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any point of the kinematic chain (whole-limb manip-
ulation). has been presented in {2}.

First results for this tvpe of analysis in the force do-
main have heen illustrated in [1] (considering contact
compliance) and in [8. 9] (neglecting it). Some of these
results are here used and extended in order to further
develop the study hoth in the force and in the dynamic
domain.

In particular, in Section 2 the derivation of the static
and dvnamic model of a whole-limb manipulator is
presented. On this basis. the definition given in [2] of
kinematic manipulability is applied to the static (Sec-
tion 3) and to the dynamir case (Section 4). Examples
are discussed in Section 5. while final comments and
conclusions are given in Section 6.

2 Background
2.1

Let an object be grasped by means of » contacts and
let the components of contact forces and moments on
the object form a vector t € R'. The type and num-
ber of contact force components may vary with the dif-
ferent types of contact considered (hard-finger, soft-
finger. complete-constraint. etc.). Consider the task
of resisting an external force £ and moment m applied
upon the ohject. The force and ntoment balance equa-
tion for the object can he written in matrix notation
as

Quasi—static model

w = —Gt, (1)

where w = (fTm™)7 € R” is the so—called load
“wrench” (d = 3 in the plane. and d = 6 in the 3D
space). and G € R7*" is usually terraed as the “grasp
matrix”, or “grip transform”. We assume that matrix
G is full row rank (rank(G) = d). so that the existence
of a solution to (1) for any w is guaranteed. In gen-
eral, (1) has more unknowns (#) than equations (d). so
that the solution is not uniqgue.

The relationship between the contact forces on the
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fingers and the vector 7 € R of joint actuator torques

is also linear:
r=Jt (2)

where matrix J € R is the “Jacobian” of
the manipulation system. A robot system with
q > rank (J) <t (i.e. ker(J) # {0}) is a “redundant”
svstem. while if ¢ > rank (J) < g (i.e. ker (JT) # {0}).
the robot system is “defective” with respect to its con-
tact force space dimension. Exact definitions of the
above vectors and matrices can be found in {2. 11, 12}.

By juxtaposing quasi-static relationships (1) and

(2). one gets
-G

When the system is such that matrix [r——GT J]7 has
a nullspace. i.e. when ker (G) Nker (J7) # {0}, the
svstem is “hyperstatic”™. In such case. it is well known
that the contact force distribution problem is underde-
termined. and that a model of the svstem compliance
is needed to solve the indeterminacy. This problem can
he analvzed as a controllability question as discussed
in a quasi-static setting in [1]. and in a complete dy-
namic context in [10. 12]. The interested reader is re-
forred to these papers also for a detailed discussion of
force distribution in defective manipulation systems,

To address force distribution problems in hyper-
static mechanisms. mechanical compliance of the sys-
tem has to be taken into account. Thus, a lumped
parameter model of contact compliance is introduced
in the quasi-static model by making use of “virtual”
springs relating contact forces t with joint and object
displacements.

We describe the system around a reference equi-
librinm configuration, with contact force t,, external
wrench w, = —Gt, and joint torque 7, = J7t,. As
small displacements from the reference configuration
are considered. J and G are considered constant ma-
trices.  We further assume that joints are position—
controlled. and that the inverse of the steadv-state
gain of the i- th joint position servo controller is placed
in the i-th diagonal element, of a positive definite ¢ x ¢
stiffniess matrix C,. We denote by g = q, +dq the vec-
tor of joint positions, and by @ = q, + 4G the vector of
set points for the joint servos. g, and §, denoting the
joint positions and servo set- points at the reference
configuration. respectively. At the reference configu-
ration. it holds 7, = Cq"l (G — q,). We further denote
by u = u, + du the posture of the manipulated object,
where w, is the object’s reference configuration.

Contact forces are obtained as

t = K(GTdu - 35q) + ¢, (4)

where the stiffness matrix K € R" incorporates the
structural elasticity of the object and of the fingers,

Figure 1: The origin of equation 5. (a) Forces and dis-
placements (linearly superposed) generated by a servo
set--point displacement with fixed ohject position. (h)
Forces and displacements generated by an object dis-
placement, with fixed servo set-points.

and the stiffness of joint servos [7]. Denoting with C,
the # x f structural compliance matrix (due e.g. to the
flexibility of links and mechanical transmission, or to
soft. gripping surfaces), we have that

K=(C; +JC, 7)1 (5)

As a consequence of its physical nature, K is assumed
symmetric and positive definite. A pictorial represen-
tation of the variables involved in (5) is reported in
Fig. 1. A detailed and comprehensive study on the
evaluation and the realization of desirable stiffness ma-
trices with articulated hands has heen presented by

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 17,2010 at 08:40:32 UTC from IEEE Xplore. Restrictions apply.



