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On the Security of Linear Consensus Networks
Fabio Pasqualetti Antonio Bicchi Francesco Bullo

Abstract— This work considers the problem of reaching
consensus in linear networks with misbehaving agents. A
solution to this problem is relevant for several tasks in multi-
agent systems including motion coordination, clock synchro-
nization, and cooperative estimation. By modelling the misbe-
having nodes as unknown and unmeasurable inputs affecting
the network, we recast the problem into a system theoretic
framework. Only relying on their direct measurements, the
agents detect and identify uncooperative behaviors using fault
detection and isolation techniques. We consider both the cases
of Byzantine as well as non-colluding faults, and we express
the solvability conditions of the two cases in terms of the
observability properties of a linear system associated with the
network, and from a graph theoretic perspective. It is shown
that generically any node can correctly detect and identify
the misbehaving agents, provided that the connectivity of the
network is sufficiently high. Precisely, for a linear consensus
network to be generically resilient to k concurrent faults, the
connectivity of the communication graph needs to be 2k +1, if
Byzantine agents are allowed, and k+1, if non-colluding agents
are considered.

I. INTRODUCTION

Distributed systems and networks have received much
attention in the last years because of their flexibility and
computation performance. One of the most frequent task to
be accomplished by autonomous agents is to agree upon
some parameters. Agreement variables represent quantities
of interest such as the work load in a network of parallel
computers, the clock speed for wireless sensor networks, the
velocity, the rendezvous point, or the formation pattern for
a team of autonomous vehicles; e.g., see [1], [2], [3].

Several algorithms achieving consensus have been pro-
posed and studied in the computer science community [4]. In
this work, we consider linear iterations, where, at each time
instant, each node updates its state as a weighted combination
of its own value and those received from its neighbors [1],
[2]. The choice of algorithm weights is a parameter that
influences the convergence speed toward the steady state
value [5].

Because of the lack of a centralized entity which may
monitor the activity of the nodes of the network, distributed
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systems are prone to attacks and components failure, and it
is of increasing importance to guarantee trustworthy com-
putation even in the presence of misbehaving parts. The
misbehaving agents are here classified, depending on their
abilities, as Byzantine, or malicious, and as non-colluding,
or faulty. Malicious agents have complete knowledge of the
network, and posses unlimited sensing, communication, and
computation capabilities. Also, they collude in order to cause
the biggest damage to the network. On the other hand, faulty
agents do not cooperate maliciously, and their uncooperative
behavior is often due to an hardware failure. When malicious
agents are present, the worst case scenario for the network
has to be considered, whereas, in the presence of faulty
agents, atypical agents behaviors, i.e., those occurring in
practice with zero probability, are not taken into account.

Reaching unanimity in an unreliable system is an impor-
tant problem well known by computer scientists interested
in distributed computing. A first characterization of the
resilience of distributed systems to Byzantine attacks appears
in [6], where the authors consider the task of agreeing upon
a binary message sent by a “general,” when the communi-
cation graph is complete. In [7] the resilience of a partially
connected1 network seeking consensus is analyzed, and it
is shown that the well-behaving agents of a network can
always agree upon a parameter if and only if the number of
malicious agents

(i) is less than one-half of the network connectivity, and
(ii) it is less than one-third of the number of processors.

This result has to be regarded as a fundamental limitation of
the ability of a distributed consensus system to sustain arbi-
trary malfunctioning: the presence of misbehaving Byzantine
processors can be tolerated only if their number satisfies
the above threshold, independently of whatever consensus
protocol is adopted.

In this work, we consider linear consensus algorithms
in which every agent, including the misbehaving ones, are
assumed to send the same information to all their neighbors.
This assumption appears to be realistic for most control
scenarios. In a sensing network for instance, the data used in
the consensus protocol consist of the measurements taken di-
rectly by the agents, and it is assumed that the measurements
regarding the same quantity coincide. Also, in a broadcast
network, the information is transmitted using broadcast mes-
sages, so that the content of a message is the same for all the
receiving nodes. The problem of characterizing the resilience
properties of linear consensus strategies has been partially
addressed in recent works [8], [9], [10], where, for the
malicious case, it is shown that, despite the limited abilities

1The connectivity of a graph is the maximum number of disjoint paths
between any two vertices of the graph.
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of the misbehaving agents, the resilience to external attacks
is still limited by the connectivity of the network. In [8] the
problem of detecting and identifying misbehaving agents in
a linear consensus network is first introduced, and a solution
is proposed for the single faulty agent case. In [9], [10], the
authors provide a policy that k malicious agents can follow
to prevent some of the nodes of a 2k-connected network
from computing the desired function of the initial state, or,
equivalently, from reaching an agreement. On the contrary,
if the connectivity is 2k+ 1 or more, then the authors show
that generically the set of misbehaving nodes is identified
independent of its behavior, so that the desired consensus
is eventually reached. In this paper, we extend and improve
the results along these directions, e.g., by characterizing the
complete set of policies that make a set of k malicious
agents undetectable or unidentifiable, and by providing the
resilience bounds in the case of faulty agents. Our approach
also differs from the existing computer science literature,
e.g., our analysis leads to the development of algorithms
that can be easily extended to work on both discrete and
continuous time linear consensus networks, and also with
partial knowledge of the network topology.

