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Abstract

The nonholonomy exhibited by kinematic systems con-
sisting of hodies rolling on top of each other can be used
to the purpose of huilding deaxterous mechanisms with
a minimum. hardware complication. Such desirable an
engineering feature can be fully exploited, however,
only if the capability of planning and controlling rolling
motions of arbitrary objects is achieved. In this paper
we present recent advances of both theoretical and
experimental nature towards realizing a robot gripper
for manipulation of objects whose shape is not known
a priovi. but is reconstructed as manipulation proceeds.

1 Introduction

Few recent works in mechanism design and robotics
reported on the possibility of exploiting nonholonomic
mechanical phenomena in order to design devices that
achieve complex tasks with a reduced number of actu-
ators ([8]. [19]. [21]. [5]. [10]). Although this seems to
be a promising new approach to reducing the complex-
ity. cost. weight. and unreliability of the hardware used
in such devices. it is true in general that planning and
controlling nonholonomic svstems is more difficult than
holonomic ones. Indeed. notwithstanding the large ef-
forts spent by applied mathematicians, control engi-
neers. and roboticists on the subject, many open prob-
lems remain unsolved at the theoretical level, and even
more at the computational and implementation level.
In this paper we report on some results that have
been obtained in the study of manipulation of objects
by rolling. in view of the realization of a robot gripper
that exploits rolling to achieve dexterity, i.e.. the abil-
ity to arbitrarily change the location and orientation
of the manipulated objects. A first prototvpe of such
device was presented by [5]. along with some prelimi-
nary experiments in planning and controlling motions
of a sphere manipulated by rolling. Marigo et al. [17]
applied manipulation by rolling to objects of polyhe-
dral shape. The design of grippers exploiting rolling
was hased on the conjecture that a kinematic system
comprised of almost any pair of rolling surfaces is con-
trollable. which has been shown true recently by [16]:

Theorem 1 [Controllability of rolling bodies]
The kinematic constraint of rolling without sliding be-
tween. smooth rigid bodies is

a) holonomic if and only if bodies are the mirror im-
age of each other:
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Figure 1: The second generation dexterous gripper
(DxGrip-II) designed and built at Centro “E. Piaggio”,
University of Pisa.

b) mazimally nonholonomic (hence completely con-
trollable) otherwise.

As an obvious corollary, any convex object rolling
between two flat fingers is completely controllable from
any initial to any final desired configuration. Once
thus established the theoretical possibility of building
a hand that can achieve arbitrary relocation and orien-
tation of manipulated objects by rolling them between
fingers, its practical realizability depends on the possi-
bility of planning and controlling such motions.

In this paper we turn our attention to manipula-
tion by rolling of objects with arbitrary regular (i.e..
smooth) surface. facing the case that the object shape
is not known a priori, but only perceived through tac-
tile sensing, as it often happens in real-world applica-
tions.

2 Exploration of Unknown Objects

As already mentioned, parts to be manipulated are
sometimes not known a priori to the robot, and in-
formation on their shape need to be gathered before
manipulation can be planned and executed. In this
section we describe the means by which it is possible
to elicit shape information from rolling, with particular
reference to the case of regular surfaces.

The dextrous gripper used in our experiments
consists of two parallel plates, whose motions are
actuated by four electrical motors (see section 4 for a
description). The procedure used to reconstruct the



surface of unknown objects is as follows:

i) The hand (with fingers open) is put around the
object to be explored, and then closed in guarded
mode with a contact force threshold;

ii) While actuators commanding the distance
between the fingers regulates a suitable grasping
force to avoid slippage of the object on the fingers,
the actuators that command relative rotations and
translations of the fingers follow random trajectories
causing the object to roll between the fingers;

iii) the position of the contact point on the surface
of the upper and lower fingers, as well as the position
and velocity of the gripper joints. are measured during
exploration; this information is used to calculate the
position and velocity of the contact points on the
object surface.

In order to control the grasping force, a six—axis
force/torque sensor is used on the fingers. To detect
the location of contact points on the fingers, the same
sensors can be used in conjunction with the “intrinsic”
tactile sensing algorithms described in [4], which also
applies to fingers with a general convex surface.

