 

According to  this result, the subspace of reachable in- 
ternal forces is obtained by the projector PNG (on the 
null space of G) acting on the column space of Ct. 
Finally, the regulated force output eti is chosen as the 
projection of the force vector t onto the null space of 
G, i.e. the reachable internal contact forces: 

eti = EtiX; 
and Q = (I - KGT(GKGT)-lG)KJ. 

It might be worthwhile to  emphasize that 

where Eti = PNGCt = [Q 0 Q 01 

(2) 

(3) 

P- 
Figure 3: Coordinate rigid-body motion. 

the manipulator (rqC) and the object (I?uc) compo- 
nents. Physically rigid-body displacements do not in- 
volve variation of contact forces. Fig. 3 shows such 
subspaces for the simple device of fig. 1. 

In [8], it has been shown that rigid-body motions are 
reachable, i.e. they belong to  the space of reachability 
of linear system (1) with input vector of joint general- 
ized forces 7. Note that the rigid-body subspace is only 
a subspace of the reproducible one which also contains 
motions due to  deformations of elastic elements in the 
model. 
The rigid-body object displacements euc are described 
by the projection, I?zc, of object positions U onto the 
subspace of rigid-body object motions im (I'uc): 

euc = E,,x; where E,, = rzc [O I 0 01 

and rzc = ruc(r:cruc)-lI?:c. (5) 

4 Rigid-body object motions 
5 Control of internal forces: a case study 

Rigid-body kinematics are of particular interest in the 
control of manipulation systems. They do not involve 
visco-elastic deformations of bodies, thus they can be 
regarded as low-energy motions. Rigid-body kinemat- 
ics represent the easiest way to  move the object. 

Rigid-body kinematics have been studied in a quasi- 
static setting in [5] and in terms of unobservable 
subspaces from contact forces in [SI. In both c s e s  
rigid kinematics were described by a matrix I' whose 
columns form a basis for ker [J - GT] = im (I?) where 

2: ;*I, (4) 
and Jr, = GTr,, 

being I?T a basis matrix (b.m.) of the subspace of re- 
dundant manipulator motions ker(J), I?i a b.m. of 
the subspace of indeterminate object motions ker (GT), 
and rqC and ruc conformal partitions of a complemen- 
tary basis matrix. 

The column space of I?, = [ ::I ] consists of co- 

ordinated rigid-body motions of the mechanism, for 

The following example shows the behaviour of an inter- 
nal force controller designed for rigid-body systems but 
acting on a manipulation system with a deformable ob- 
ject. The planar manipulation system is the two Dof's 
depicted in fig. 2-a). It has the contact points in1 (0,2) 
and (2,2), the prismatic joint in (2, l), and stiffness, 
damping and inertia matrices normalized to  the iden- 
tity matrix. The Jacobian and the grasp matrix take 
the following values 

J =  [; : l ] ; G = [ i  0 - 1 0 1  ! ! ] .  

Observe that the system is defective, ker (JT) # 0. The 
controlled output is eti (2): the projection of the force 
vector t onto the null space of G, i.e. the subspace of 
reachable internal forces which, in this case, is Rti,, = 
im ([I 0 - 1 01). 

The force control block diagram is reported in fig. 4. It 

With respect to the depicted reference frame. 
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Figure 4: Two-loops internal force control law. 

Figure 5: Simulation result of block diagram 4. Reachable 
internal force. 

consists of two loops: the internal one is the stabilizing 
[7] PD controller of joint positions while the external 
one is the force loop composed by the internal model 
and the Jacobian transpose. 
The internal model principle guarantees that when the 
input is a unit step the magnitude of the output eti 
reaches the unit value. 

Unfortunately the controller action moves the grasped 
object along the rigid body coordinate subspace, 
im (rut) = im [-0.76 0.38 0.381. Simulation results are 
reported in fig. 5 and 6.  The final configuration of 
the manipulation system looks like the one depicted in 
fig. 2-b). Observe that this is a dangerous maneuver 
in applications like those described in Section 1. 

The paper contribution consists in proposing a state- 

0 8 ,  , ' , 

Figure 6: Simulatilon result of block diagram 4. Coordi- 
nate rigid-body object positions. 

feedback internal force controller whose action results 
to be decoupled from the rigid-body object dynamics. 

6 Object-motion decoupling control of 
internal forces 

This section is aimed at the analysis of the object- 
motion decoupling control of internal forces for general 
grasping mechanisms. It should be underlined that, ac- 
cording to [8], by the term "general" we mean manip- 
ulation systems with any J and G with ker(GT) # 0 
(no free object motion)a and that the manipulation 
system with kinematically deficiency (ker (JT) # 0)  is 
a paradigm of general manipulation systems. 

Definition 1 Consider the dynamic system (1) A con- 
trol law of the internal forces eti is decoupled with e- 
spect to the coordinate rigid-body motions euc, if there 
exists a linear combination BTU of the inputmatrix 
columns such that, for zero initial condition, the input 
T = UT,, only affects the internal forces eti while euc 
remains identically zero. 

The following theorem shows that this definition can 
be considered a structural property of general (non- 
indeterminate) manipulation systems. 
Assume that: 
H1: The manipulation mechanism is not indetermi- 
nate, i.e. ker (GT) = 0; 
H2: ker (rTJ is MLIGKGT-invariant 

Then the following theorem holds. 

Theorem 1 Consider the linearized manapulation sys- 
tem (1) .  Under the hypothesis Hl-H2, there exists a 
stabilizing state feedback F and a matrix U such that 

the decoupling condition of Definition 1 holds 

im (Et; < A + B,F I B, >) = im (Eti). 

being < A I B >= [B A B  A'B . 

Remark  1 Hypothesis H2 is technically in nature and 
has been introduced in order to simplify the proof of 
the theorem. 