The main contributions of this work are as follows. By
recasting the problem of consensus computation in unreliable
networks into a system theoretic framework, we provide
alternative and constructive proofs of existing bounds on the
number of identifiable Byzantine agents in a linear network.
Precisely, we show that k malicious agents can be detected
and identified if the network is (2k+1)-connected, and they
cannot be identified if the network is (2k)-connected or less.
We exhaustively describe the strategies that the malicious
nodes can follow to disrupt a linear network that is not
sufficiently connected. In particular, we prove that the inputs
that allow the misbehaving agents to remain undetected or
unidentified coincide with the zero inputs of a linear system
associated with the consensus network. Also, we show that
the set of such inputs has zero Lebesgue measure in the
input space, so that it can be ignored if only faulty agents
are considered. For the latter case (non-colluding agents), we
provide a comprehensive novel analysis on the detection and
identification of misbehaving agents problem. We show that
k faulty agents can be identified if the network is (k + 1)-
connected, and they cannot if the network is k-connected or
less. The proposed resilience bounds are shown to be generic
with respect to the network communication weights, i.e.,
given a consensus topology, the bounds hold for almost all
choices of the communication weights. In the last part of the
paper, we discuss the problem of detecting and identifying
misbehaving agents when either the partial knowledge of the
network, or the hardware limitation, makes it impossible to
implement the exact identification procedure. We describe
a heuristic, which has low complexity, and that ultimately
leads to a prompt recovery of the network functionalities
from non-colluding malfunctions.

The rest of the paper is organized as follows. Section II
recalls some basic facts on the fault detection and isolation
problem for linear systems. In Section III we describe the
consensus model under consideration. Section IV contains
the conditions under which the misbehaving agents are de-

tectable and identifiable, and Section V deals with the gener-
icity of such conditions. Section VI presents our algorithmic
procedures. Sections VII and VIII contain respectively our
numerical studies and our conclusions.

II. NOTATION AND PRELIMINARY CONCEPTS

We will be using the same notation as in [11]. Throughout
the paper, let the triple (A,B,C) denote the linear discrete
time system

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t),

(1)

and let the subspaces B and C denote respectively the image
space Im(B) and the null space Ker(C). A subspace V ⊆ X
is a (A,B)-controlled invariant if AV ⊆ V + B, while a
subspace S ⊆ X is a (A, C)-conditioned invariant if A(S ∩
C) ⊆ S. A state trajectory x(t) of (1) can be controlled on a
subspace V if and only if this is a (A,B)-controlled invariant.
The set of all controlled invariants contained in C admits a
supremum, which we denote with V∗, and which corresponds
to the locus of all possible state trajectories of (1) invisible
at the output. On the other hand, a conditioned invariant S is
a subspace such that there exists an observer for the system
(1) for the factor space X/S. The set of the conditioned
invariants containing B admits an infimum, which we denote
with S∗.

In a linear system, the presence of sensors failure and
actuators malfunction is usually modeled by adding some
unknown and unmeasurable functions ui to the nominal
system, so that the dynamic model becomes

x(t+ 1) = Ax(t) +
m∑
i=1

Biui(t),

y(t) = Cx(t).

(2)

The matrices Bi and the functions ui are referred to as failure
signatures and failure modes. By definition, when the failure
i is not acting, the corresponding function ui is constantly
equal to zero. Given the system (2), the fault detection and
isolation problem is to design a dynamic residual generator
that takes the observables y(t) and generates a set of residual
vectors ri(t), such that 1) every residual ri(t) decays to zero
if no failure is present, and 2) the nonzero residuals, allow
to uniquely identify the failures. From [11], [12] we know
the following result.

Theorem II.1 (Fault detection and isolation) Consider
the system (A, [B1 · · ·Bm], C), and let K = {1, . . . ,m}.
The fault detection and isolation problem is solvable if and
only if

Bi ∩ (V∗K\{i} + S∗K\{i}) = ∅, ∀i ∈ K, (3)

where V∗K\{i} and S∗K\{i} are the maximal controlled and
minimal conditioned invariant subspaces associated with the
triple (A, [Bj1 · · ·Bjm−1 ], C), j1, . . . , jm−1 ∈ K \ {i}.

Theorem II.1 guarantees the existence of a filter whose
output ri, which is referred to as the i-th residual, is affected
only by the dynamics generated by the i-th failure signature.
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Moreover, the transfer function between the signature i
and the residual ri is left-invertible, i.e., when the initial
condition of the residual generator and that of the system
coincide, the mapping from ui to ri is one to one. Note that
Theorem II.1 does not provide the solvability conditions for
the detection and identification of misbehaving agents in a
linear consensus network, because the misbehaving nodes,
and hence the failure signatures, are unknown.

