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Abstract— This paper presents a complete characterization
of shortest paths for unicycle-like nonholonomic mobile robots
equipped with a limited Field-Of-View (FOV) pinhole camera
rigidly fixed. We provide an alphabet of optimal control words
and then we show how to obtain the shortest path, from any
point of vehicle plane, that maintains a fixed point in the camera
FOV.

I. INTRODUCTION

This paper deals with the complete characterization of

shortest paths for unicycle nonholonomic mobile robot

equipped with a rigidly fixed pinhole camera with limited

Field-Of-View (FOV). In particular, the problem considered

here is to steer the mobile robot in a desired configuration

through the shortest path, while keeping a specified feature

in sight of a monocular, fixed camera.

The literature of optimal (shortest) paths stems mainly

from the seminal work on unicycle vehicles by Dubins [9].

Dubins gave a characterization of shortest curves for a car

with a bounded turning radius, proving that optimal solu-

tions consist of combinations of circular arcs of minimum

curvature (denoted by the symbols R and L for right and

left arcs, respectively) and straight lines (S). He showed that

an optimal path can always be found among 6 types only,

described by words using at most three such symbols. A

complete optimal control synthesis for this problem, i.e., a

finite partition of the whole motion plane in regions such

that the same word encodes the shortest path from all points

in the same region, has been reported in [4]. Later on, the

solution has been refined using results from optimal control

theory [15] or Lie algebraic tools [14]. Relevant extensions

have been provided in literature, including cars moving both

forward and backward [11], minimum wheel rotation paths

for differential-drive robots [7] or time optimal paths [16],

[1].

Recently, the optimal control in the field of visual ser-

voing has also received considerable attention, mainly for

robotic manipulators (see e.g. [6]). The minimization of the

manipulator trajectories between the initial and the desired

positions in combination with the limited FOV constraint has
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Fig. 1. Mobile robot and systems coordinates. The robot’s task is to reach
P while keeping OW within a limited FOV (dashed lines).

been presented in [8], [10]. However, the optimal control of

visually guided vehicle has received much less attention. To

the best of the authors’ knowledge, the work in [2], [12]

represent the first attempts to find minimum length paths for

nonholonomic vehicles equipped with limited FOV monoc-

ular cameras. More precisely, [2] showed that extremal arcs

for the considered problem are of four types, corresponding

to four symbols (rotations on the spot ∗, straight lines S and

left, T L, and right, T R, logarithmic spirals). In [2] is stated

that sequences of control symbols consist of no more than

3 symbols. In this paper, we show that shortest paths are

characterized by sequences of up to 5 symbols. More details,

proofs and a complete optimal synthesis of the motion plane

can be found in [13].

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-

handed reference frame 〈W 〉 is defined with origin in OW and

axes Xw,Zw. The configuration of the vehicle is described by

ξ (t) = (x(t),z(t),θ (t)), where (x(t),z(t)) is the position in

〈W 〉 of a reference point in the vehicle, and θ (t) is the vehicle

heading with respect to the Xw axis (see fig. 1). We assume

that the dynamics of the vehicle are negligible, and that the

forward and angular velocities of the vehicle, ν(t) and ω(t)
respectively, are the control inputs to the kinematic model of

the vehicle. Choosing polar coordinates for the vehicle (see

fig. 1), i.e. setting
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the kinematic model of the unicycle-like robot is
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We consider vehicles with bounded velocities which can turn

on the spot. In other words, we assume

(ν,ω) ∈U, (3)

with U a compact and convex subset of IR2, containing the

origin in its interior.

The vehicle is equipped with a rigidly fixed pinhole

camera with a reference frame 〈C〉 = {Oc,Xc,Yc,Zc} such

that the optical center Oc corresponds to the robot’s center

[x(t),z(t)]T and the optical axis Zc is aligned with the robot’s

forward direction.

Without loss of generality, we consider the position of the

robot target point P to lay on the XW axis, with coordinates

(ρ , ψ) = (ρP, 0). We also assume that the feature to be

kept within the on-board camera FOV is placed on the axis

through the origin OW and perpendicular to the plane of

motion.

