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The control of internal forces is paramount in robotics grasping. In force closure grasps internal forces can be centrolled in order
to prevent the object from possible slippage due to external disturbances. A cost finction approach to compute the internal force
is proposed. The cost function weights the distance of the contact force from the friction constrajnts and from the maximum and

minimum force levels allowable in the system. A globally asym

forces which will be used as the reference of a force control loop.

1 Introduction

The robotic hand can be viewed as the paradigm of the
more general scenario of multiple mechanisms simultane-
ously interacting with the same object or reference link.
In this framework, the term “grasp” usually refers to the
ability of holding the object in a stable way in spite of
external wrenches exerted on the object. The main sub-
Ject in grasping analysis is the determination of contact
forces able to counter—balance the external wrench and
to maximize the distance of the contact forces from the
contact constraints which for force—closure grasps are the
friction and the unilateral constraints®.

One of the early works in such a subject was by Orin
and Oh 3. They linearized the friction constraint and
used standard linear programming {LP) techniques to
find the contact forces as a function of the disturbance
and constraints parameters. Later Nakamura et al 4,
introduced the nonlinear programming techmiques to se-
lect the grasping forces. More recently a cost function
approach for internal foree optimization was proposed in
* and®. The cost function was built as a weighted sum-
mation of terms taking into account the distance from vi-
olating contact constraints and its convexity was proved.
Buss et al. ® solved the problem of grasping force opti-
mization in a context where friction and foree balance
constraints are described by equivalent to the positive
definite matrices. '

In this paper, the cost function approach to the opti-
mal synthesis of internal forces is used. A globally asymp-
totically convergent algorithm returning the optimal in-
ternal grasp force is proposed. Experimental activity on
a testbed comprised of a two—fingered developed at the
Centro “E. Piaggio” is finally described.

2 Dynamic model

Consider a robotic hand grasping an object by means
of m kinematic chains interacting with the object at n
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ptotically convergent algorithm returns the optimal internal grasp

contacts. Let q € IR? denote the vector of joint posi-
tions, and let u € R® be the vector deseribing the po-
sition and orientation of a frame attached to the object.
Correspondingly, let 7 € R? be the vector of forces and
torques of the joint actuators, and w € R¢ the vector of
forces and torques resultant from actions applied directly
at the object.

Hand and object dynamics are linked through n
rigid-body unilateral contact constraints which, accord-
ing to 7, can be written in terms of the grasp matrix G
and the hand Jacobian J as

TG _

[J -GT] {n] =0. (1)

The number ¢ of constraint equetions depends on the
models used to describe the n contact interactions 89,

By introducing a t—dimensional vector t of La-
grangian multipliers and by differentiating (1}, rigid—
bedy dynamies equations are obtained as

Mn(q}d+ Qulq, q) + It = 7;

M, (w)ii + Qofu, 1) - Gt — w;
‘]Ei - GTﬁ- + Qc(q) é’ul ﬁ) = 0;

(2)

where Q. %{?c’; — i‘guﬁﬁ, My{-} and M,(-) are sym-
metric and positive definite inertia matrices and Qnl- )
and Q,(-, -} are terms including velocity-dependent and
gravity forees of the hand and of the object, respectively.
Observe that the Lagrangian multiplayer t represent the
vector of forces exerted at the contact constraings.
Rigid-body dynamics equation {2) can be written as

q Tr—Qn
Mdyn ul= w-Qol, (3)
t] -’ Qe
where
My 0o J7
Mgyy =10 M, -G (4)
Y ¥ -gT o



In order for this equation to completely determine the
law of motion of the system, it is necessary that ma.tnx
Miyn be invertible. Such case is analyzed in detail in!

For all manipulation systems with non-invertible Mdyn’

i.e., for hyperstatic grasps having ker (JT) Nker (G) # 0
the rigid—body dynamics (3) fails to determine the law
of motion of the complete system. For a whole analysis
of hyperstatic grasps the reader is referred to’.

