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Abstract

In this poper we study the differential kinematics
and the kineto-static manipulability indices of multi-
ple cooperating robot arms, including active and pas-
stve joints. The kinetic manipulability indices are de-
rived as o simple extension of previous results on co-
operating robots without passive joints. The force ma-
nipulability analysis for cooperative robot systems can
not be derived by “duality” arguments as it can with
conventional arms. rather o distinction between active
and passive force manipulability is necessary. Results
in this paper apply dirvectly to the analysis of simply
closed kinematic chains, and can be extended to muti-
ply closed kinematic chains.

1 Introduction

The basic idea of manipulability analysis [9, 10] con-
sists of describing directions in the joint space that ex-
tremize the ratio between some measure of effort in
joint space, with a measure of performance in task
space. Whenever these measures are quadratic func-
tions of the joint and task variables, respectively, ma-
nipulability analysis amounts to the analysis of solu-
tions to an eigenvalue-eigenvector problem [10].

The extension of manipulability analysis to multiple
cooperating robots has been studied by several authors
so far. Lee [5] and Chiacchio et al. [3] proposed exten-
sions for the case when all cooperating arms have full
mobility in their task space. Bicchi et al. [1] extended
the kinetic manipulability ellipsoid problem to general
cooperating arms, with arbitrary number of joints per
arm. Park and Kim [6] studied manipulability of closed
chains, including unactuated joints, using an elegant
formulation in terms of differential geometric language.
Bicchi. Prattichizzo, and Melchiorri [2] discussed the
force manipulability problem for general cooperating
arms with elasticity at joints and at contacts.

It is to be noted that the kinematics and statics of
cooperating robot arms, including free kinematic pairs
(such as a rolling or sliding contact, or an unactuated
joint). and of closed kinematic chains, can be analyvzed
in a unified framework. The latter is a very important
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subject in mechanism design, and as such the mathe-
matical tools proposed in this paper may have an im-
pact on a very wide application domain.

In this paper we first show how several closed-chain
problems can be solved by use of the formulation given
in [1]. For cases when this is not possible, we intro-
duce a generalization of those methods, that applies to
general closed chain systems (section 2). Next, we dis-
cuss the problem of force manipulability for multiple
arm/closed chain rigid systems, and show that a dis-
tinction between active and passive manipulability is in
order to obtain physically meaningful indices (section
4). We conclude the paper by illustrating our results
with some numeric examples (section 5).

2 Problem Formulation

The approach we follow to analyze kinematics and
statics of closed—chain mechanical system is to consider
them as embodiments of a cooperative manipulation
paradigm, where multiple robotic limbs (or fingers) in-
teract with an object at a number of contacts. The ob-
ject is the reference member of the mechanism, whose
motions are the ultimate goal of analysis. Contacts
represent in fact unactuated kinematic pairs of differ-
ent nature between the object and the contacting link.
that restrict some or all the components of the relative
velocities of the two bodies.

In [1], a notation for describing such syvstems was es-
tablished which is recalled in the appendix. In that pa-
per, each limb is allowed an arbitrary number of joints.
Contacts with the object are allowed at any link of the
various limbs. Fig. 1 shows how a four bar linkage with
the two middle joints not actuated (a), can be thought
of as a system (b) of two cooperating fingers and an
object, with two contacts of bilateral soft-finger tvpe.'
For more general cases, where the unactuated joints are
not all adjacent to one element of the chain, or when
that element is not the member whose motions should
be studied. methods of [1] have to be extended as de-

tSoft-finger contacts prevent all relative linear velocities. and
allow relative angular velocities in the plane of contact, see the
appendix.
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Figure 1: The four-bar linkage (a) with unactuated
joints (in white) adjacent to the reference member can
he considered as a manipulation system (b) with two
one-joint fingers, one object (in black), and two soft-
finger contacts. More generally, the four-bar linkage
(c) can be represented as a manipulation system with
two two-joint fingers, one ohject (in black), and two
complete—constraint contacts.

scribed in the rest of this paper. Consider a system
of cooperating robotic limbs, comprised of g, actuated
joints, and g, unactuated (passive) simple kinematic
joints, which interact with an object at n contact points
according to contact models as specified by a selection
matrix H (see appendix). Let the aggreated Jacobian
matrix of the cooperating devices be denoted J, and let
the object Jacobian (or grasp matrix) be G. A suitable
permutation matrix P can be found that reorders joint
variables q to have actuated joints on top as

|

where q, is the g,~vector of actuated joints while g,
represents the gp—vector of unactuated joints. Corre-
spondingly, the Jacobian matrix can be partitioned as

|

The mobility of the system is then studied [1] by ana-
lyzing the constraint equation