We consider a symmetric planar FOV with characteristic

angle δ = 2φ , which generates the constraints

β + φ ≥ 0, (4)

β −φ ≤ 0 . (5)

It should be noticed that we place no restrictions on the

vertical dimension of the FOV. Therefore, the height of the

feature on the motion plane, which corresponds to its Yc

coordinate in the camera frame 〈C〉, is irrelevant to our

problem. The goal of this paper is to determine, for any

point Q ∈ IR2 in the robot space, the shortest path from Q to

P such that the feature is maintained in the camera field of

view. In other words, we want to minimize the length of the

path covered by the center of the vehicle, i.e. to minimize

the cost functional

L =

∫ τ

0
|ν|dt ,

under the feasibility constraints (2), (3), (4), and (5). Here,

τ is the time needed to reach P, i.e., such that ρ(τ) =
ρP,ψ(τ) = 0.

The time derivative of the FOV constraints computed

along the trajectories of system (2) brings to

β̇ =
sinβ

ρ
ν −ω , (6)

for both constraints. From the theory of optimal control, with

state and control constraints [3], the associated Hamiltonian

is

H(η ,ν,ω) =|ν|−λ1 cosβ ν + λ2
sinβ

ρ
ν+

+(λ3 + µ1 + µ2)

(

sinβ

ρ
ν −ω

)

,

with λ = (λ1, λ2, λ3) 6= 0 and µ = (µ1, µ2) ≥ 0. When the

FOV constraints are not active (i.e. µ = 0), extremal curves

(i.e. curves that satisfy necessary conditions for optimality)

include straight lines (corresponding to ω = 0 and denoted

by the symbol S) and rotations on the spot (corresponding

to ν = 0 and denoted by the symbol ∗).

On the other hand, when µ > 0 we have

β + φ ≡ 0 ⇒ tanβ = − tanφ

β −φ ≡ 0 ⇒ tanβ = tanφ ,

and, by (2),

ψ̇ = tanφ
ρ̇

ρ
= tanφ

d

dt
(lnρ) , when β = −φ (7)

ψ̇ = − tanφ
ρ̇

ρ
= − tanφ

d

dt
(lnρ) , when β = φ . (8)

By integration, we obtain

ψ = tanφ ln

(

ρ

ρo

)

, when β = −φ (9)

ψ = − tanφ ln

(

ρ

ρo

)

, when β = φ (10)

where ρo is a constant that depends on initial conditions.

Equations (9) and (10) represent two logarithmic spirals,

left (denoted by the symbol T L) and right (T R) respectively.

The left (right) spiral rotates clockwise (counterclockwise)

around the feature.

We have thus obtained four extremal maneuvers, repre-

sented by the symbols {∗, S, T R, T L}. Rotations on the spot

(∗) have zero length, but may be used to properly connect

other maneuvers.

Extremal arcs can be executed by the vehicle in either

forward or backward sense: we will hence use superscripts +
and − to make this explicit (e.g., S− stands for a straight line

executed backward). In conclusion, we will build extremal

paths consisting of sequences, or words, comprised of sym-

bols in the alphabet {∗, S+, S−, T R+, T R−, T L+, T L−}. The

set of possible words generated by the above symbols is a

language L .

The rest of the paper is dedicated to showing that, due

to the physical and geometrical constraints of the considered

problem, a sufficient optimal finite language LO ⊂L can be

built such that, for any initial condition, it contains a word

describing a path to the goal which is no longer than any

other feasible path.

III. SHORTEST PATHS: SYMMETRIES AND INVARIANTS

For space limitations several proofs of results are omitted

and only the idea behind the proof is provided. More details

and all proofs can be found in [13].

By a path γ we mean a continuous map from the interval

I = [0,1] to the space IR2, i.e. γ : I → IR2, with γ(0) and

γ(1) the initial and final points of the path, respectively. We

denote with PQ the set of all feasible extremal paths from

γ(0) = Q to γ(1) = P.

Definition 1: Given the target point P, with P = (ρP,0)
in polar coordinates, and Q ∈ IR2 \OW , Q = (ρQ,ψQ) with



Fig. 2. Construction of a palindrome symmetric path: γ is a generic path
from Q to P and γ̃ the symmetric to γ w.r.t. the bisectrix r.

