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Abstract: This work considers the problem of obtaining optimal estimates via distributed
computation in a large scale system. The electric power system, the transportation system, and
generally any computer or network system, are examples of large scale systems: a decentralized
estimation of signals based on observations acquired by spatially distributed sensors is the
basis for a wide range of important applications. In this work, we focus on the problem of
reconstructing the initial state of a linear network in the presence of process and measurement
noise. We consider a local model information setup, in which the entire dynamical and
measurement model is nowhere available and cannot be reconstructed for the computation.
Our estimation procedure relies upon a novel technique to solve a consistent system of linear
equations, for which we prove correctness and convergence. In the second part of the paper we
consider the problem of detecting anomalies in a large scale network driven by noise. Despite
the theoretical advances in this field of research, the currently available procedures to enforce
security in large scale systems are computationally inefficient and numerically unreliable. Using
our optimal estimation scheme, we describe a distributed procedure with performance guarantees
that only requires local knowledge of the system model.

1. INTRODUCTION

Large scale distributed systems, such as the electrical
power network and the telecommunication network, are
receiving increasing attention from researchers in different
fields. The wide spatial distribution and the high dimen-
sionality of network systems forbid the use of centralized
solutions to tackle classical estimation, control, and fault
detection problems, and they require, instead, the devel-
opment of new decentralized techniques. One possibility
to overcome these issues is to geographically deploy some
leaders in the network, each one responsible for a different
subpart of the whole system. Local estimation and control
schemes can successively be used, together with an infor-
mation exchange mechanism to recover the performance
of a centralized scheme.

We focus here on the problem of reconstructing and com-
puting a function of the initial state starting from local
observations. This very basic estimation problem arises
often in sensor networks and in multi-agent systems. For
instance, many formation and coordination problems re-
quire the agents to compute the average of the initial
states, or simply a consensus on a variable of interest, e.g.,
see Ren et al. (2005) and the references therein. The pro-
cedures proposed in these works require little knowledge
of the network structure, and they can be implemented on
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agents with very limited computation capabilities. On the
other hand, their convergence is usually very slow, and
it depends upon the dimension of the network, e.g., see
Olshevsky and Tsitsiklis (2009). A different approach is
taken in Sundaram and Hadjicostis (2008), where, assum-
ing that the network is observable in a system theoretic
sense, a finite time algorithm is derived to both recover
the initial state and evaluate a function of it. This method
requires the knowledge by each agent of the entire network
topology, and it suffers from numerical instabilities as
the network size grows. Clearly, a strong tradeoff exists
between the performance of a consensus or estimation
algorithm and the work load on each single agent. In
this paper, we further exploit this tradeoff by proposing a
hierarchical structure, in which only a subset of the agents
is in charge of the computational burden. By doing so, we
maintain the performance and increase the stability of the
finite time algorithms, while preserving, for the majority
of the agents, the simplicity of the asymptotic procedures.

We allow for the presence of process and measurement
noise in the network system. The state estimation problem
in a distributed setting and in the presence of noise is
receiving increasing attention in the last years, e.g., see
Carli et al. (2008) and the references therein. A distributed
version of the Kalman filter is often proposed, whose
structure depends upon the assumptions on the noise
covariance matrix and upon the knowledge each agent
needs to have. Besides the fact that, under a general error
model, no finite time distributed algorithm is available,



these solutions are better suited to track the evolution of
the system, rather than computing a function of the initial
state, and they constitute therefore a complementary area
of research with respect to this work.