Cutkosky and Ka
The elastic mo
swer the passive fi
In fact. it can h
forces halancing a
on the object w -

given hy
t

o [4].

lel of contacts (4) enables us to an-
rce manipulability problem at once.
> proven (see e.g. [1]) that contact
wrench applied by the environment
vith fixed joint servo set-points are

= Gﬁ»w+Ex+Py, (6)

where GE = KGT(GTKGT)™! is the K-weighted

pseudoinverse of

the grasp matrix; E is a basis ma-

trix of the subspece of active. internal contact, forces.
i.e. a collection of independent vectors spanning the
range of (I— G}fG)KJ. and P is a basis matrix of the
siuhspace of passive. internal contact forces. i.e. the
nullspace of [—GT J]T. Recall that contact forces are
said “internal” if they are self-balanced, and do not

generate any resu
imposed to the sy

Itant wrench: “active” if thev can be
stem by suitably controlling the joint

variables. and “passive” otherwise.
In (6). the coefficient vector x € R" parameterizes
the active (controllable) part of the homogeneous solu-

tion to w = Gt.
tact forces result

For any choice of x. a vector of con-
5 that equilibrates the desired load.

Vector x represenits the freedom in the choice of inter-
nal contact foreeg. usnally exploited to avoid slippage

of contacts.
allow arbitrary fo
and conic Coulor
of t are in order.

Such a conic ¢
methods based ¢
lipsoids. Therefor
bilateral contact
assumption is no

assiming to deal

equilibrivm grasp

verified with som
According to

forces. the joint &

T

2.2 Dynam

Int order to addre

In fact, common contact models do not

rces to he exchanged at the contacts,
th inequalities between components

onstraints can not bhe dealt with by
n norms such as manipulability el-
e. in this paper we assume that only
ronstraints are in effect (actually, this
overwhelmingly restrictive. as we are
with small displacements from an
. where contact force inequalities are
e margin).

2). to exert the halancing contact
ctuators have to apply a torque

= -J'G" w+JTEx. (7)

3c model

ss the dyvnamic manipulability anal-

vsis. a model of the system dynamics is needed.
A robot-ohject svstem is a constrained mechani-

cal svstem. whos
ing Euler-Lagra
equations. The ¢
the ohject arve wr

e dynamics can be obtained by us-
ge's equations along with constraint
isjoint dynamics of the hand and of
itten as

(ial-h(qvq) _ 8.
Lot adq

T . .
019:9)) T = My (q)§ + Qr(a.q) = 7

q

5 Y ayy T . .
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and M, {(-) are symmetric and positive definite inertia
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matrices and Q,(-.-) and Q,(-, ) are terms including
velocity-dependent and gravity forces of the rohotic
svstem and of the object, respectively. Co-operative
robots and object dynamics are linked through n con-
tact constraints of the tvpe:

C<q,u>[§]=[J —GT}[E]:O- ®)

By introducing an undetermined t—dimensional vec-
tor of Lagrange multipliers ¢, the virtual work of the
connected system can be written as (Ly, = Ly + L,)

d Ly,
dat o(q. v)

_ OLp, Ter 1T T 5(1}#
O(q‘u)‘Ft C-{r'w ]] [ =0,

whence. differentiating (8). one gets

6l T Qh
Mn‘yn u = w - QO ’ (9)
t Q.
where
M, o0 JT
Mdyn = 0 M, -G \ (10)
J -G o

and Q. = Jq - GTu.

For non-hyperstatic systems. matrix Mgy, is invert-
ible. In such a case, the above rigid-body model is
sufficient to completely describe the motion of the sys-
tem along with the Lagrange multipliers t. Notice that
physical interpretation of t as the force reactions, ex-
actly necessary to enforce the constraints, lead directly
to the identity of Lagrange multipliers with contact
forces as introduced in the guasi-static model.

For hyperstatic systems. M,,, is not invertible, and
the elastic model (4) has to he adjoined to equation (9)
to achieve a complete model of the dynamics.