3 Internal force conirol

The prior task in robotic grasping is the control of grasp-
ing forces, usually referred o as “internal forces”. In-
ternal forces play a ﬁmdamental role in controlling the
manipulation task. Whenever the resultant of a distur-
bance action on the object contacts is in the tangential
direction, the manipulator cannot reject such a disturb
by simply opposing a contact force. It must generate an
additional internal force to keep the total contact foree in
the friction cone and to not viclate contact constraints.
From the object dynarmics and (2), one can write

% =GT¢ , (5)

where W = —w -+ Mg(u)it + Qofn, @1) is the sum of ex-
ternal (disturbance) forces and of dynamical forces. As-
suming perfect tracking of the given object trajectory
in spite of external wrenches, the corresponding contact
forces solve equation (5). However, in general, such solu-
ticn is underdetermined, since the grasp matrix G has a
non trivial null-space referred to as subspace of internal
forces. The term “internal” forces is used as these forces
are self-balanced and do not affect the object dynamics.
The general solution of (5) is

t = GR% + Ay, (6)

where GF is & right-inverse {G is supposed to be full
row rank) providing a particular solution, A is & matrix
whose columns form a basis of the nullspace of the grasp
matrix and v is the vector describing 2 homogeneous so-
lution in the base A.

The freedom in choosing the internal part of the con-
tact force (6) allows to optimize the grasp with regard to
several concerns provided that the internal force is con-
trollable. In fact, in general, not all the contact forces
can be controlled by the joint inputs. The problem has
been put into evidence in ' and a detailed analysxs for
grasps with contact compliance is reported i in?

Consider a non-hyperstatic grasp, (ker @5 n
ker (G) = 0). After a block matrix inversion, it ensues
that the relailonship between the contact force vector
and input vectors

=T (IM; 7T - GTM;Iw) 7
~T (IMz1Qn — GTM;* Qo — Qo)

where T = (IM;IT + GTM;1G) ™

Equation (7) describes the contact forces reachable
by joints inputs = and external wrenches w in a rigid-
body non-hyperstatic grasp. Among these forces the in-
ternal ones are obtained projecting t onto the nullspace
of the grasp matrix. Their characterization is straight-
forward.
Proposition 1 Consider an initial nan—hyperstatic
equilibrium.  The whale subspace of internal forces,
ker {G), is reachable by joint torques

ker (G) = T tker (G).

The subspace T, is the subspace of reachable t's by joint
torques

T, = (IM; 13T + GTM 1) im @M ).
Proof . Simply observe that

(IM; 13T + GTMLG) ker (G) Nim (M) ®
= (IM 1T + GTMG) ker (G},

and multiplying (8) by T, the proposition is proved. [

4 Contact forces constraints

Couostraints (1} do not take into account neither the uni-
lateral nature of contact constraints nor the contact ship-
page, ie., the violation of the cones limits for friction
constraints. In other words equation (1) holds provided
that the contact force t fulfill the unilateral and friction
constrainis.

In this paper the degrees of freedom Ay in choosing
the contact forces (6) are exploited to reduce the risk
of violating the unilateral, the friction constraints and a
constraint on the maximum contact force.

Observe that a delicate object could be damaged by
too large grasp forces. In some cases, it is some parts of
the robot system (e.g. the force sensors) that might be
hurt. A safety threshold, depending on the object being
manipulated, should be chosen to limit the intensity of
contact forces. Another reason for limiting contact forces
is actuator saturation. At the contact %, ihe maximum
contact force constraint is

”Pi” Sfi,ma:l: >0:i: 1,2,.._,71, (9)

where p; is the contact force at the i-th contact
(tT = [p1---Pa)), and || - |'indicates the euclidean norm
of the argument.