Because of the decentralized nature of network systems,
sensor and actuator failures, as well as cyber attacks
compromising the availability of resources, constitute an
actual threat. As for the state estimation problem, the
large dimension of the system under consideration prevents
the use of a centralized detection system, hence ruling
out classical solutions as presented in Ding (2008). Few
techniques have been presented so far that assume only
local knowledge of the system model. In Chung et al.
(2001) a method based on decentralized estimation and
game theoretic fault detection theory is proposed. In Li
et al. (2009) an LMI based approach is used to design
the structure of local residual generators, in a way that
their behavior imitate the output of a centralized detec-
tion filter. Although appealing, these solutions have no
performance guarantees, and it is a difficult matter to
characterize the class of anomalies that can successfully
be detected. A different approach is taken in Pasqualetti
et al. (2010a), where, by exploiting the presence in the
network of weakly interconnected subparts, a bound on
the detection performance is characterized.

The main contributions of this work are threefold. First,
we describe a novel technique to compute the minimum
norm solution as well as the weighted least squares solution
to a set of linear equations. The proposed linear system
solver belongs to the class of row-projection methods, and
it is shown to converge in a finite number of steps. Second,
we introduce a hierarchical structure in the network by
allowing for the presence of a subset of agents with better
computation and communication capabilities. We describe
a distributed procedure for the leaders to reconstruct the
network initial state and to compute a linear function of
it. Our procedure converges in a finite number of steps,
which we characterize, and it requires local knowledge
of the network topology. In the absence of noise in the
system, our method reconstructs exactly the initial state
of the system. In the presence of noise, instead, the
linear minimum variance estimate of the initial state
is computed. Third and finally, we use our estimation
procedure to design a distributed and finite time detection
scheme, in which each leader operates under local model
information. A condition to avoid incorrect detection is
given, and, consequently, the set of detectable anomalies
is characterized. The proposed detection method is, to the
best of our knowledge, the first decentralized detection
method with performance guarantees that works on any
network structure and in the presence of noise.

The rest of the paper is organized as follows. Section
2 contains the notation. Our linear system solver is in
Section 3. Sections 4 and 5 contain our main results. Our
numerical studies and conclusion are in Section 6 and 7.

2. PROBLEM SETUP

We introduce in this section the notation and the problems
under consideration. Let G denote a directed graph with
vertex set V = {1, . . . , n} and edge set E ⊂ V × V . The
in-neighbor set of a node i ∈ V , i.e., all the nodes j ∈ V

such that the pair (j, i) ∈ E, is denoted with Ni. We let
each vertex j ∈ V denote an autonomous agent, and we
associate a real number xj with each agent j. Let the
vector x contain the values xj . A linear iteration over G
is an update rule for the state vector x and it is described
by the linear discrete time system

x(t+ 1) = Ax(t).

We refer to the graph G as to the communication graph
associated with the network matrix A, in which the (i, j)-
th entry is nonzero if and only if (j, i) ∈ E. An output
matrix Cj describes the information about the state of
the network that is directly available to j. In particular,
yj(t) = Cjx(t), Cj = [en1

. . . enp
]T , and {n1, . . . , np} =

Nj . In this work, we consider the noisy network

x(t+ 1) = Ax(t) + v(t),

yj(t) = Cjx(t) + wj(t),
(1)

where v(t) ∈ Rn and wj(t) ∈ Rp for all j ∈ {1, . . . , n}. We
also make the standard assumptions that

E[v(t)wj(t)] = 0, E[wi(t)wj(t)] = 0, (2)

and that, being δ the Kronecker delta function and I the
identity matrix of appropriate dimension,

E[v(t)] = 0, E[v(t)v(τ)T ] = σ2
vδ(t− τ)I,

E[wj(t)] = 0, E[wj(t)wj(τ)T ] = σ2
wδ(t− τ)I,

(3)

for all t, τ ∈ R and for all i, j ∈ {1, . . . , n} with i 6=
j. We introduce a hierarchy in the network by assum-
ing that some agents, denoted as leaders, have better
computation and communication capabilities. Let V (`) =
{`1, . . . , `m} ⊆ V be the leader set, and let G(`) =
(V (`), E(`)) be the leader graph, where E(`) ⊆ V (`) × V (`)

describes the feasible communications among the leaders.