III. LINEAR CONSENSUS IN THE PRESENCE OF
MISBEHAVING AGENTS

Let G be a directed graph, V its vertex set, and E its
edge set. The connectivity of G is the maximum number
of disjoint paths between any two vertices of the graph, or,
equivalently, the minimum number of vertices in a vertex
cutset [13]. Denote with Ni the neighbors set of the node
i ∈ V , i.e., all the nodes j ∈ V such that the pair (j, i) ∈ E.
Consider the discrete time linear consensus system

x(t+ 1) = Ax(t), (4)

in which the row stochastic and primitive matrix A is such
that the (i, j)-th entry equals the weight of the communica-
tion edge from j to i, and in which the vector x contains
the real numbers (state) associated with the agents [1]. In
the sequel, we assume that the graph associated with the
consensus matrix A is not complete.

As it is shown in [8], algorithms of the form (4) have
no resilience to malfunctions and external attacks, and the
failure of one or more agents prevents the entire network
from reaching the desired consensus. We model the presence
of the misbehaving node i using an exogenous input in the
i-th position, so that, if the set of the misbehaving nodes is
K = {i1, i2, . . . } ⊂ V , the consensus system becomes

x(t+ 1) = Ax(t) +BKuK(t), (5)

where, being ej the j-th vector of the canonical basis,
the input matrix is BK = [ei1 ei2 · · · ]. The misbehaving
agents are allowed to update their state in an arbitrary
way by choosing the input function uK . In particular, the
misbehaving agents are said to be malicious if they can inject
any arbitrary function uK , while they are said to be faulty if,
given any proper subspace V of the state space, they are not
able to confine the evolution of the state of the network on V .
In the malicious case, the worst case scenario for the network
is considered, whereas, in the faulty case, atypical network
dynamics, i.e., those lying on a subset of the state space of
zero Lebesgue measure, are not taken into account. Note that
our choice of keeping the matrix A fixed and of letting the
class of inputs uK unspecified models also the situation in
which the misbehaving agents modify some entries of the
matrix A, and the case of unreliable communication edges.

Remark 1 (Complete communication graph) If the
graph associated with A is complete, then any number of
misbehaving agents can be identified. Indeed, in our model,
each agent receives correctly the whole state of the network
after the first consensus step, so that every agent can
predict the evolution of the network, and hence identify the

misbehaving agents. It follows that the number of malicious
agents that a linear consensus networks can tolerate needs
not be less than one third of the total number of nodes.

IV. DETECTION AND IDENTIFICATION OF MISBEHAVING
AGENTS

Given a k-connected linear consensus network of the
form (5), we associate an output matrix Cj with each agent
j, which describes the information about the state of the
network that is directly available to j. In particular, yj(t) =
Cjx(t), and Cj = [en1 · · · enp ]T , {n1, . . . , np} ∈ Nj .
The problem of ensuring trustworthy computation among the
agents of the network can be divided into a detection phase,
in which the presence of the misbehaving components is
revealed, and an identification phase, in which the identity
of the misbehaving agents is discovered. From a system
theoretic perspective, both tasks require certain observability
properties of the consensus system. Let I represent the
identity matrix of appropriate dimensions, the zero dynamics
of the linear system (A,BK , Cj) are the state trajectories
invisible at the output, and can be characterized by means
of the (n + p) × (n + m) pencil P (z) =

[
zI−A BK
Cj 0

]
. The

complex value z̄ is said to be an invariant zero of the system
(A,BK , Cj) if there exists a zero state direction x0, and a
zero input direction g such that (z̄I − A)x0 + BKg = 0.
Finally, if rank(P (z)) = n + m for all but finitely many
complex values z, then the system (A,BK , Cj) is left-
invertible, i.e., there are no two distinct inputs that give
rise to the same output sequence [14]. The zero dynamics
are strictly related to the connectivity of the communication
graph associated with the consensus algorithm.

Theorem IV.1 (Zero dynamics and connectivity) Let
(A,BK , Cj) be a k-connected consensus system. If
|K| ≥ k, then there exists a set K and a node j such
that the triple (A,BK , Cj) has nontrivial zero dynamics.
Moreover, if |K| > k, then there exists a set K and a node
j such that the triple (A,BK , Cj) is not left-invertible.

Proof: Let G be the digraph associated with A, and
let k be the connectivity of G. Take a set K of k + 1
malicious nodes, such that k of them form a vertex cut S of
G. The network G is divided into two subnetworks G1, and
G3, which communicate only through the nodes S. Assume
that the misbehaving agent K \ S belongs to G3, while the
observing node j belongs to G1. After relabeling the nodes,

the consensus matrix A is of the form
[
A11 A12 0
A21 A22 A23

0 A32 A33

]
. Let

uS = −A23x3, where x3 is the vector containing the values
of the nodes of G3, and let uK\S be any arbitrary nonzero
function. Clearly, starting from the zero state, the values of
the nodes of G1 are constantly 0, while the subnetwork G3

is driven by the misbehaving agent K \S. We conclude that
the triple (A,BK , Cj) is not left-invertible. Suppose now that
K ≡ S as previously defined, and let uK = −A23x3. Let
the initial condition of the nodes of G1 and of S be zero.
Since every state trajectory generated by x3 6= 0 does not
appear in the output of the agent j, the triple (A,BK , Cj)
has nontrivial zero dynamics.
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A set of misbehaving agents may remain undetected from
the observations of the node j if and only if there exists an
initial condition of the network such that their behavior does
not appear in the output sequence yj .