To reconstruct an approximation of the surface of
the object, it is necessary to evaluate the instantaneous
position of the contact points with respect to a carte-
sian frame fixed with the object. Let the origin of this
frame be denoted by o, and let three unit vectors par-
allel to the x, y, and z axes of the body frame be de-
noted by i, j. and k, respectively (see fig.2). Let the
object surface be described in spherical coordinates,
i.e., the position of a generic point (except the north
and south poles) of the surface in the body-fixed frame
is given in terms of azimuth v € [, 7) and elevation
v € (—n/2,7/2) angles as

= p(u,v)cosvcosu
{ ¥ = p(u,v)cosvsinu (1)
z = p(u,v)sinv
where p(u.v) is a continuous function of the azimuth
and elevation u,v. Notice that spherical coordinates
are convenient for several reasons. among which is the
fact that thev provide an orthogonal parametrization
of all surfaces of revolution (i.e., surfaces with an axis
of symimnetry), except at their poles. For surfaces of

. d . -
revolution. p, e a—”%‘(‘T’—’ = 0. The position of the con-

tact points on the upper and lower finger (denoted by
¢; and ¢a, respectively) being known from tactile sens-
ing. their velocities ¢; and ¢; with respect to a fixed
wrist frame can be easily calculated by using the finger
Jacobian matrix and measures of finger joint velocities.
From data on the position and velocity of two points on
the rigid object being manipulated. and using assump-
tions on friction at the contacts. one easily obtains the
instantaneous angular velocity w of the rolling object
in the wrist frame.

Letting o and R = [i j k] denote the position of
the origin and the orientation matrix of the reference
frame fixed to the rolling object, the ohject motion is

i

Figure 2: Spherical coordinates on the manipulated ob-
ject.

described by the following differential equations:
6 = ¢ twx(o-c)
R = wxR

Integrating these equations during the exploration
time, the instantaneous position and orientation of the
body can be obtained. From geometric considerations
(see fig.2) we obtain at each time ¢ the desired informa-
tion on the coordinates of two points of the object sur-
face from tactile sensor measurements c;(#) and c»(#)
from (1) by setting for i = 1,2

T
vi(t) = arcsin (c’—g)—k;
ui(t) = atan2 ((c} - o0)Tj, (c} ~0)Ti);
pl(t) - ”ci - 0"7
where

¢ = ¢; ~ pisinv;k.

The problem of reconstructing a surface from knowl-
edge of a number of its points is an important issue
common to several fields of science and engineering.
In robotics, the problem has been studied extensively
in relation with processing data from cameras, range
finders, and/or tactile sensors. Part of the literature
is concerned with the “object recognition”, or model
matching problem (see e.g. [12], [15], [13]. [11]). Works
concerned with shape reconstruction deal with fitting
experimental data with general models of surfaces (see
e.g. [7], [14]). Various methods are distinguished by
the information used and the surface model adopted
to fit data. Allen [1] used bicubic (Coons’) patches to
fit data from vision and touch sensors, while [2] used
superquadrics; [3] approximated objects by surfaces
of revolution, and were able to determine their axis
of symmetry by using tactile measurement of contact
points, contact normals, and curvatures at the contact
points: [9] considered haptic recognition of objects
based on polyhedral shape approximations.

With respect to the existing literature, where sur-
face reconstruction is mostly intended for object recog-
nition, the problem we consider is to gather the surface
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information necessary to obtain sufficiently accurate
formmulae for the control vector fields appearing in the
differential equation of rolling. As these vector fields
are computed through differential operations from the
surface description, it is necessarv not only that the
reconstruction is given in terms of analyvtic functions
which are defined on as large a domnain as possible. but,
also are sufficiently smooth to avoid noise amplification
through differentiation.