Yo

dp

q =

} —Pq, M)

Jag=JP ¢ =[J, I, ][q“

ap

Ua

Gp
u

[J, J, —-GT] = 0. (2)

where J, = Hl,, J, = HI, and G = HGT. All
possible motions of the system belong to the nullspace
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of the constraint matrix [ J, J, —G7” ], and hence
can be rewitten as linear combinations of vectors form-
ing a basis of the nullspace. By suitable linear algebra
operations, such a basis can always be written in a
block partitioned form:

Qa X3

—*| [Te, | Toe O
q.p B 0 I I‘pu.c r; X2 (3)
u ’ X3

The generic rigid motion [g7 qz a” T belonging to the
nullspace of the constraint matrix is therefore parame-
terized by the components of vector [x! x§ xT]".

In (3), Ty » is a basis matrix of ker (J,) and incorpo-
rates the redundancy of the actuated part of the mech-
anism. All possible rigid—-body motions of the actuated
joints when both the reference member and the passive
joints are locked can be written as linear combinations
of columns of 'y .. Conversely, T'; = ker [J,,, —GT]
represents the kinetic indeterminacy of the system, that
is, all possible motions of the system, corresponding to
actuated joints, locked belong to the column space of
T';. The second block column of the matrix in (3) char-
acterize the coordinate motions of the system. Vectors
I'pu X2 represent the unique possible motion of the ob-
ject and of the passive joints corresponding to actuated
joint motions I'y -x5.

A finer partition of block matrices in (3) can provide
a more detailed analysis of mobility of systems under
consideration. By algebraic manipulation, the motion
indeterminacy matrix can be rewritten as

) X31
I'ixs = oo Dpui = 0 X32 (4)
0 rup,i ru.i %
33

Here, I'y, = ker(J,,) incorporates all free motions of
passive joints with both active joints and reference
member (object) locked (as e.g. in a Stewart plat-
form whose legs can rotate freely about the spheri-
cal joints at their extremities). On the other hand,
I, = ker (GT) represents motions of the rcference
member that are not constrained when all joints, active
and passive, are locked (this type of motion is usually
avoided by design). Passive joint motions in the im-
age of I'py s correspond one-to-one to object motions
in the image of I'yp ; when active joints are locked.
Similarly, one can rewrite

T Fap,c Fapu,c Taue K21
a,c . -
[_F : ] Xy = Fpn,c FpuaVc 0 X (E))

P 0 rupa,c Tuae Kig

to put into evidence coordinate motions of the actuated
and unactuated joints while the object is locked (first
block column), or coordinate motions of actuated joints
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and object with locked unactuated joints (third block
column), and finally motions that are only possible by
simultaneous movement of all joints and object.

As an example, consider the four-bar linkage of fig.1
(c), where the only actuated joint is in the middle of the
chain. An equivalent manipulation system is depicted
in (d), for the case when the reference member of in-
terest in the linkage is its middle link. The system is
comprised of two limbs with two joints, three of which
are unactuated (in white), and an object (in black)
grasped by two completely constraining contacts.

The method of analysis of closed kinematic chains
based on the cooperative robots paradigm as described
in this section can be applied to any simply closed kine-
matic chain, i.e. to any chain such that all closed loops
can be broken by removing a single member, in the
case that this member is also the member of reference.
Thus, a Stewart platform can be regarded as a system
of six legs, each with three unactuated joints (forming
a spherical joints at the base of the leg) and one ac-
tuated prismatic joint in their middle, all legs being
in contact with the platform (object) by hard-finger
contacts. For more general mechanisms, e.g. multiple
kinematic chains without a common element breaking
all loops, more than one “object” should be considered.