Theorem IV.2 (Detectable malicious agents) Let A be a
consensus matrix, let V be the nodes of the network, and
let K ⊂ V be the set of malicious agents. The set K is
detectable by the node j ∈ V if and only if the system
(A,BK , Cj) has no nontrivial zero dynamics.

Proof: It follows directly from the properties of a
strongly observable system [14].

Following Theorem IV.2, we can state a first upper bound
on the number of malicious agents that can be detected.

Theorem IV.3 (Detection of malicious agents) Given a k-
connected linear consensus network, at most k−1 concurrent
malicious agents can be detected by every node in the
network.

Proof: Suppose there are k malicious nodes, and that
the communication graph associated with the consensus
system is k-connected. Let the misbehaving agents form a
vertex cut. Because of Theorem IV.1, for some output matrix
Cj , the consensus system has nontrivial zero dynamics, so
that the malicious nodes may remain undetected.

Let K1 and K2 be any two disjoint sets of possible
misbehaving agents, and let x1 and x2 be the state trajectories
generated by K1 and K2 with the inputs u1 and u2. Clearly,
if the difference x1 − x2 belongs to the null space of the
output matrix Cj , then it is not possible to determine from
the observations of the agent j whether the set K1 or the set
K2 is misbehaving.

Theorem IV.4 (Identifiable malicious agents) Let A be a
consensus matrix, let V be the nodes of the network, and
let K1 ⊂ V be the set of malicious agents. The set K1 is
identifiable by the node j ∈ V if and only if the system
(A, [BK1 BK2 ], Cj) has no nontrivial zero dynamics, for
every set K2 ⊂ V of possible misbehaving agents.

Proof: (Only if) By contradiction, let x0 and [u1 −u2]T
be a zero state direction, and a zero input sequence for the
system (A, [BK1 BK2 ], Cj). We have

yj(t) = 0 = Cj

„
A
t
x0 +

t−1X
τ=0

A
t−τ−1

B1u1(τ)−
t−1X
τ=0

A
t−τ−1

B2u2(τ)

«

where B1 and B2 are the input matrices associated with the
sets K1 and K2. Therefore,

Cj

„
A
t
x
1
0 +

t−1X
τ=0

A
t−τ−1

B1u1(τ)

«
= Cj

„
A
t
x
2
0 +

t−1X
τ=0

A
t−τ−1

B2u2(τ)

«
,

where x1
0 − x2

0 = x0. Clearly, since the output sequence
generated by K1 coincide with the output sequence generated
by K2, the two sets of misbehaving nodes can not be
distinguished.

(If) Recall that a system with no zero dynamics is strongly
observable [14], i.e., there exists a unique pair of initial
condition and input sequence that generates the output se-
quence. Let K be the set containing all the possible sets of

misbehaving nodes, and let K ∈ K be the set of malicious
nodes. Let Y be the vector containing the output sequence
of the node j. Consider the systems Σi,l = (A, [BKi BKl ]),
with Ki,Kl ∈ K, and Ki ∩Kl = ∅, and compute the input
sequence, if any, that produces Y for every system Σi,l. Since
each system Σil has no zero dynamics, there is a unique input
sequence producing Y . In particular, whenever Ki = K, the
input corresponding to the set Kl is zero, so that all the sets
Kl, such that Kl ∩K = ∅, are recognized as well-behaving,
and, by exclusion, the set K is identified.

As a consequence of Theorem IV.4, if up to k malicious
agents are allowed to act in the network, then a necessary and
sufficient condition to correctly identify the set of malicious
nodes is that the consensus system subject to any set of 2k
inputs has no nontrivial zero dynamics.

Theorem IV.5 (Identification of malicious agents) Given
a k-connected linear consensus network, at most bk−1

2 c
malicious agents can be identified by every node in the
network.

Proof: Let K1 and K2 be two sets of bk−1
2 c + 1

agents, and let K1 be malicious. Since 2(bk−1
2 c + 1) ≥ k,

by Theorem IV.1 there exist K1, K2, and j such that the
system (A, [BK1 BK2 ], Cj) has nontrivial zero dynamics.
By Theorem IV.4, the set K1 is not identifiable.

A complete characterization of the undetectable or uniden-
tifiable malicious behaviors is derived from Theorem IV.4.

Theorem IV.6 (Undetectable and unidentifiable inputs)
Let A be a consensus matrix, and let K1 ⊂ V be the set
of malicious agents. The set of inputs that make the agents
K1 undetectable coincide with the zero inputs of the system
(A,BK1 , Cj). Moreover, the functions uK1 that make the
set K1 undistinguishable from the set K2 ⊂ V are such
that there exists an input [uK1 uK2 ]T that generates a zero
dynamic for the system (A, [BK1 BK2 ], Cj).