Let N
(`)
i denote the set of the neighbors of the leader `i in

G(`). The information of the state x(t) directly available
to the leader `i is given by y`i(t) = C`ix(t), where C`i is
defined according to the neighbor set N`i in G. We assume
that the leader graph G(`) is strongly connected.

The problem of obtaining the linear minimum-variance
estimate of the initial state of the network (1) is considered
in this work. Observe that, if the agent j has complete
knowledge of the network matrix A, and if the pair
(A,Cj) is observable, see Ding (2008), then an optimal
estimate of the initial state can be obtained by collecting a
sufficient number of output measurements, and by solving
a standard weighted least squares problem as described in
Luenberger (1969). We consider in this paper the case in
which every agent (resp. leader) has only local knowledge
of the network model. In other words, we assume that the
matrix A is nowhere available and, furthermore, cannot be
reconstructed, so that the centralized solution described
above is inapplicable.

Problem 1. (Distributed minimum-variance estimate) De-
sign a distributed algorithm for the leaders to obtain the
linear minimum-variance estimate of x(0).

In the second part of the paper we use our distributed
estimation algorithm to address the problem of detecting
failures and anomalies in the network. We model the
presence of an anomaly as an unknown and unmeasurable
exogenous input in the system (1). This model has been
shown to be general, since it considers both sensor and



actuator failures, as well as malicious external attacks, e.g.,
see Pasqualetti et al. (2010a). The following problem is also
addressed in this paper.

Problem 2. Design an algorithm for the leaders to detect
an anomaly in the network.

We next describe a method to solve a system of linear
equations, which will be used to derive our main results.

3. AN ITERATIVE LINEAR SYSTEM SOLVER
AMENABLE TO DISTRIBUTED IMPLEMENTATION

We consider in this section the problem of determining
the minimum norm solution as well as the weighted least
squares solution to a set of linear equations. As it will be
clear in the following sections, the procedure we propose is
particularly convenient in a decentralized setup, in which
the knowledge of the whole set of linear equations is
nowhere available. We start with the computation of the
minimum norm solution. Consider the system of linear
equations y = Ax, where A ∈ Rl×n, y ∈ Rl, x ∈ Rn,
and assume that y ∈ Im(A), where Im(A) denotes the
range space spanned by the matrix A. The minimum norm
solution to y = Ax coincides with the vector x̂ such that
y = Ax̂ and ‖x̂‖2 is minimum. It is known that ‖x̂‖2 being
minimum corresponds to x̂ being orthogonal to Ker(A),
where Ker(A) denotes the null space of the matrix A. Let

A =


A1

A2

...
Am

 , y =


y1
y2
...
ym

 , (4)

where Ai ∈ Rmi×n, yi ∈ Rmi , for i ∈ {1, . . . ,m}, and∑m
i=1mi = l. Our procedure to compute the minimum

norm solution is in Algorithm 1, where, given a subspace V,
Basis(V) denotes any full rank orthonormal matrix whose
columns span the subspace V. The reader familiar with
row-action methods, a detailed discussion of which is in
Censor (1981), may notice a similarity with the procedure
we propose. It should be observed that, differently from
the existing row-action methods, our algorithm converges
in finite time, and, as it is shown later, it can be used to
compute any weighted least squares solution to a system
of linear equations. For 1 ≤ k ≤ m, let

Ak =


A1

A2

...
Ak

 , yk =


y1
y2
...
yk

 .
We next show that the computation of the vector x̂i and
of the matrix Ki in Algorithm 1 is such that yi = Aix̂i
and x̂i ⊥ Ker(Ai), so that the minimum norm solution to
the system y = Ax is finally returned.

Theorem 1. (Convergence of Algorithm 1) Consider the
system of linear equations y = Ax, where A and y are
partitioned in m blocks as in (4). Assume that y ∈ Im(A).
Then Algorithm 1 returns in m steps the vector x̂ such
that y = Ax̂ and x̂ ⊥ Ker(A).