There are also reasons to keep contact forces above
a minimum positive value. One is the unilateral nature
of mechanical contacts. Another is that contzct sensors
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work better in a certain range of forces, and cannot dis-
tinguish too small forces from noise. Note that a lower
bound on contact forces allows to avoid the temporal dis-
continuity of contacts. The lower bound on the normal
component of contact forces can be imposed through the
Minimum contact force constraint

PIN: > fimin >0, i=1,2,...,m. (10)
where n; is the unit normal vector to the surfaces at the
i-th contact point.

In the absence of local torques, the normal and tan-
gential components of each contact force p; must comply
with friction limits of Coulomb’s law
(I—nm])pil = o ||piff, {11)
where p; is the static friction coefficient in the current
contact conditions, and o; = (14 u2) V2.

When a complete soft finger model of contact is
assumed, friction limits involve more complex relation-
ships 5. In this paper, it is assumed for simplicity that
only hard-finger contacts are present in the grasp.

5 Cost Function

An efficient algorithm to evaluate the optimizing grasp
forces, based on & cost function with some desirable prop-
erties, is defined.

Constraints (8), (10}, and (11) on the i-th contact
force can be written in the single form
(12)

ai (¥, W) = g ||psl| + Big pY i+ 705 <0,

where o1 = 1, B3 = 0, and %1 = —Jfimes for maxi-
mum force constraints; ;2 =0, Bia = -1, and y2 =
fimin for minimum force constraints; and a;3 = @,
Biz = —1, and ;3 = 0 for friction constraints. Let
Q7 C R indicate the set of grasp variables y that, in
the presence of a given load W, satisfles constraints in
(12) of corresponding indices with a small margin x > 0,

_K}

Note that the region where zll the contact constraints are

satisfied,
*=(9%

ig

— k
=9,
i3

i.e., the set where the contact constraints are fulfilled
with a guaranteed margin k.

Q; = {Y | o:,5{(y) <

{13)

contains
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Consider the cost function given by the weighted
sumrmation

Ve(y, w) = B2, 5w Vi,

@g D year (14)

V"-f(y’w):{ +ba,-—c Y EQr;

with ¢ = 2—,1-, b——g', and ¢ = 1—

It has been shown? that the penalty function {14) is
twice continuously differentiable and strictly convex with
respect toy € R*. Note that for k=0 components 1} ;
in {14) turn into

(20f,)" }'69,3;
s yg&’ﬂ,

Standard optimization techniques can be employed
to search the unique minimum

Vistyw) = {

¥ = arg wing Vi(y, W).
The following update law:

no VTV

( ) C ay“‘ ay )
where e

3V s

T _{t) A >0
avT grv -t av
Gy Ty &
provides a globally asymptotically convergent algorithm.
A proof of convergence is straigheforwardly obtained by
considering the time derivative of the positive—definite
Lyapunov candidate function V

=X+

v 8VT,+6VT.
= ——a i “’
By I B
ovTav ey avT.
Oy oy Oy Sw
avT a2V Tt av
. AR A
dy dy* dy T (16)

Recalling that %33{- is positive definite for any y € R,
the only possible equilibrium peint is for
the optimum.

Although the optimization slgorithm (16) has been
discussed in the conbinuous time domain, it is easy to
derive its discrete time version.

y—O ie., at

6 Optimization

L
To obtain an optimum grasp in spite of external forces
w, the grasp controller must be zble to evaluate, in case
the set Q° (13) would not be veid, the optimum

Fo = arg miny Vo(y, #)- (17)



Note that for k = 0 the penalty function (14) is strictly
convex only in €1 and the recursive optimization algo-
rithm (15) works provided that the initial y belongs to
Q® whose characterization by elements is a difficult task
because of nonlinear relationships.

The next proposition will help to use penalty fune-
tions Vi to compute the optimum (17).
Proposition 2 Compute ¥, the minimum of V. Suf
ficient condition for ¥, = Yg. is that

5 € 0F.