ρQ 6= 0, let fQ : IR2 → IR2 denote the map

fQ (ρG,ψG) =







(

ρGρP

ρQ

,ψQ −ψG

)

for ρG 6= 0

(0,0) otherwise.

(11)

Remark 1: The map fQ can be regarded as the combina-

tion of a clockwise rotation RQ by an angle ψQ, a scaling

SQ by a factor ρP/ρQ, and an axial symmetry w.r.t. XW .

Definition 2: Given the target point P = (ρP,0) and Q =
(ρQ,ψQ) with ρQ 6= 0, let the path transform function FQ be

defined as

FQ : PQ → P fQ(P)

γ(t) 7→ fQ(γ(1− t)), ∀t ∈ I.
(12)

Remark 2: Notice that γ̃(t) = FQ (γ(1− t)) corresponds to

γ(t) transformed by fQ and reversed. Indeed, γ̃ is a path from

γ̃(0) = fQ(P) to γ̃(1) = fQ(Q) ≡ P.

Turning our attention back to the map fQ(·), it can be

noticed that point Q is transformed in fQ(Q) = P, while P

goes into fQ(P) =
(

ρ2
P

ρQ
,ψQ

)

.

Consider now the locus of points Q such that it further

holds fQ(P) = Q. This is clearly the circumference with

center in OW and radius ρP. We will denote this circum-

ference, which will have an important role in the following

developments, by C(P). A remarkable property of C(P) is

that ∀Q ∈ C(P), PQ is FQ–invariant, i.e. Q ∈ C(P) ⇒ ∀γ ∈
PQ, FQ(γ) ∈ PQ.

Notice that remark 1 is valid also for FQ. As a conse-

quence FfQ(P)(FQ(γ)) ≡ γ . Furthermore, FQ transforms for-

ward straight lines in backward straight lines and viceversa.

Moreover, FQ maps left spiral arcs (T L+ and T L−) in right

spiral arcs (T R− and T R+ respectively) and viceversa. Hence,

FQ maps extremal paths in L in extremal paths in L .

For example, let w = S− ∗T R− ∗ S+ ∗T L+ be the word that

characterize a path from Q to P, the transformed extremal

path is of type z = T R− ∗ S− ∗T L+ ∗ S+. With a slight abuse

of notation, we will write z = FQ(w).
From the previous analysis we also obtain that an extremal

path γ ∈ PQ with Q ∈ C(P) is mapped in an extremal path

γ̃ ∈ PQ symmetric to γ w.r.t. the bisectrix r of the angle

Q̂OW P.

In the following, we will denote by D(P) the closed disc

within C(P). Due to the symmetry of the problem, however,

the analysis of optimal paths in PQ can be done considering

only the upper half plane w.r.t. the XW axis. We denote

therefore by DS the closure of the semidisk in the positive

ZW half-plane, by CS the upper semicircumference, and by

PsP the diameter such that ∂DS = CS∪PsP – see fig. 2.

Proposition 1: Given Q ∈ (XW ,ZW ) and a path γ ∈ PQ

of length l, the length of the transformed path γ̃ = FQ(γ) is

l̃ = ρP

ρQ
l.

Intuitively, the proof follows from the fact that the distance

between two points P1 and P2 of a straight line or a

logarithmic spiral linearly depends on their distance from

OW , which is scaled by means of Remark 1.

Definition 3: An extremal path starting from Q and de-

scribed by a word w ∈ L is a palindrome path if the

transformed path through FQ is also described by w.

Definition 4: An extremal path in PQ which is a palin-

drome path and is symmetric w.r.t. the bisectrix r of Q̂OW P,

is said a palindrome symmetric path.

Proposition 2: For any path in PQ with Q ∈ CS there

always exists a palindrome symmetric path in PQ whose

length is shorter or equal.

This can be obtained considering for any path in PQ with

Q ∈ CS the transformed path by FQ. Such two paths are

symmetric with respect to the bisectrix of angle Q̂OW P (see

fig. 2). A palindrome symmetric path can be easily obtained

considering the first part of one path and the second of the

other.

Another important consequence of the properties of the

path transform FQ is the following

Theorem 1: An optimal path γ ∈ PQ with Q ∈ ∂DS

evolves completely within the half-disc DS.