A"-lB]. 

Remark  2 Theorem 1 states both the decoupling 
property and the complete output reachability of in- 
ternal forces I&,, (3). 

Remark  3 If the sensor system of the robotic manip- 
ulator is not able to  measure the object position and 
velocity, a state observer is needed in the control loop. 
This commonly occurs when robots are equipped with 
tactile sensors. If contact force and joint position sen- 
sors are chosen, the local state detectability from the 
measured outputs has been proved [SI. 
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7 Proof of the theorem and controller design 

The groundwork of the decoupling theorem is the ge- 
ometric approach to  the multivariable control design 
[3,13]. Next, we recall a basic concept of this approach. 
Consider the linear dynamic system (A,B,) with a 
given subspace of the state space, say S and let us 
introduce the notion of S-constrained reachable sub- 
space, Rs with the following question. How does 
the reachability subspace change if the state trajecto- 
ries are constrained to  belong to  the given subspace 
S? The wrong answer would be that 72s is equal to  
im < A I B, > nS. Under the hypothesis of existence 
of a state-feedback matrix F such that (s.t.) 

(A + BTF)S C S, (6)  

the correct answer [3] is that 

R s = i m  < A + B T F I B T U > C S  (7) 

where the input selection matrix U is such that 

im (BTU) = im (BT) n S. (8) 

According to  the theorem statement, it’s now clear that 
to  decouple the system, this should be controlled by 
constraining state trajectories to  lie onto the null space 
of the rigid-body output matrix E,, (5). 
Let us define the subspace S as 

rx o o 0 1  
O O Y O  
0 x 0 0  S = im 

1 0  0 0 Y ]  

where Y is the maximum Mz1GKGT-invariant sub- 
space contained in ker 

Y =< G K G ~ M ; ~  I rUc 

ML~GKJX = Y n MG~GKJ,  

and X is s.t. 

where notation is abused to  indicate matrices and cor- 
responding column spaces as well. 
Being Y contained in ker from (5) it is an easy 
matter to verify that S C ker (Euc), thus, by choosing 
U as in (8) and F as in (6), according to  (7) it fol- 
lows that the state-feedback control system, depicted 
in fig. 7 and described by the couple (A + B,F, BTU), 
does not affect the rigid-body object motions. In fact 
its reachable subspace is a subset of ker (E,,): 

Rs = im < A + B,F I BTU >C ker (E,,). 

The existence of a stabilizing feedback matrix IF satis- 
fying condition (6) is guaranteed by the fact that S is 
an internally stabilizable (A, B,)-controlled invariant 
[3] and that system (1) is stabilizable [9, 101. 

X 
MANIP. 

Figure 7: State-feedback decoupling controller. 

After having decoupled the system outputs, it still 
remains to  prove the rank condition stated in Theo- 
rem 1. The computation of the S-constrained reach- 
ability subspace is needed. 72s could be evaluated by 
using equation (7), the inconvenience is that this equa- 
tion is a function of F which is not uniquely defined. 
A more convenient way to  compute Rs goes through 
the computation of the minimal conditioned and maxi- 
mal controlled invariants, cf. [3] for more details. After 
some algebraic manipulations, we obtain that 

r X 0 0 0 1  

L M Z ~ G K J X  o o P 1 

P =< M ; ~ G K G ~  I M ~ ~ G K J X  > .  

where 

In [lo], it is proven that im(QX) = im(Q), conse- 
quently EtiRs = im (Et;), and the theorem proof ends. 
Finally, the state-feedback control law, suggested by 
Theorem 1 and depicted in fig. 7, consists of a stabiliz- 
ing feedback gain F which satisfies inclusion (6) and of 
the input selection matrix U defined by equation (8). 

8 Casestudy- 

The case study has been introduced in Section 5 tc- 
gether with the non-decoupling control law of fig. 4. 
Simulation results of Section 5 are here compared with 
those obtained by using the decoupling controller of 
Theorem 1. 
According to  the previous section, the state-feedback 
gain F and the input selection matrix U of the block 
diagram in fig. 7 are obtained as 

4 -4.5 -4.5 4 2 4 -4.5 F = [ : 11 10 10 2 -7  11 10 Yob I 
and 

-0.16 [ 0.99 1 .  
The controlled output is et;. Again the internal model 
principle guarantees that, with a unit step as input, the 
internal force eti reaches (in magnitude) the unit, but 
unlike the controller of fig. 4, the decoupling control 
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state-feedback control law that decouples the internal 
force control action from the object dynamics. Note 
that such a decoupling property can be considered as 
a structural property of general manipulation systems. 

Figure 8: Simulation result of block diagram 7. Reachable 
internal force. 

Figure 9: Decoupling internal force control. 

of fig. 7 does not affect the rigid-body object motion 
which remains ident,ically zero. In other words, the pro- 
posed internal force controller allows one to  squeeze the 
object, see fig. 8, in a way that the manipulated object 
does not change its position. Fig.9 pictorially describes 
the squeezing action by the decoupling controller. 

!D Conclusions 

In this paper the problem of controlling internal forces 
of general manipulattion systems is investigated. 

Due to  the presence of kinematically defective grasps 
as a relevant subclass of the general ones, the choice of 
the regulated output required particular attention. In 
power grasps, not all the contact forces are reachable. 

Special attention wim devoted to  manipulation systems 
with significant compliance at the contacts. As a con- 
sequence, the object dynamics was taken into account 
in controlling the internal forces. 
After characterizing the rigid-body object motions and 
the reachable contact forces, the problem of synthesiz- 
ing an internal force control law which does not interact 
with the rigid-body object motion was investigated. 

The geometric approach is used throughout the pa- 
per whose main result states that there always exists a 
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