3 Kinematic Manipulability

A kinematic manipulability index can be defined in
terms of the ratio of a measure of performance in the
task space and a measure of effort in the joint space.
Taking these measures to be suitably defined norms of
velocities, an index can be written as

W, a

R?- = Ty
quqq

(6)

where W,, W, are positive definite matrices whose
role is to weight different components of velocities in
the two spaces (including the case of nonhomogeneous
units for linear or angular velocities). Observe that
this choice of weights effectively amounts to defining
a metric on the tangent space to the task and joint
manifolds [6]. In practice, the choice of W, is made
based on how much it “costs” to run a certain actuator
at unit velocity. The choice of W, is usually made
based on the task specifications (see e.g. [11]); however
note that a physically motivated choice could be taking
W, as the inertia matrix of the reference member.?
In [1], it was shown how ratio (6) effectively incorpo-
rates the traditional maipulability of serial-chain ma-
nipulators. and it was extended to encompass multiple-
limb manipulation systems. This section shows how

21n this case, the numerator of (6) would represent twice the
kinetic energy of the object.

those results can be extended to the case of unactuated
joints. Being interested to performance in the space of
velocities of the reference member 1, and efforts in the
space of actuated joints, the index is rewritten as

uW,a

foe = G Woan ™
The analysis of kinematic efficiency, providing infor-
mation about which directions in the task space (and
corresponding directions in the actuated joint space)
maximize or minimize R,,, is easily solved once a cor-
respondence between the numerator and denominator
variables, namely 4 and q,, in (7), , is established.
Note that, in order for the ratio (6) to be well-defined,
a one-to—one mapping should be established between
the two variables.

To find such mapping, consider kinematic relation-
ships (3), (4) and (5), which can be rewritten as

o = Tarxy+ Fap<(’x21 + anll4cx22 + Louexas
= I, + Ty ex (8)
U = DypeeXoe + DygeXoz + Fup.ixzz’ + I'y.iXa3

= I‘u.cxc + riixils

where I', = [Fn,,r Fn,p,c]y r',.= [Fapzt.c I‘au,c]7 Tuc=
[Fllpﬂ,c Fua.c] and I'y;; = [Fup.i r‘(l,i]'

From (8) it appears that a one-to—one relationship
between task and acuated joints velocities does not ex-
ist in general, because of the possible presence of re-
dundancy (matrix I';) and indeterminacy (matrix I';).
However, based on the physical meaning of the effi-
ciency ratio, it is reasonable to assume that, if more
than one actuated joint velocity can be chosen corre-
sponding to some task velocity, then the one with min-
imum cost will be preferred.

The case with system indeterminacy is of far less
interest in practice, as systems motions can not be pre-
dicted based on a kinematic model only. However, tak-
ing a conservative point of view, it is considered that
if there are indeed more than one possible velocities of
the object corresponding to the same joint velocity, the
efficiency will never be worse than the case where the
object moves so as to minimize the numerator?.

Taking this into account, and using (8), we redefine
the efficiency ratio (7) as the worst—case (numerator),
optimized (denominator) efficiency ratio

ow _ Ming, uW, 1

= — . . 9
Y mine, qaWyq, ©)

Using some standard linear algebraic tools such as
pseudoinverses and projectors, reported in appendix B,

3If the object inertia matrix is chosen as weight, this corre-
sponds also to assume that the actual object velocity will mini-
mize its kinetic energy.
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the two minintization problems can be easily solved as
: s S B AYAR S YA
niing, W Wy =x I} Ph. . WL, P e v TueXe.
: T c S IpTpT "
ming, q' W,q = x, quP.'r;,qu)WqP(P;,\r,,)Frzf'xv-
Therefore, the (optimized, worst--case) kinematic
manipnlability analysis is reduced to studyving the ratio

T T
e X, ]“,,(,P(Fi,i_“-“)W“P(r;i.n-“ Wuexe

va T Tyl prl
X er(I‘;:Jl@)W‘IP(F;w”'q)F(I"X‘

at varving X.. i.e. a standard generalized eigenvalue
problem [4]. The maximnm value of ROY corresponds
to the maximun generalized eigenvalue A,,q, solving

Nx = ADx.

or, equivalently, the problemn

D-/2ND V2x = Ax, with

eigenvalue

N = F;{(‘P(I;_“;'__H'“)WUP(I‘Z-“‘“)r’”";
_ prpT
D = I Py WP Tee

The corresponding generalized eigenvector X,,q, gives
the direction. in the parameter space, where maximum
performance is obtained. The corresponding directions
in the task and joint velocity spaces are, respectively,

11)71(‘!1‘

Amax

= P(l"‘;‘i.lﬂ,)rllfx"’”: (10)

P(I"z.“'q)l-‘qr'xmauw

Obvionsly. similar considerations apply for Ap,,. the
minimum generalized eigenvalue, and x,,,, the corre-
sponding eigenvector.