The proof is essentially based on Proposition 1 and the obser-

vation that a path starting outside (inside) DS is transformed

in a shorter (longer) path starting inside (outside) DS.

IV. OPTIMAL PATHS FOR POINTS ON ∂DS

Notice that the optimal path from points on Q ∈ PsOW is

S+ ∗S− with switching point in OW . Trivially, for Q ∈ OW P

the optimal path is S− (see fig. 2). To address the paths from

points on CS, we preliminarily establish an existence result.

Proposition 3: For any Q ∈ CS there exists a feasible

shortest path to P.

Proof: Because of state constraints (4), and (5), and the

restriction of optimal paths in DS (theorem 1) the state set

is compact. Furthermore, for any point at distance ρ from

OW the optimal path is shorter or equal to ρ + ρP (which

corresponds to the path S+ ∗S− through OW ). The system is

also controllable (cf. [2]). Hence, Filippov existence theorem

for Lagrange problems can be invoked [5].

A sufficient family of optimal paths has to be determined.

We first establish few preliminary notations and results.

Definition 5: For a point G ∈ IR2, let CR
G (CL

G) denote the

circular arc from G to OW such that, ∀V ∈CR
G (CL

G), ĜVOW =
π−φ in the half-plane on the right (left) of GOW (cf. fig. 3).

Also, let CG denote the region delimited by CR
G and CL

G from

G to OW .

We will refer to CR
G (CL

G) as the right (left) φ–arc in G.



Fig. 3. Region CQ with its border ∂CQ = CR
Q ∪CL

Q and cone ΓG delimited

by half–lines rR
G and rL

G.

Definition 6: For a point G ∈ IR2, let rR
G (rL

G) denote the

half–line from G forming an angle ψG +φ (ψG−φ ) with the

XW axis (cf. fig. 3). Also, let ΓG denote the cone delimited

by rR
G and rL

G.

We will refer to rR
G (rL

G) as the right (left) φ–radius in G.

The following result is obtained by elementary geometric

arguments:

Proposition 4: For any starting point Q, all points of CQ

are reachable by a straight path without violating the FOV

constraint.

Proposition 5: If an optimal path γ ∈ PQ includes a

segment of type S+ with extremes in A, B, then either

B = P ∈CA or B ∈CR
A ∪CL

A.

Proposition 6: If an optimal path γ ∈ PQ includes a

segment of type S− with extremes in B, A, then either

A = P ∈ ΓB or A ∈ rR
G ∪ rL

G.

Previous propositions are based on the observation that if

the second extreme point is outside the region the path is

not feasible. Furthermore, if it is internal the path can be

shortened with a segment. Hence it is not optimal.

Proposition 7: If a path γ(τ), τ ∈ [0,1] is optimal, then

its argument arg(γ(τ)) is monotonic.

Proof: Because γ is a continuous path, the argument of

its points varies continuously. Furthermore, if the argument

does not strictly decrease, than there exist two points within

the path with the same argument, hence aligned with OW .

These two points could be connected with a feasible straight

line, thus shortening γ , which was supposed on the contrary

to be a shortest path.

Remark 3: By applying Proposition 7 to optimal paths

from Q in the upper half–plane to P, and noticing that

arg(Q) ≥ arg(P) = 0, the argument is non increasing. Hence

optimal paths in the upper half–plane, and in particular in

DS, do not include counter–clockwise extremals of type T R+

or T L−.

Fig. 4. Feasible extremals and sequences of extremals from points in DS.

Fig. 5. The palindrome symmetric path of type S+T L+ ∗ T R−S− from
Q ∈CS to P.

Proposition 8: If a path γ(τ) is optimal, then its modulus

|γ(τ)| has no local maximum for τ ∈ (0,1).
Proof: Because γ is a continuous path, the modulus

of its points, i.e. their distance from OW , is a continuous

function of τ . Assume that the modulus has a maximum

in an internal point τ̄ ∈ (0,1). Then, by classical analysis

theorems, there exist two values τG and τH in (0,1) such that

|γ(τG)|= |γ(τH)|< |γ(τ̄)|, with the sub–path between τG and

τH evolving outside the disk of radius |γ(τG)|. Applying the

same arguments used in the proof of Theorem 1 replacing Q

with γ(τG) and P with γ(τH), it is shown that a shorter sub–

path between τG and τH exists evolving completely within

the disk, a contradiction.