Proof: It follows directly from Theorem IV.4.
For a linear consensus network, Theorem IV.5 provides

an alternative proof of the resilience bound first presented
in [7] and later rediscovered in [9], and Theorem IV.6 fully
characterizes the behaviors for which a group of malicious
agents remains unidentified from the output observations of
a certain node.

In most of the practical applications, it is too restrictive
to assume that the misbehaving nodes are able to generate
zero dynamics, since they need to be able to steer the
state along particular directions, which have zero Lebesgue
measure in the state space.2 This motivates the study of
the resilience of linear consensus networks to faulty (non-
colluding) attacks, which, by definition, are not allowed to
generate zero dynamics. The following theorem states an
upper bound on the number of faulty agents that can be
detected and identified.

2In a zero dynamic, the state is confined on the subspace V∗, which is a
proper space of the state space, and hence has zero Lebesgue measure.
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Theorem IV.7 (Identification of faulty agents) Given
a k-connected linear consensus network, at most k − 1
concurrent faulty agents can be detected and correctly
identified by every node in the network.

Proof: Since, by definition, faulty nodes do not generate
zero dynamics, we only need to show that at most k−1 faulty
agents can be correctly identified by every node. Suppose
there are k faulty agents, and suppose that they form a vertex
cut. The network is divided into two subnetworks G1 and G2

by the faulty nodes K. Let i be a node of G2, and consider
the problem of understanding, from the observations of the
agent j of G1, whether the set K or the agent i is faulty. As
in the proof of Theorem IV.1, the system (A, [BS Bi], Cj ])
is not left-invertible, and, since every signal starting from
i reaches j through the agents K, we have BS ∩ S∗i 6= 0.
From Theorem II.1, the dynamics generated by the two sets
K and i can not be decoupled, and, in particular, the set K
can reproduce the output sequence generated by any ui. We
conclude that j, and in fact any node in G1, is not able to
distinguish whether i, and in fact any set of nodes in G2, or
the set K is faulty.

Theorems IV.5 and IV.7 only give an upper bound on the
maximum number of concurrent misbehaving agents that can
be detected and identified. In the next section it will be shown
that, generically, in order to detect and identify k malicious
agents, the connectivity of the communication graph needs
to be 2k + 1, while, for faulty agents, a (k + 1)-connected
network is sufficient. In other words, if there exists a set of k
misbehaving nodes that can not be identified by the agent j,
then a random and arbitrarily small change of the consensus
matrix makes the misbehaving nodes detectable and identi-
fiable with probability one, provided that the connectivity of
the communication graph is sufficiently high.

V. STRUCTURAL PROPERTIES AND GENERIC
SOLVABILITY

We will be using some known results in the field of linear
structured systems, and we refer the interested reader to [15],
[16] for a detailed treatment of the subject. Given a linear
structured system of the form

x(t+ 1) = [A]x(t) + [B]u(t)
y(t) = [C]x(t) + [D]u(t),

(6)

we associate a directed graph G = (V,E) with it. The vertex
set V is given by U ∪ X ∪ Y , with U = {u1, . . . , um}
the set of input vertices, X = {x1, . . . , xn} the set of state
vertices, and Y = {y1, . . . , yp} the set of output vertices.
The indices n, m, and p denote respectively the dimension
of the state space, the input space, and the output space.
Denoting (i, j) for a directed edge from the vertex i to the
vertex j, the edge set E of G is E[A]∪E[B]∪E[C]∪E[D], with
E[A] = {(xj , xi)|[A]ij 6= 0}, E[B] = {(uj , xi)|[B]ij 6= 0},
E[C] = {(xj , yi)|[C]ij 6= 0}, E[D] = {(uj , yi)|[D]ij 6= 0}.
In the latter, for instance [A]ij 6= 0 means that the entry
(i, j) of the matrix [A] is a nonzero parameter. A path, i.e.,
a sequence of vertices where each node is connected to the
following one in the path, is simple if every vertex in the path
occurs only once, and two paths are disjoint if they consist

of disjoint sets of vertices. A set of l mutually disjoint and
simple paths between two sets of vertices S1 and S2 is called
a linking of size l from S1 to S2. A simple path in which
the initial and the last vertex coincide is called cycle, and a
cycle family of size l is a set of l mutually disjoint cycles.
Finally, a path is called Y -topped if its end vertex is in the
set Y . From [15] we know the following results.

Theorem V.1 (Generic normal rank of a matrix pencil)
Let P (z) be the system pencil of the structured system (6).
The normal rank of P (z) is generically equal to n plus the
size of a maximum linking from U to Y .

In other words, for almost any numerical realization Σ of
the structure matrices ([A], [B], [C], [D]), the normal rank of
the pencil of Σ equals n plus the size of a maximum linking
from the input to the output vertices. Recall that the union
of a linking, a Y -topped path family and a cycle family is
disjoint if they mutually have no vertices in common.

Theorem V.2 (Generic number of invariant zeros) Let
the pencil P (z) of the structured system (6) have full
column rank n+m, even after the deletion of an arbitrary
row. The generic number of invariant zeros of the system
(6) is equal to n minus the maximal number of vertices in
X contained in the disjoint union of the following sets:

(i) a linking of size m from U to Y ,
(ii) a set of cycles in X , and

(iii) a set of Y -topped paths.