3 Force manipulability

In the force domain. input efforts are measured by
weighted norms of joint torques 7, and output per-
formance is expressed in terms of weighted norms of
wrenches w. To arrive at defining force manipulability
ellipsoids. we choose weighted 2-norms defined as

TTW,r;

wiW, w,

=
I

with W, and W . constant, positive definite weighting
matrices of suitable size and physical dimensions. An
efficiency index can then be defined as the square of
the ratio

w2 tTGTW, Gt
T T O tTIW T

(11)
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where (1) and (2) have been used. It must be noted
however that maximization of the above quotient can-
not be carried over the whole #-dimensional space
where the vector of contact forces t takes its values.
In fact. t is subject to restrictions due to (3).

Another keyv point in the discussion of force ellip-
soids for multiple whole-limab robots concerns how con-
tact forces are generated in the mechanism. In fact,
the question behind the manipulability analysis in the
force domain is twofold:

Problem 1 : find the external wrench of unit mag-
nitnde (in a weighted norm sense) that is balanced
with minimum expenditure of joint torque effort
(passive force manipulability problem);

Problem 2 : find the joint torque vector of unit
magnitude (in a weighted norm sense) that gen-
erates the maximum performance in terms of
wrench applied on the environment (active force
manipulability problem).

The two problems have different solutions in general,
hecanse for mechanisms with defective kinematics. it
may not he possgible fo achieve arbitrarily given con-
tact force vectors t. and hence wrenches w.

3.1 Passive force manipulability

The passive force manipulability problem is solved at
once in terms of (7). We choose internal forces that
minimize the effort to halance w as

Min, rTW,.r
Subject to 7= -JTGEw - JTEx.

The minimum is obtained for
x = —(ETIW JTE) '"ETIW, JTGlw
and the corresponding optimal solution is
P = -JTGFw,

where G = (I - E(ETIJW JTE)"'ETIJW, JT)GE.
Consequently. the performance ratio for passive force
manipulability can be written as

2 ”WH') WT‘VU'W

R (w) = 7 = TTarw e (12)

Asg it is well known. the maximum (minimum} value
of the Rayleigh quotient in (12) corresponds to
the maximum (minimum) eigenvalue of the pencil
W, — NGRTIW JTGR. Accordingly. the directions
(in the external wrench space) in which a maximum
{minimum) efficiency is obtained are given by the
generalized eigenvectors corresponding to the maxi-
mum {(minimum) eigenvalues of the pencil. Details on
the efficient computation of generalized eigenvalues

are reported e.g. in [5]. I oy, is the maximum
eigenvalue and w,,,, the corresponding eigenvector.
the corresponding direction in the joint torque space
is given by -JT(A}RW,,,(W

3.2 Active force manipulability

The active force manipulahility problem is only mean-
ingful if the motion of the reference member of the
mechanism. i.e. the object, is inhibited by the envi-
ronment in all directions. In this hypothesis, manip-
wlation systems are alwayvs hyperstatic. and an elastic
model of the object-environment interaction is manda-
torv to proceed in the analysis. Let this model he

w = —K.du, (13)

where K, is a symmetric, positive definite d x d en-
vironment stiffness matrix. The choice of K, will be
discussed later on in this section.

Consider the ohject balance equation (1) and sub-
stitute the elastic interaction models (4) and (13),

GK(GTéu - Jig) = —-K.du.

whence the object displacement du reached at equilib-
rium after imposing a joint servo set-point change 4q
is obtained as

fu = (GKGT + K.)"'GKJIég Y Tsq.

Substituting in (13) and (4), and using (2), we have

w -K.TJéq
r = -JK(G'T-1)J4q.

il

Finally, the Ravleigh quotient (11) for active force ma-
nipulability is evaluated as

(14)

where

N= J'"TTK.W,K.TJ
D= JITTG -DHKIW, JTK(GTT - 1)J.

Again. the maximum (minimum) value of the Rayleigh
guotient in (14) corresponds to the maximum (mini-
mum) eigenvalue of the pencil N — AD. Accordingly.
the directions (in the joint servo set-point space) in
which a maximum (minimum) efficiency is obtained
are given by the generalized eigenvectors correspond-
ing to the maximum (minimum) eigenvalues of the
pencil. If 0,4, is the maximum eigenvalue and Q0.
its eigenvector. the corresponding direction in the
joint torque and external wrench space are given by
r=-JTK(GTT-DJ5qmar and w = — K, TIdqGmar.

From (14) it is also clear how the external stiffness
matrix K, only enters in the product K. W K, . thus
effectively plaving the role of a wrench weight matrix.

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 17,2010 at 08:40:32 UTC from IEEE Xplore. Restrictions apply.