4 Force manipulability ellipsoids

The force manipulability index is defined in a man-
ner similar to kinematic manipulability as the ratio of a
performance measure in the space of forces exchanged
with the environment, and an effort measure in the
space of (actuated) joint torques:

wIW,w

Rep = —= .
fa TTW,r

(11
Here. weights in W, incorporate different costs in gen-
erating torque or forces at joints, and takes care of mis-
matches of measurement units between rotoidal and
prismatic joints. Weights in W, adjust for different
units of components of wrench w, and may represent
task specifications (such as greater leverage in some di-
vection). A physically motivated choice could be tak-
ing W,. as the stiffness matrix of the environment with
wich the reference member interacts.*

Hn this case, the numerator of (11) would represent twice the
elastic energy of interaction.
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a)

b)

Figure 2: A cooperating system may actively exert a
wrench (a) and passively resist an external wrench (b)
with best efficiency in different directions.

The relation between wrenches on the reference
member w and actuated joint torques 7, at equilibrium
follows from application of the virtual work principle as

w = Gt
. = ~JIt (12)
0 = -Jt

where t is a t-dimensional vector of contact forces. By
rewriting these equations in matrix form as

I -G 0 w
0o JI' 1 t | =0
0 Jz; 0 Ta

and assuming that the system is not hyperstatic, i.e.,
ker (G) N ker (JT) = {0} [7]. it follows that all equi-
librium combinations of external wrenches and active
joint torques can be written as [8]

w 0 |Ir,|T, Xh
BERERIHE
Xs

Here, Ty, T's, Ty, T'7, and I’y are obtained by an algo-
rithm similar to that used in 2 and described in [1].
In [2] the authors introduced a distinction between
active and passive force manipulability motivated for
instance by observing the simple systems described in
fig.2. It appears that wrenches which the manipula-
tion system is able to apply most efficiently through
the object to the environment, differ from wrenches
that are most efficently resisted if external loads act
on the object. It is then natural to introduce two force
manipulability indices, for the active and passive cases.

4.1 Active force manipulability

For a given set of equilibrium torques at the actu-
ated joints, i.e.. for given x, and x; in (13). the corre-
sponding wrench is not uniquely defined if a nullspace
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of JT = BE J,,]] exists. However, the worst -case efhi-
ciency will be given by

min,. w!/ W, w
s

R, = -
! W,

(14)
Note that. if W, takes into account the environmen-
tal stiffness. minimization of the numerator amounts
to assiuming that the mechanism apply, for the given
joint torques. the wrench that minimizes the energyv of
elastic deformation. By using results of Appendix B,
one readily gets

7

minw! W,w =x!T7

X

T
,P([‘;_“‘” )WUP(I‘: Rl )ru'xn'

Therefore, the worst—case active force manipulability
analysis is reduced to studying the ratio

[ Xa H IoPh i, WoPr ) D H X,

. Xn 0 0 Xh -

Rov — _ 15

X, ]’ TTW. T, ) Xa (15)
x| 0 [TTW.T, || %

i.e. a standard generalized eigenvalue problem The dis-
cussion of the ellipsoid is similar to the one given above
for kinematic manipulability. Note that the numerator
quadratic form has a number of zero eigenvalues equal
to the components of x5, corresponding to joint torques
balanced by purely internal contact forces, with non net
effect on the object, that obviously give zero efficiency®

4.2 Passive force manipulability

For a given equilibrium wrench acting externally on
the reference member, i.e., for given x, and x; in (13),
the corresponding joint torques are not uniquely de-
fined if a nullspa('b of G (internal forces) exists. How-
ever. it is reasonable to assume that the torque with
minimum cost will be chosen to oppose the wrench.
The optimized passive force efficiency will be given by

wW,w

Bdf =TT e -
Y ming, TIW,7,

&
™

.

According to appendix B, one gets
i T TpTpT
n;}n T, Wor, = X, PrP(r;lﬂ-r,WrP(r;_n;)erm

and the optimized passive force manipulability analysis
is studied by the ratio
TIW,D | 0 } [ }

T
N v
/P w WPy Ir | 0
0 0

Xa
Xs Xs

2] I

SInternal forces are indeed useful for manipulation. Internal
force manipulability indices may also have to be considered, but
extension to this case of our approach is easy and omitted for
space limitations

Xa

RoE (16)

Xq
Xs

Xq
Xs
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Note that the denominator quadratic form has a num-
ber of zero eigenvalues equal to the components of x.,
corresponding to wrenches balanced by structural con-
straints, with no net effect on the active joints (nor on
the passive, because of the equilibrium condition (12).
that obviously give infinite efficiency.