For our purposes, assume [D] = 0, and note that the
connectivity of the graph associated with a structured system
([A], [B], [C]) can be used to characterize the zero dynamics
of almost all numerical realization of ([A], [B], [C]).

Theorem V.3 (Generic zero dynamics and connectivity)
Let ([A], [B], [C]) be a k-connected structured system. If
the number of independent columns of [B] is less than k,
then almost any numerical realization of ([A], [B], [C]) has
no zero dynamics.

Proof: Consider the digraph G associated with the
structured system ([A], [B], [C]), and let P (z) be its matrix
pencil. Because of Theorem V.1, P (z) has full normal rank
n + |U |, so that almost any realization of ([A], [B], [C]) is
left-invertible. Deleting the row v from P (z) corresponds to
deleting all the incoming edges to the node v. Let G

′
be the

digraph associated with P (z) after deleting one of its rows.
Since G is k-connected, G

′
is at least k− 1 connected. The

maximum size of a linking from U to Y is still |U |, and
hence P (z) has full normal rank even after the deletion of
an arbitrary row. By considering a set of n self loops in G,
which are always present in our consensus model, we have
that all the n vertices in X are covered, and therefore, by
Theorem V.2, almost any realization of ([A], [B], [C]) has no
invariant zeros.

Given a structured triple ([A], [B], [C]) with δ nonzero
elements, the set of parameters that make ([A], [B], [C]) a
consensus system is a subset S of Rδ , because the matrix
A needs to be nonnegative and row stochastic. A certain
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property that holds generically in Rδ needs not be valid
generically with respect to the feasible set S. However, a
consensus system with no zero dynamics can generically be
found.

Theorem V.4 (Genericity of consensus systems) Let
([A], [B], [C]) be a k-connected structured system. If the
number of independent columns of [B] is less than k,
then, for almost every nonnegative numerical realization
of ([A], [B], [C]), there exists a consensus system with no
nontrivial zero dynamics.

Proof: Let (A,B,C) be a nonnegative numerical
instance of ([A], [B], [C]). The set of parameters for which a
generic property fails to hold coincides by definition with an
algebraic hypersurface of the parameter space [16], so that a
property remains generic when the parameter set is restricted
to the nonnegative orthant. Because of Theorem V.3, the
triple (A,B,C) has generically no zero dynamics. Moreover,
the Perron-Frobenius Theorem for nonnegative matrices en-
sures the existence of a positive eigenvector x for the matrix
A associated with the eigenvalue of largest magnitude r
[17]. Let D be the diagonal matrix whose main diagonal
equals x, then the matrix r−1D−1AD is a consensus matrix
[18]. A similarity transformation using D yields the system
(D−1AD,D−1B,CD), which generically has also no zero
dynamics. Finally, the system (r−1D−1AD,D−1B,CD)
is a k-connected consensus system with, generically, no
zero dynamics. Indeed, if there exists a value z̄, a zero
direction x0, and a zero input direction g for the system
(r−1D−1AD,D−1B,CD), then the value z̄r, with state
direction x0/r and input direction u, is an invariant zero of
(D−1AD,D−1B,CD), which contradicts the hypothesis.

Following Theorem V.4, we are able to state our results
concerning the resilience of a linear consensus network to
external attacks.

Theorem V.5 (Generic identification of malicious agents)
Given a k-connected consensus network, up to bk−1

2 c
malicious agents can generically be detected and correctly
identified by any agent.

Proof: Since 2bk−1
2 c < k, by Theorem V.3 the

consensus system with any set of 2bk−1
2 c has generically no

zero dynamics. By Theorem IV.4, any set of bk−1
2 c malicious

agents is detectable and identifiable by any node in the
network.

We conclude this Section with the resilience bound for the
faulty agents model.

Theorem V.6 (Generic identification of faulty agents)
Given a k-connected consensus network, up to k − 1 faulty
agents can generically be detected and correctly identified
by any agent.

Proof: Let V be the set of nodes, and K ⊂ V the
set of faulty agents. Let k be the connectivity of the graph
associated with a structure matrix [A], and let |K| = k − 1
be the rank of the input matrix BK . By virtue of Theo-
rem V.3, almost any numerical instance of ([A], [BK ], [Cj ])

has no zero dynamics, regardless of the choice of j, and
therefore V∗K = ∅. Let i ∈ V \ K, and consider the
system Σi = (A, [BK Bi], Cj), j ∈ V . Since the number
of inputs in Σi equals the connectivity of G, the system
Σi is generically left-invertible because of Theorem V.1.
Therefore, Bi ∩ (V∗K + S∗K) = Bi ∩ S∗K = 0, for any set of
k intruders K ∪ {i}. The dynamics of the K intruders can
be fully decoupled from the output trajectory generated by
any other node i, and therefore up to k − 1 faulty nodes
are successfully detected and identified. Indeed, for each
i ∈ V \ K, the residual associated with i in the system
(A, [BK Bi], Cj) converges to zero, so that the agent i is
regarded as well-behaving, and, by exclusion, the set K is
identified. Note that, since the faulty agents are not allowed
to inject the inputs described in Lemma IV.6, there is no
other set of agents able to generate the output observations.