In order to master completely the accu-
vacy/smoothness tradeoff in reconstruction, we
found tools from regularization theory to be most
effective (see e.g. [22] and [23]). In that framework,
the problem of finding the “best™ function approx-
imating a multivariate function y(x), whose values
y; at k points x; are known (although with errors),
is formulated as the minimization of the variational
expression

I

Y i - fix

=0

H(f) ) + MIPfI? (2)

where P is a differential operator used to weigh the
“bumpiness” of the approximating function, and A is
a regularization parameter, that controls the compro-
mise hetween the degree of smoothness of the solution,
and its closeness to data ([20]). Such standard regular-
ization technique provides solutions that are equivalent
to generalized splines: for example, for single variable
functions. it can be shown that with the differential

operator
2
2 - f(x ;
P -/R[ 2ie | on

the solution of the regularization problem is given by
cubic splines. In general, solution of (2) leads to the
associated Eunler-Lagrange equation

k

= 5w

i=0

PPf(x) - f(x))d(x — x;) (3)

where P is the adjoint operator of P and § is the Dirac
delta function. The solution of (3) can be written as

13
- %Z (i — Fxi)G(x:%;) (4)

where G(x;x;) are the Green functions of the differ-
ential operator PP. Green functions are actually ra-
dial functions of their arguments G(x;y) = G(j|x — y|l)
when P is rotationally and translationally invariant. In
such case, the solution of the regularization problem is
a sum of radial basis functions:

k
x) = 3" eG(lx - xil),

=0

(5)

where the weights c; can be evaluated by simple linear
algebraic operations. Some commonly encountered ra-
dial bhasis functions used in regularization theory and
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in the closely allied field of neural networks are

r (linear interpolation)

r3 (cubic interpolation)
Gry=4 Vv r2 +¢?  (multiquadric)

7721?; (inverse multiquadric)

e 2 (gaussian)

The problem of reconstructing a surface described
in spherical coordinates (1) amounts to approximating
a smooth function p : S = R, p = p(u,v) of the
azimuth and elevation angles u,v, for which a set of
points p(w;,v;) = p; are given from exploration data.
With respect to the theory above resumed, the fact
that, the domain manifold S? is not globally equivalent
to IR? imposes some modifications in the choice of basis
functions. Following [23], we choose

p= Z Z JisYis

1=0 s=—1

(6)

where fi; are coefficients, and Yj; are the eigenfunc-
tions of the (surface) Laplacian on the sphere, i.e. the
spherical harmonics, whose expression in coordinates
is

U cos(us)Pﬁs(sin v) 0<s<l
Yis(u,v) =< Uy, sin(us)P,s!(sin v) —-1<s5<0
U Py (sinv) s=0
(M)
for | =0.,1,.... Here,
Uis =V2\/3 it s #0
B =0
P, 1=0,1,..., are the Legendre polynomials, and P

are the Legendre functions

(-1)'(1 =293 5= P(2)

Notice that Yjo are surfaces of revolution. The un-
known coeflicients are obtained by minimizing the reg-
ularized spherical least—squares functional

Pi(z) =

H(\)

—Z( Pi = Tro Yoee 1 f1sVia(wi, v;) )2

+A§: Z [+ 7

=0 s=—1

®)

Arranging the index set {(I,s)} in a convenient order,
and letting f be the vector of f;; and X be the matrix
with (4,18) entry Yis(ui, vi), (8) becomes

1
~lly - Xf[* + MTDf
where D is the diagonal matrix with (Is,ls):s entry

[[(I+1)]™. The minimizing vector fy is simply obtained
by solving the following linear system of equations,

fy = (XTX + AD)"'XTy.



3 Planning for General Surfaces

The kinematics of rolling surfaces are a well-known
example of driftless nonholonomic system. Generally
speaking, the problem of planning a driftless system

q=G(q)u, q(0) =qo € R". 9)

consists in finding, for each pair (qo. qy), a control func-
tion u : [0,1] = IR, t = u(t) within an admissible set
U such that, for the corresponding solution q(t, go. u)
of (9). it holds q(1, g9, u) = qy. A brute force approach
to this problem consists in 1) solving (9) for a generic
input u(p) in a sufficiently general family U C U suit-
ably parameterized by p € IR”, and 2) solve the set of n
nonlinear equations g(1,Xg, p) = qy in the p unknowns
p- Obviously, both steps possibly hide enormous diffi-
culties. as solving an O.D.E. in “closed” form is rarely
possible, and solving large systems of nonlinear equa-
tions is notoriously hard. The fact, shown in [6}], that
the equations of motion for a convex body rolling he-
tween flat fingers can be put in strictly triangular form
tremendously help in this regard.