Proof . For every k < k, §I* is a subset of Qk. Then,
being the minimum of V. global, it ensues that, for each
k<k ¥,=%¥;and

¥o= 113_1%315 winy Vi(y, %) =¥;.

|
Urnfortunately, in some cases the sufficient condition of
Proposition 2 is not fulfilled. This may happen

[C1 | if the chosen margin k is so large that ¥; does not
fall into £2%, even if §10 is not void, or

[C2 ] if the set QO itself is void which means that there
is not any feasible internal force able to counter—
balance, by force closure, the external wrench.

The problem of the optimum grasp synthesis consists in
detecting these two different situations and, more in gen-
eral, it can be stated as

Problem 1 For any ezternal wrench w, determine if
Q0 = 0 or Q° # @ and in this last case find the opti-
mal solution ¥,.

Problem 1 is attacked by reducing the margin &k and re-
running the optimization algorithm until it ends finding
the optimum ¥, or concluding that Q% == §.

6.1 Taylor expension and minimization procedure

Assume that
Q° £, (18)

i.e., the global optimum ¥, exists. Moreover assume that,
for a given k, the optimization algorithm (15) returns ¥,.
It is easy to verify that each component of the vector

AY =Gk — T (19)

only depends on k and that its Taylor expansion, with
residual, of order 0 around k =01is, (0 < & < 1)

iy am dAy;| _ , 8AY;
Ag;(k) = Ay {0) + k?—i—c—[& =k A

§i

Once ¥}, is evaluated, the residual of the Taylor expansion
provides lower and upper bounds on each component of
the optimum vector ¥,

gk.‘ - Ak‘!- S §0.- S gk,' + Ak, (20)
where
Ak; = | sup kaAyi . {21)
oct:i<k Ok g,

and, from the theorem of implicit function,

Ay, .
%ﬁ‘k =£ [§E (argmm}’vk)]-glk =£&;
¥ =Tk ¥ =1k

— |8y A
- Eyj oy dk |
1

k=£:‘
¥=1UYr

The next proposition deals with the detection of condi-
tion C2. It is simply proved observing that {20) is a
direct consequence of assumption {18).

Proposition 83 Assume that, for o given k;, the cosi
Junction Vy, is minimized by Yi,- Necessary and suf-
ficient conditions for 1° = @ is that any element of the
hyper—rectangle

Vi; ={y:F; — B, £y STy, + Ay}
violate the contact constraints (12) at all contacts, i.e.,

Vy €k, Vi, i ously, W) > 0. (22)

Note that checking condition {22} can be reduced to a
problem of convex optimization 2.

Starting from propoesitions 2 and 3, a simple proce-
dure to solve Problem 1 is stated:

Procedure:

step 0 choose a margin k and set k; = E;

step 1 computes ¥, ;

step 2 if Proposition 2 holds then ¥, = ¥, and stop;
step 3 else if condition (22} is satisfed, {1° = @ and stop;
step 4 otherwise set k; = k;/m, m > 0 and go back to
step 1.

The procedure ends satisfying Proposition 2 or conclud-
ing that 2% = §.

7 Experiment

The experiments testbed developed at Centro “E. Pi-
aggio” is a new hand designed for both force/position
control and nonholonomic metion planning experiments.
The hand, pictorially described in fig. 1 consists of twe
fingers whose fingertips are disks rotaling around two
axes: al and a2. Two four-bar-linkage inserted in the
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Figure 1: The 4-dof hand developed at Centro “E. Piaggio”, Uni-
versity of Pisa.

kinematic chains of the fingers are able to keep the fin-
gertip axes parallel one each other. The mechanism of the
two fingers can rotate around two parallel joints: j1 and
42. The whole device has 4 degrees of freedom, namely
(851,042) and (fay, 8a2) actuated by two DC motors and
two step—by-step motors and sensorized by two servo—
potentiometers and two encoders, respectively. Observe
that in the experiments, fingertip angle are kept constant
by two proportional and derivative (PD) feedback con-
trollers.