VI. DETECTION AND IDENTIFICATION ALGORITHMS

A distributed procedure to detect and identify the misbe-
having agents in a linear consensus network is in Algorithm
1. Here is an informal description.

(Exact identification) We focus on the agent j.
Let k be the number of misbehaving nodes to
be identified, and let K be the set containing all
the

(
n−1
k+1

)
combinations of k + 1 elements of

V \ {j}. For each set K̃ ∈ K, consider the system
ΣK̃ = (A,BK̃ , Cj), and compute3 a set of residual
generator filters for ΣK̃ . If the connectivity of the
communication graph is sufficiently high, then, as
described in the previous sections, each residual
function is nonzero if and only if the corresponding
failure mode is active. Let K be the set of misbe-
having nodes, then, whenever K ⊂ K̃, the residual
function associated with the failure mode K̃ \ K
becomes zero after an initial transient, so that the
agent K̃ \ K is recognized as well-behaving. By
exclusion, because the residuals associated with the
misbehaving agents are always nonzero, the set K
is identified.

Notice that, since the residual generators are dead beat
filters, the detection and the identification of the misbehaving
agents take place in finite time, and that, because each
agent only relies on its local observations, no communication
overhead is introduced in the consensus protocol.

Algorithm 1 requires every agent to know the entire
topology of the network, and to compute a number of
residuals which grows exponentially with the number of
nodes of the network. In a more realistic scenario each
agent is only aware of the communication structure of some
neighborhood, and they can perform only a certain number
of operation in a reasonable amount of time. It follows that,
in practice, the proposed procedure is implementable only on
a small consensus network. In the sequel, we briefly present
a heuristic to address this issue.

Consider the set V dj ⊂ V of the d-neighbors of the agent
j, i.e., the set of nodes within distance d from the agent j,

3A procedure to design a residual generator filter can be found in [12].
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Algorithm 1: Detection and identification of misbe-
having agents in a linear consensus network.

Input : Consensus matrix; number of misbehaving
nodes k;

Require: The communication graph has
connectivity k + 1, if only faulty agents
are allowed, and 2k + 1 otherwise;

Each agent computes the residual generators for1:

every possible set of k + 1 misbehaving agents;
while the misbehaving agents are unidentified do2:

Exchange data with the neighbors;3:

Update the state;4:

Evaluate the residual functions;5:

if every ith residual is nonzero then6:

Agent i is recognized as misbehaving.7:

and let Adj be the matrix describing the interaction among
the nodes V dj . Let V dj = {v̄1, . . . , v̄l}, then, for all i, k ∈
{1, . . . , l}, the (i, k)-th entry of Adj equals
• the (v̄i, v̄k)-th entry of A if Nv̄i ⊆ V dj ;
• 1/|Nv̄i ∩ V dj | if Nv̄i 6⊆ V dj , and if the (v̄i, v̄k)-th entry

of A is positive; and
• 0 otherwise.
For a set of possible misbehaving agents K, let ΣdK,j =

(Adj , B
d
K,j , C

d
j ) denote the reduced system computed by

the agent j, where Bdj = HBK , Cdj = CHT , H =
[ev̄1 . . . ev̄l ]

T . In the absence of misbehaving nodes, the
residual functions associated with the reduced system ΣdK,j
asymptotically decay to zero.

Theorem VI.1 (Convergence of residuals) Let ΣdK,j be
the reduced consensus system computed by the agent j. In
the absence of misbehaving agents, and for every set K of
possible misbehaving agents, the residual functions computed
by j decay to zero.

Proof: Let ΣdK,j be the reduced system of the agent j.
Note that the residual functions for a consensus system are
not affected by the state trajectories lying on the subspace
1, because the state of a consensus system converges to
1, and the residuals are designed to decay to zero in the
absence of misbehaving nodes. Finally, since in the absence
of misbehaving agents both the consensus system and ΣdK,j
converge to the subspace 1, the residuals computed by j
decay to zero.

Because the evolution of the reduced system ΣdK,j differs
from the dynamic of the consensus system ΣK , the residual
generators designed using the system ΣdK,j do not provide
exact decoupling for the trajectories of the system ΣK . In
other words, every residual function is in general nonzero, so
that the identification of the misbehaving set needs to rely on
a threshold mechanism. As in [19], we design the residual
generators so that a good compromise between sensitivity
to faults and robustness to noise is achieved. As in Fig.
1, the magnitude of the residual functions associated with
the faulty agents turns out to be larger than the magnitude
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12-th residual
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Fig. 1. The residual generators are designed to achieve the best compromise
between sensitivity to faults and robustness to noise. As an example, for
the network in Fig. 3(a), the magnitude of the 42-th residual, computed by
the agent 32, is sensibly larger than the 12-th and the 21-th residual.

of the residual functions associated with the well-behaving
nodes, so that a correct identification of the misbehaving
set is generally still possible. Here is a description of our
heuristic, a detailed version of which is forthcoming.