The relevance of strict triangular forns to planning
is twofold. In fact. an O.D.E. in strictly triangular form
can be easily solved by quadratures, i.e. the flow of the
control vector fields is found simply by subsequently
integrating their components over time. Furthermore,
strict triangularity allows to break the solution of the
system of » nonlinear equations of step 2) of the generic
algorithm above, into the solution of multiple systems
of fewer equations in fewer unknowns.

These advantages of the triangular form are ex-
ploited in the following algorithm. For objects with
an axis of symmetry, which we consider henceforth for
simplicity. the strictly triangular form reads as (see [6])

1 0
0 1
SIN U —pP, COS V 0 ~
R e _9 w, (10
p o8 1108 @ VP pysing

peosusiny:  —\/p? + plsiny

7 =

where z = [u.v.1,2,y]. A possible choice for the ad-
missible input set U is to consider piecewise constant
inputs over time intervals T with an alternating pat-
tern, i.e.

T —w. — J[M.0]T keven

Wt =kT +71) =W, = { 0. A7 kodd °
for0<r<T.and k=0,1,...,N — 1. such that the
flows Q;}T of the two control vector fields are followed
sequentially N times. The flows can be integrated ex-
plicitly starting from initial conditions z; = z(t = kT)
for k even as

MeT + uy
Uy

zrpr = | DeAed + 0y o (11)
LEEIk (sin gy — SinYy) + 2%

ﬁ]‘f—ffi(fos Vg1 — COSUPL) + g

where
psinv — p, cosv

ver+oio |,

Iy

and for k odd as

up
MeT + v
Zip41 = Vi (12)
=X sin Y Ap + 2
—Ap oS YR Ag + Y

with
(k+1)T

Ap = VP2 +pldt.
JrT
In terms of these definitions, the planning problem can
be restated as:

Problem 1 Given e pair (z,,25), find an integer N
and an N-tuple of real numbers (Xg,....An_1) such
that the nonlinear, discrete-time system defined by
(11), (12}, with 2o = z,. has zy = zj.

A solution to this problem is provided by the
following algorithm:

Step 1) Apply first inputs that take the first two
variables to the desired value: set Ao = po = (uy —
ug)/T. M = 11 = (vy — v9)/T, such that z(2T) =
fug,vp, v, 22, 42):

Step 2) Apply a sequence of five inputs that does
not alter the first two variables, i.e. (A = 0,\3 =
2, Ay = p3, A5 = —p2, A6 = —p3) (the void input is
included for preserving index parity). By choosing

st3 = Yy — Y
T (T —Te)T

with po arbitrary (provided that 'y # TIp), the
third variable reaches its desired value: z(6T) =
[“f7 vr, ¢f7 Te, y6]7

Step 3) Apply a sequence of 15 controls that
does not alter the first three variables, namely (A\; =
0, 8 = ptg, Ao = 5. Adjo = — 4. A1y = —pi5 + g A2 =
B, A3 = —He, Ay = —pi7, A5 = s, Al = flgs A7 =
—H5, Ats = —fta + i1, Ao = fig, Ad2o = — 7. Aoy = — 1.
For such a sequence to take the last two variables
to their desired value, any quadruple (yi4, 5. p16- y17)
solving the system of two nonlinear algebraic equations
T2(Te, Jla. s,y Hes U7) = T53y22(Ys fa, s, 6. fi7) = Y5
can be chosen.