Remark 4: Observe that the distance from OW is strictly

increasing along backward extremal arcs (i.e. S−, T R−, T L−)

and strictly decreasing along forward extremal arcs (i.e. S+,

T R+, T L+). As a consequence of Proposition 8 in an optimal

path a forward arc cannot follow a backward arc.

Proposition 9: Any path of type S− ∗T R− (T L+ ∗S+) can

be shortened by a path of type T R−S− (S+T L+).

The proof of this proposition can be found in [13].

We are now able to prove the following important result.

Theorem 2: From each and every Q ∈ CS to P there

exists a palindrome symmetric shortest path of type S+T L+ ∗
T R−S−.

Proof: According to Propositions 7–9 and remarks 3–

4, a sufficient optimal language LO for Q ∈ DS is described

in fig. 4. It is straightforward to observe that the number



of switches between extremals is finite and less or equal to

3, and a sufficient family of optimal paths is given by the

word S+T L+ ∗T R−S− and its degenerate cases. Furthermore,

by Proposition 2, for Q ∈ CS optimal paths are palindrome

symmetric paths.

A palindrome symmetric path from Q on CS to P of the

type S+T L+ ∗ T R−S− is shown in fig. 5. By symmetry, it

follows that the sub–paths S+ and S− have the same length,

and so do T L+ and T R−. As a consequence, only two sub-

words T L+ ∗TR− and S+∗S− need be considered, which are

obtained as degenerate cases with zero length arcs.

Referring to fig. 5, let the switching points of the optimal

path be denoted as M2, N, and M1, respectively. Notice that

N is on the bisectrix r of Q̂OW P, while M1 and M2 are

symmetric w.r.t. r. In fig. 5 the region CQ, locus of points

reachable by a linear feasible path from Q, is also reported

delimited by dashed curves.

We now study the length of extremal paths from CS to P

in the sufficient family above. To do so, it is instrumental to

parameterize the family by the angular position of the first

switching point, αM1
.

Theorem 3: The length of a path γ ∈PQ, Q ∈CS, of type

S+T L+ ∗TR−S− passing through M1 = (ρM1
,αM1

) is

L = 2
ρP

cosφ
cosαM1

− 2ρP e

(

αM1
−ψQ

2

)

t

cosφ sinφ
sin(φ −αM1

) . (13)

The result has been obtained considering that a shortest path

is palindrome symmetric (Proposition 2). Hence, M1 ∈ CR
P ,

M2 ∈CL
Q, ρM2

= ρM1
and αM2

= ψQ −αM1
.

Having an analytical expression for the length of the path

as a function of a single parameter αM1
(hence indirectly of

Q ∈ CS), we are now in a position to minimize the length

within the sufficient family. Notice that we need only to

consider αM1
≥ 0 (because the problem is symmetric w.r.t.

XW ), and αM1
≤ φ for the geometrical considerations above

on CL
Q (see fig. 3).

Theorem 4: Given Q = (ρP,ψQ) ∈CS,

• for 0 < ψQ ≤ ψM :=−4tanφ ln(sinφ), the optimal path

is of type T L+ ∗TR−;

• for ψM < ψQ < ψV := 2φ + ψM, the optimal path is of

type S+T L+ ∗T R−S−;

• for ψV ≤ ψQ < π , the optimal path is of type S+ ∗ S−

With reference to fig. 6, the locus of switching points be-

tween extremals in optimal paths is defined in the following

proposition.

Proposition 10: Given Q = (ρP,ψQ) ∈CS,

• for 0 < ψQ ≤ ψM , the switching locus is the arc of T R
P

within the extreme points P and m = (ρP sin2 φ , ψM/2)
(included);

• for ψM < ψQ < ψV , the loci of switching points M1,

N, and M2 are the right φ–arcs CR
P , CR

m, and CR
M with

M = (ρP, ψM), respectively;

• for ψV ≤ ψQ < π , the switching locus reduces to the

origin OW .

We are now able to provide an explicit procedure to compute

the switching points for any given Q ∈CS:

• for 0 < ψQ ≤ ψM , the switching point is T R
P ∩T L

Q ;

Fig. 6. Optimal path from Q on CS, between M and V , to P. The locus
of switching points between extremals S+ and T L+ is the arc of circle CR

M ,
whereas the locus of switching points between T L+ and T R− is CR

m.