1483

4 Dynamic manipulability ellip-
soids

According to Yoshikawa’s definition of dynamic ma-
nipulability. we consider the ability of a co-operating
manipulation syvstem to accelerate the reference mem-
ber of the chain (the object in our case) from an equi-
librium confignration with q = a = 0.

In this case, dynamics in (9) simplifies to

q T —8h
Mynl =] w-g,
t 0

where g,. g, are gravity terms acting on the limbs and
on the object. respectively.

We assume in this section that the system is not
hyperstatic. so that a rigid—body model will only be
needed for the analysis.

Under this asstunption. the inverse of the dynamic
matrix My, canibe explicitly computed. In fact,
defining matrices A and B as

M, o0 ] [T
SIS AR

and noting that A and BT B are symmetric and posi-
tive definite matrices, one gets

-1
. _ | A B _ | Ln L,
1\/I«I,un - { BT 0 - L?l La» .

with
Ly = A{I-B(B7A'B)"'B7A"):
Lo = BAYBTA'B)" .
Ly = (BTA'B)y"'BTAL
L» = —(BTA7'B)".

By partitioning the upper-left block of this matrix as

A" (1-B(BTA"'B)"'BTA"!) = { X Xov }

XlI'J' XU“'

such that X, € R+ and so forth. one ob-
tains the solution of the dynamics in terms of object
accelerations as

it = Xor (7 — 1) + Xow(W — g0).

Thus. the dynamic manipulability Rayleigh ratio (for
zero external wrench) is written as

_ M . (T - gh)TXIrWiiXUT(T - gh)
T TTW.r

R(7)

Discussion on generalized eigenvalue problems re-
ported above apply here as well. with the ohservation
that the effect of the gravity term gj, corresponds to

z

Figure 2: Example of cooperating manipulation.

displace the center of the ellipsoid by vector g;. Non-
zero wrenches applied on the object have similar effects
on dyvnamic manipulability.

Finally, in some applications it may be important
to choose a configuration on the basis of how well the
object motions are actuated not by joints, but rather
by external wrenches. Thus the suitable ratio to be
studied becomes

_ HUH . (W - gO)TXZIL‘WﬁxllU'(W — go)

R?,(W) B HW” B WTWwW

5 Examples

Consider the simple two-arm cooperating system
schematically represented in Fig. 2. consisting of a
two—-d.o.f. and a one-d.of. mechanism. An object
is held between the distal links of the arms, bv means
of two ‘soft finger” contacts at (—~0.25. 0) and (0.25. 0).
The passive force manipulability analysis is applied to
this case with identity weight matrices for simplicity.
Also note that. because the system is non—-hyperstatic,
the valne of the stiffness matrix K does not affect the
results of this analvsis. The resulting ellipsoid in the
wrench space (which is three-dimensional for this 2D
mechanism) is alimost degenerate to a segment (eigen-
values are [ —2.2e - 017 2.7e—016 1.1 ]). whose
direction is
4
Tmar = | —1

4

Wrenches in this direction cause the largest effort
on the actuators {(i.e., minimize the Rayleigh ratio
Ry p(w)) while wrenches in the orthogonal directions
(orthogonality is defined modulo W,.) are passively
resisted by the mechanism.

It is interesting to uotice that. if the internal
force were not optimized. the ellipsoid would have
had eigenvalues [ —5¢ —017 0.2 1.7 ], ie. the
mechanism would use more actuator torques to resist
the same load.
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To apply the active force manipnlability analysis to
the same mechanism. specification of internal (K) and
environment (K.) stiffness matrices is necessarv. For
simplicity, we let them be 4 by 4 and 3 by 3 iden-
tity matrices. respectively (changing these values does
affect the ensuing results). From the formulas of sec-
tion 3.2. the active manipulability ellipsoid in the joint
apace {which is three-dimensional in our example) has
eigenvalues [ 0.75 71 85 ] corresponding to direc-
tions

-1 1.7 1
Uipin = 16 « Usaddle = =18 |, tmae = -2
2.9 -1 0

These results clearly confirm the intuitive inadequacy
of the mechanism to apply forces in the y—direction.

6 Conclusions

A theory of force and dynamic manipulability for gen-
eral svstems of multiple co-operating robot manipula-
tors is proposed. It extends the concept of manipu-
lability ellipsoids for single robot arms to encompass
multi-limb co-operating svstems with general kine-
matic structure. Future work will concern extensions
to hyperstatic dynamic manipulability. and generaliza-
tions to nnderactuated joints.
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