Remark 1. The algorithm description high-
lights the role of commutator sequences of type
(ABA='B~')! in planning the input (a simple com-
mutator is used at step 2, and a commutator of
commutators at step 3). The final sequence of steps
can however be written more compactly by imposing
some further conditions, reducing the redundancy of

Ythe inverse A™! of an input A : [0,74] = R,y is defined here
as A7 = — (T — 1)
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solutions to the equations in step 3 but not compro-
mising generality:

A) If vy # v, setting o ~ i1y 13,
and 5 Jté. a control sequence is obtained
(protpa pri+pis. —pa+fts. =15 — 7, fi5, 3. —fl5. — i3+
fi7.Jt;. —ji7. —15). that steers from zg to zy in just 127",

B) If otherwise vy vg, the control sequence
(0.1 vy + V. —Vy + V3. —Vs, —V3, 2.V, —Va, — 1) +
3. 19, —123, —17y). steers the syvstem using 4 indetermi-
nate variables.

4 Experimental

Introducing DxGrip—II. To experimentally validate
the results of the theoretical work on manipulation by
rolling conducted in the past years, the research group
at Centro “E. Piaggio” of the University of Pisa de-
signed and huilt two prototype end-effectors. The first
“dextrous gripper” consisted of two parallel plates con-
trolled by prismatic joints, and was described in [5].
The design of the second generation dexterous gripper
(DxGrip-1I) is described in fig.1, while a picture of a
laboratory prototype is reported in fig.3. The gripper
has two parallel jaws translating independently, and
two turning disks with direct-drive motors on each jaw.
Each finger is driven by a double four-linkage mecha-
nism. which allows smooth transitions through singu-
larities. and is endowed with a 6-axis force/torque sen-
sor, which is used both for tactile detection of the con-
tact point and for grasping force control. The combina-
tion of the two finger sensors is an effective alternative
to a wrist--mounted force/torque sensor, which does not
suffer from inertial effects of the end-effector mass. It
shonld he pointed out that. while the use of turntables
at the fingers of a gripper has already been proposed
hy Nagata [18], DxGrip-II has the possibility of trans-
lating the center of one turntable with respect to the
other. thus achieving higher dexterity and most impor-
tantly the ability of rolling an object in all directions
between the fingers. Like Nagata’s hand, DxGrip-II
is capable of turning a screwdriver and of reorienting
parts on a convevor belt without grasping them (using
the exterior part of the turntables only, pressed against
the surface of the object, and commanding their angu-
lar velocity suitably). In addition, our new hand can
arbitrarily relocate and reorient any convex body with
regular surface by rolling it among the fingers, thus
justifving the name “dexterous gripper”.

Surface reconstruction by rolling. The experimen-
tal results obtained by exploring an unknown object
and reconstructing its shape using the techniques de-
scribed in 2, are reported in figure fig.4. Figures show
apparently how using few spherical harmonics (low V)
and/or low regularization weights A provides “bumpy”
reconstructions, while heavy regularization tends to
round up the object shape excessively. The correct
tradeoff in filtering has to be decided on the basis of a
working knowledge of the sensor noise statistics and of
the application domain.

Planning a reconstructed surface. As an exam-
ple of application of the planning algorithm described
in section 3, consider the problem of rolling an object
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Figure 3: Prototype of the second generation dextrous
end-effetor DxGrip-1I.
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Figure 4: Exact description of the manipulated ob-
ject (upper left), and approximations from experimen-
tal data with A = 0,002 and N = 7 harmonics (under-
damped, upper right), with A = 0,05 and N = 9 (over-
damped, lower left), and with A =0,002 and N =9
(lower right).

whose reconstructed description is given, in terms of
the spherical harmonics series (6), by foo = 1,f10 =
0.4, f2.0 = 0.1 (see fig.5). The inputs resulting from ap-
plication of the algorithm, modified as in Remark 1-A),
to the problem of steering from zg = (-7 /4,7/4,0,0,0)
to 2y = (n/4,-7/4,0,2,1), are computed as o =
7/2,py = —w/2,u3 = —040;u5 = 3.03; 7 1.07.
The solution of the system of nonlinear equations at
the last step of the algorithm is performed numerically.
The path followed by the coordinates along the 12 in-
tervals used for planning are reported in fig.6.
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