Fig. 7. Partition of DS.

• for ψM < ψQ < ψV , the switching points are M2 ∈CR
M ∩

CL
Q, N ∈CR

m ∩T L
M2

, and M1 ∈CR
P ∩T R

N .

• for ψV ≤ ψQ < π , the switching point is OW .

Proofs of previous results can be found in [13].

V. SHORTEST PATHS FROM ANY POINT IN THE MOTION

PLANE

For any points on CS the word that characterize the

shortest path has been found (Theorem 4) and a way to

determine the switching points has been provided (Prop 10).

We are now able to determine the shortest path for internal

points in DS by using the following simple idea: for any

Q ∈ DS \ ∂DS, find a point s (e.g. s ∈ ∂DS) such that an,

already known, optimal path γ from s to P goes through Q.

By Bellmann’s optimality principle, the sub–path from Q to

P is also optimal. Once shortest paths for points of DS are

derived, the optimal paths from points in the rest of the plane

are obtained using properties of map FQ.

A. Optimal paths for points in the half-disc DS

Referring to fig. 7 switching locus of optimal paths from

CS subdived DS in 6 Regions. Notice that a shortest path

from CS cross Region I with the S− type of extremal, Regions

II and V with T L+, Regions III and IV with S+ and Region

VI with T R−.

For any point Q in DS a shortest path can be obtained as

follows determining a point on CS from which the shortest

path is through Q.



Fig. 8. Examples of optimal paths from points Q in different regions to
P.

Region I: From any point in this region it is possible to reach

P with a straight path (in backward motion) without violating

the FOV constraints (cf. Proposition 4).

Region II: For any Q in Region II consider the point s

obtained by intersecting the spiral T L
Q with CS. By the non-

intersecting properties of left spirals, s lies between P and

M on CS.

Region II′: For any Q in the arc of T R
P from m to P, the path

T R−
P from Q to P is a degenerate case of T L+ ∗T R−

P with a

zero-length T L+ arc.

Region III: For any Q in Region III consider the line through

OW and Q, which intersects CS in a point s between V and

Ps.

Region IV: For any Q in Region IV consider the left φ–arc

CL
Q, and the intersection point r = CL

Q ∩CR
M \OW .

Consider now the straight line through Q and r, and let

its intersection with CS be denoted s. Such intersection lies

between V and M.

We recall also that, as a straightforward consequence of

Proposition 10, the optimal path for Q ∈ CR
m is of type

T R−
Q S−, while for Q ∈ CR

M , the optimal path type is T L+
Q ∗

T R−S−, where the two spiral extremals have the same length.

Hence we have:

Region V: For any Q in Region V consider the intersection

point s of the spiral T L
Q with CR

M . The optimal path γs from

s ∈ CR
M to P is of type T L+

s ∗T R−S−, and contains Q in its

first arc.

Region VI: For any Q in Region VI consider the intersection

point s of the spiral T R
Q with CR

m. The optimal path γs from

s ∈CR
m to P is of type T R−

s S− and contains Q in its first arc.

B. Optimal paths for points outside DS

To obtain shortest paths for points outside DS we recall

that (section III) FQ transforms a path from Q to P in a path

from fQ(P) =
(

ρ2
P

ρQ
,ψQ

)

to P. Recall also that, if Q is outside

the half–disk DS, fQ(P) is inside, and viceversa.

From proposition 1 we obtain that optimal paths from

points Q outside DS can be obtained considering the shortest

path γ from Q̃ = fQ(P) and mapping γ by FQ̃.

Examples of shortest paths from different region are

depicted in fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

A complete characterization of shortest paths for unicycle

nonholonomic mobile robots equipped with a rigidly fixed

pinhole camera with limited FOV has been proposed. In

particular, new optimal words has been considered with

respect to previous works and optimal paths from any point

of the motion plane have been obtained for any value of the

FOV characteristic angle.

A possible extension of this work is to consider also a

vertical limit of the FOV that induces an off-limit zone

close to the feature position. Furthermore, the problem of

determining optimal paths in the case of more than one

feature can also be considered.
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