(Low-complexity identification) We focus on the
agent j. Let k be the number of misbehaving nodes
to be identified, and let K be the set containing
all the

(|V dj |−1

k+1

)
combination of k + 1 elements

of V dj \ {j}. For each set K̃ ∈ K, consider
the system Σd

K̃,j
, and compute a set of residual

generator filters for Σd
K̃,j

. Compare the residuals
with a predetermined threshold and identify the
misbehaving agents.

Note that, the required memory and the computational burden
are a function of d, and not of the dimension of the network.

VII. EXAMPLES

A. Exact detection and identification

Consider the network of Fig. 2(a), and let A be a randomly
chosen consensus matrix. In particular,

A =


0.2795 0.1628 0 0.1512 0.4066 0 0 0
0.0143 0.3363 0.3469 0 0 0.3025 0 0

0 0.0718 0.1904 0.2438 0 0 0.4941 0
0.0844 0 0.4457 0.0660 0 0 0 0.4040
0.1709 0 0 0 0.2694 0.2472 0 0.3125

0 0.4199 0 0 0.1575 0.3293 0.0932 0
0 0 0.0174 0 0 0.4241 0.2850 0.2735
0 0 0 0.3024 0.2039 0 0.2065 0.2873

 .
The network is 3-connected, and it can be verified that for
any set K of 3 misbehaving agents, and for any observer
node j, the triple (A,BK , Cj) is left-invertible. Also, for any
set K of cardinality 2 the triple (A,BK , Cj) has no invariant
zeros. As previously discussed, any well-behaving node can
detect and identify up to 2 faulty agents, or up to 1 malicious
agent. Consider the observations of the agent 1, and suppose
that the agents {3, 7} inject a random signal into the network.
As described in Algorithm 1, the agent 1 computes the resid-
ual functions for each of the

(
7
3

)
possible sets of misbehaving

nodes, and identify the well-behaving agents. For example,
independent of the initial condition of the network, for the
system x(t + 1) = Ax(t) + B3u3(t) + B4u4(t) + B7u7(t),
after 7 time steps, the residual function associated with the
input 4 is zero, as in 2(b), so that the agent 4 is regarded
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Fig. 2. In Fig. 2(b) a consensus network where the nodes 3 and 7 are
faulty. In Fig. 2(a) the residual functions computed by the agent 1, under
the hypothesis that the misbehaving set is {3, 4, 7}.

as well-behaving. The agents 3 and 7 instead, since they
always have nonzero residual functions, are recognized as
misbehaving. If the misbehaving nodes are malicious, then
no more than 1 misbehaving node can be tolerated. Indeed,
the consensus system with 4 inputs exhibits nontrivial zero
dynamics, so that a set of 2 malicious nodes may remain
unidentified. For example, the system (A,B{2,4,6,8}, C1) has
nontrivial zero dynamics, since the nodes {2, 4, 6, 8} form a
vertex cut. It follows that there exists an initial condition
and an input function such that the nodes {2, 4} and {6, 8}
generate the same output observations, and, therefore, can
not be distinguished.

B. Approximate detection and isolation
The goal of the following example is to show that an effec-

tive detection and identification mechanism can be designed
using the heuristic presented in Section VI. Suppose that the
network topology is as in Fig. 3(a), and that the agents only
know the structure of a 3-neighborhood, as the shaded region
in Fig. 3(a) for the agent 15. We will be considering only
faulty agents, because the partial knowledge of the network
makes it impossible to identify malicious nodes. Suppose
that the 15 red agents in Fig. 3(a) are faulty, and suppose
that they add a random signal to the consensus algorithm.
The agents design the residual generators for the portion of
consensus network they know, and they execute 40 steps of
the consensus algorithm. By comparing the residuals with
a predetermined threshold, all the misbehaving agents are
identified and isolated from the network, as in Fig. 3(b).
Clearly, because the identification algorithm is not exact,
some communication edges are cut erroneously.

VIII. CONCLUSIONS

The problem of distributed reliable computation in net-
works with misbehaving nodes is considered, and its relation-
ship with the fault detection and isolation problem for linear
systems is discussed. The resilience of linear consensus
networks to external attacks is characterized through some
properties of the underlying communication graph, as well as
from a system-theoretic perspective. In almost every linear
consensus network, the misbehaving components can be
correctly detected and identified, as long as the connectivity
of the communication graph is sufficiently high. Precisely,

10 20 30 40 50 60 70 80 90 100

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

(a)

10 20 30 40 50 60 70 80 90 100

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

(b)

Fig. 3. In Fig. 3(a) a consensus network with 100 nodes, 15 of which are
faulty. In Fig. 3(b) the result of the detection and identification heuristic.
All the faulty agents are isolated from the network of the well-behaving
agents.

for a linear distributed consensus network to be resilient to
k concurrent faults, the connectivity of the communication
graph needs to be 2k + 1, if Byzantine failures are allowed,
and k+1, otherwise. Finally, for the faulty agents case, good
performance can be obtained even when the agents do not
know the entire topology of the consensus network, or when
they are subject to memory or computation constraints.
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