4.3 Duality

From the treatment of preceding sections. the usual
duality relationship between kinematic and force ellip-
soids is somewhat concealed. In fact, it is true that in
practice. for manipulation systems such as those con-
sidered here, the kinematic and force domains have dif-
ferences: for instance, while the existence of ker (G) (in-
ternal forces) and ker (J7) (zero-torque forces) is the
norm in practical devices, existence of a redundancy
subspace ker (J) is not so frequent, and systems with
non-trivial ker (G7), (contact) indeterminacy, are rare.
This explains why the two domains have been treated
differently in the above sections.

However, for the sake of completeness. it should be
mentioned that it is indeed possible to define an effi-
ciency index of active kinematic manipulability as

min,, uW,u
Rak = —‘—W——‘
q(l Uqﬂ

and one for passive kinematic manipulability as
uW,u
. . . b
My, 4o W

Ry =

which will have a number of zero eigenvalues equal to
the dimensions of the redundancy subspace, and a num-
ber of infinite eigenvalues equal to the dimension of the
indeterminacy subspace, respectively. A physical inter-
pretation of R, is the worst-case efficiency for given
joint velocities, while Rp; can be thought of as a kine-
matic manipulability when the mechanism is actuated
from the object, and velocities at the active joints are
considered as outputs. In the force domain, a worst -
case optimized efficiency index can be defined as
ming, wiW, w

ow __

fa — (17)

min,, 7TW, 7,

If problems (9) and (17) are compared, with W, W, =
W, W_ and taking into account that, because of the
principle of virtual work. it holds T} T\, = I'/.T'r.
r’r, = IITh = IIT, = T'T,. = 0, it is found
that the two generalized eigenvalue problems are equal
(both the numerator and denominator forms are the
same). This involves that directions in which the ma-
nipulator moves most efficiently (once redundancy is
optimized) are also directions in which forces are ap-
plied best (with optimized internal forces) through the
object on the environment.
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Fignre 3: A five-har linkage used as a case study. Case
a): only joints 1 and 5 actuated; case b): only joints 2
and 4 actuated: case ¢): all joints actuated.

5 Examples

As a case study, consider a two-arm system form-
ing a five-bar closed chain (see fig.3). The system of
fig.3 has no indeterminacy nor redundancy, while the
dimension of the subspace of internal forces is 3, and
the dimension of the subspace of zero—torque wrenches
is 1.

If actuated joints are 1 and 5 only (case a), the two
generalized eigenvalues of the kinematic manipulability
ellipsoid are 13.4 and 0.6, while, if only joints 2 and 4
are actuated (case b), they evaluate to 1.55 and 0.32.
If all joints are actuated (case c), the eigenvalues are
0.63 and 0.17.

In the force domain, the active force ellipsoid for
case (a) has two eigenvalues at 1.68 and 0.07; case (b)
gives 3.1 and .64, while in case (¢) there are three
zero eigenvalues (corresponding to the dimension of the
internal forces), and two eigenvalues at 3.5 and 1.35.

The passive force ellipsoid for case (a) has one in-
finite eigenvalue (corresponding to an external wrench
on the ohject equivalent to a force aligned with the first
link). and two finite values at 1.7 and 0.08. In case (b)
one has again one infinite eigenvalue corresponding to
the same wrench direction, and finite eigenvalues at 3.3.
and 0.7; case (¢) gives two finite eigenvalues at 6.0 and
1.6. in addition to the same infinite eigenvalue as cases
(h) and (c).

From the examples, it appears clearly how actuat-
ing inner joints of the 5-bar linkage produces a more
isotropic ellipsoid under all regards, kinematic, active
and passive force, and that the optimal condition under
that regard is achieved when all joints are actuated.

Appendix A: Notation

The quantities introduced in text are defined as fol-
lows. Let s = 2,d = 3 for 2D mechanisms, and
s = 3.d = 6 for 3D ones. Moreover let ¢ = ¢, + g,
be the number of actuated joints, n the number of con-
tacts. and set

q = [¢g1.¢2.... AKE

o= [ryTe..... )" T EeRY
u = [VT,wT]T; ueE ]Rd;
= {fT,InT]T; w e ]l{’{,
where v (w) is the linear (angular) velocity of object
and f (m) is the force (moment) on the object.