The two fingertips are sensorized in force. The force
sensor is integrated with the base structure of the fnger-
tip. It consists of two circles sharing the same center, as
in fig. 2 and rigidly attached with three bars at 120deg.
Four strain-—gages, glued on each bars, are able to furnish
information about the contact force exerted on the disk
and the contact point on the disk.

Figure 2: Fingertip built—in force sensor device.

The computational architecture consists of an In-
tel Pentium machine and a Motorola 68HC11 micro—
controller communicating by a standard R3232. The
reai~time software is distributed on these two machines.
More in detail the 88HCI1 is charged for the whole sen-
sors and actuators burden, as the A/D and D/A conver-
sions, while the high level control software (cost function
optimization, force and position reference generation and
others) runs on the main computer. The 68HC11 sam-
pling time of the sensor signals is 4msec.

In the experiment, a tennis table ball is grasped
by the two-disk hand as in fig. 3. The contact poinis
{cm) are, in the base frame, c; = [0,13,4.5] and ¢; =
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Figure 3: The hand grasping a tennis table.

[3.5,13,4.5]; the contact normai are parallel to the z-
axis; the hard—finger model is used for both contacts;
the joints axes are parallel to the z axis; j1 = [0,0,0]
and 72 = [3.5,0,0] are the origins of the two joint frames.
For the computation of the jacobian and grasp matrix,
J € R*? and G ¢ BR®*®, the reader is referred to ®. As
regard the cost function, the limit constraints are set to:

fi,maz: = 10N
fi,'min = 1N
i =08

for each contact. The weights w;; of the cost func-
tion {14) are equal to one. Tor the chosen margin
k = 1072, the optimization aigorithm converges to a
minimum value which satisfies the sufficient condition of
Proposition 2. The bulk of internal force optimization is
carried over each 50msec.
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Figure 4: Internal force optimization when no disturbance acts on
the object,

In fig. 4 the optimum internal force A¥p has been
computed in real time for 25sec. In this experiment no
disturbance is exerted on the object, w1 = we = 0
{fig. 3). Note that the gravity force of the ftennis ta-
ble ball is disregardable and the internal force optimum
value is around 4.5N, about the middle of the min—max
contact force range.

In the 2nd experiment, an external disturbance wy is
exerted on the object as in fig. 3 from 18sec to 19sec. As
the effect of the external wrench wy is sensed by the force



sensors, the output of the optimization algorithm changes
in a way that maximizes the distance from contact con-
straints (minimize the cost function) so guaranteeing the
stability of the grasp. The optimum internal force is re-
ported in fig. 5. During the action of wy, the optimum
values increase to about 10N and this corresponds to the
instinctive action of squeezing the object to balance wi.
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Figure 5: Internal force optimization when the external wrench wy
acts on the object.

In the last experiment, the external disturbance wo
{fig. 3) acts from 3sec to 9sec. The optimum internal
force is reported in fig. 6. During the action of wo, the
optimum value decreases to about 2.5N and this corre-
sponds to release the grasp in order to do not violate the
maximum contact force constraint.
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Figure &: Internal force optimization when the external wrench wa
acts on the object.

Note that plots in fig. 4, 5 and 6 give the optimum
reference for the real internal force which must be send
to an internal force controller®.

8 Conclusion

The -optimal synthesis of internal forces in grasps was
investigated. The degrees of freedom in choosing the
contact forces (6) was exploited o minimize a strictly
convex penalty function which weights the risk of violat-
ing the contact constraints. A particulsr attention was

devoted to the reachability of internal forces. In fact u
basic requirement is that the mechanism is able to control
the internal force to the optimum values. In this paper
the nonlinear rigid—body dynamics of hand-object device
was taken into account. We showed that, in this case, all
the forces belonging to the nullspace of the grasp matrix
turn to be reachable by hand jeinis control inputs. Ex-
periments on the two-disk robotic hand were presented.
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