Denoting by ¢; the position of the i-th contact point
and hy p the object center of mass, let

G . Ic I.e O(‘an .
| S(ei—p) S(ecn—p) | L - L |7
~ DL] Dn.] Ll.l Ln.l
Jr = B T I
Dl.r e Dn.r Ll\r Ln.r
where
0 —ciy i
S(Ci) = {I'i.;/ 0 —Cia f()T 8§ = 3:
—Cix  Cir 0
S(ci) = { —Ciy Cix ] . for s=12

blocks Dj ; and L; ; are defined as

([0 0 0] if the i-th contact force does

D not affect the j-th joint;
BT ij for prismatic j-th joint;
z,’iT S{ci —05) for rotational i-th joint;

([0 00] if the i-th contact force does
not affect the j-th joint;

Lij = [000] for prismatic j-th joint;
T

z for rotational j-th joint;

’.
J
being o; and z; the center and z-axis unit vector of
the Denavit-Hartenberg frames associated with the j-
th joint, while z; = z; if s =3 and 2, = 1if s = 2.

The column space of matrices GT and J represent
linear and angular velocities (in all directions) of frames
attached to all contact points as a function of object,
and joint velocities respectively.

Rigid-body contact constraints of different types
can be written as

HJq-G'a)=Jg-GTa=0

where the selection matrix H is built according to dif-
ferent contact models as reported in table 1. The over-
all contact selection matrix H is obtained by removing
the zero rows from matrix

H = diag(FS), ..., FS,, MS;....,MS,).

Observe that conventional kinematic joints between a
link and the object can he modelled as unactuated con-
tacts. In this case, the differential kinematic (contact. -
like) constraints used to build the selection matrix are
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s 1 Foree Selector | Moment Selector
[ IVHTE vpe - 3
' ! Fs, VS,
Point Contact o o
w/o Friction
Paoint Contaet
w /I Friction T. 0w
{Hind Finger)
1 n‘ul (_“vmv;m ol St
wio Friction :
A1 Line Contact ; (Siz0%,07
7
w/h Friction ! z,’
3D Plin Contact , x/!
k4
w /o Friction ! v/
Clanar Contact
w/h Friction T. Li .
(Complete Constraing)
3D Soft Fingex 1 z)

Table 1: Selectors for different contact types used to
build the selection matrix H. Vector z; is the unit
surface normal at the i-th contact while x; and y; are
two unit vectors defining the line and plane of contact.

reported in table 2. The possibility of describing unac-
tuated joints as bilateral contact constraints enable us
to formalize the analysis of closed kinematic chains in
a cooperative robots framework. cf. Section 2.

Joint Type [Force Selector FS; [ \Mmment Selector A S;
<!
3D Rotoidal Iy !i i j|
¥i
21 Rotoidal T, 0
x!
3D Prismatic [ 'y } I
¥;
21 Prismatic x;! 1
2D Spherical T, 0.4

Table 2: Selectors for different joint types used to build
the selection matrix H. Vectors x; and y; denote two
unit vectors normal to the joint axis z;.

Appendix B: Minimization problem

Consider the quadratic minimization problem
V(%) = min1(x) = min xTQx (18)
stibject to the linear constraint
x = Ay +b. (19)

where x € R".y e R".Q €e R"”".b ¢ R". Q is
semi-definite positive definite and A is full column
rank. Under the hipothesis that

ker (Q) Nim (A) = 0. (20)

The solution is easily obtained by standard linear al-
gebraie tools as follows. Problem (19) is equivalent to
the unconstrained problem

min ¥ (y) = min (Ay + b)"Q(Ay + b).
y y

By setting i‘ﬁ(;y—) = 0 one gets ATQAY = -ATQb
and. because from (20) matrix ATQA is invertible,

¥ =—-(ATQA)'ATQb = -A}b.
Matrix A(S is the Q-weighted pseudoinverse of A. Vec-
tor ¥ actually minimizes 17 (y). in fact ‘,):T‘Q =ATQA is

positive definite. The optimizing vector of the original
problem is

%= (I-AA})b =P o b.

Matrix P a- ) is the projector on ker (A)T that min-
imizes the Q-weighted length of the projected vector.
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