Proof. We refer the reader to Pasqualetti et al. (2010b)
for a proof of the results contained in this paper. �

We focus now on the computation of the weighted least
squares solution to a set of linear equations. Let w be an

Algorithm 1 Sequential system solver

Input: A1, . . . , Am, y1, . . . , ym;
Require: y ∈ Im(A);
x̂0 := 0, K0 := In;
for i = 1 : m do
x̂i := x̂i−1 +Ki−1(AiKi−1)†(yi −Aix̂i−1);
Ki := Basis(Ki−1 Ker(AiKi−1));

end for
return x̂m;

unknown and unmeasurable n-dimensional random vector,
with E[w] = 0 and E[wwT ] = Q = QT > 0. Let

y = Ax+ w, (5)

where Ker(A) = 0, and recall from Luenberger (1969) that
the linear minimum variance estimate of x equals

xwls = (ATQ−1A)−1ATQ−1y.

We aim at computing the vector xwls by means of Algo-
rithm 1. Because the matrix Q is symmetric and positive
definite, there exists 1 a full row rank matrix B such that
Q = BBT . Notice that equation (5) can be rewritten as

y = [A εB ]

[
x
w̄

]
, (6)

where ε > 0, E[w̄] = 0 and E[w̄w̄T ] = ε−2I. Because B
has full row rank, the system (6) is underdetermined, i.e.,
y ∈ Im([A εB]) and Ker([A εB]) 6= 0. Let[

x̂(ε)
ˆ̄w

]
= [A εB ]

†
y.

Notice that the system (6) can be partitioned as in (4),
and that Algorithm 1 can be used to compute the vectors
x̂(ε) and w̄. We next show how the vector x̂(ε) is related
to the minimum variance estimate xwls.

Theorem 2. (Asymptotic convergence) Consider the sys-
tem of linear equations (5). Let E[w] = 0 and E[wwT ] =
Q = QT = BBT > 0, for a full row rank matrix B. Let

C = ε(I −AA†)B,
E = I − C†C,
D = εE[I + ε2EBT (AAT )†BE]−1BT (AAT )†(I − εBC†).
Then

[A εB ]
†

=

[
A† − εA†B(C† +D)

C† +D

]
,

and

lim
ε→0+

A† − εA†B(C† +D) = (ATQ−1A)−1ATQ−1.

Throughout the paper, let x̂(ε) be the estimate of x
returned by Algorithm 1 applied to (6), and let

x̂ = lim
ε→0+

x̂(ε).

Theorem 2 guarantees that the minimum variance esti-
mate xwls coincides with the limit of x̂(ε) as ε→ 0+. When
the parameter ε is fixed, the estimate x̂(ε) differs from the
minimum variance estimate x̂wls. We next characterize the
approximation error xwls − x̂(ε).

Corollary 3. (Approximation error) Consider the system
(5), and let E[wwT ] = BBT > 0. Then

xwls − x̂(ε) = εA†BDy,

where B and D are as in Theorem 2.
1 Choose for instance B = WΛ1/2, where W is a basis of eigenvec-
tors and Λ is the corresponding diagonal matrix of the eigenvalues.



To conclude this section, we characterize the residual
y −Ax̂. This quantity plays an important role in Section
5 for the synthesis of a distributed detection algorithm.

Corollary 4. (Residual) Consider the system (5), and let
E[wwT ] = Q = QT > 0. Then 2

lim
ε→0+

‖y −Ax̂‖ ≤ ‖(I −AW )‖‖w‖,

where W = (ATQ−1A)−1ATQ−1.

4. OPTIMAL FUNCTION EVALUATION

The problem of obtaining the minimum variance estimate
of the initial state of the noisy network (1) is considered in
this section. Precisely, we exploit the hierarchic levels in
the network, and we describe a distributed procedure for
the leaders to recover the desired estimation under the
assumption that no leader has knowledge of the entire
network structure. We first introduce some notation. Let V
denote the set of agents, and let {`1, . . . , `m} ⊆ V denote
the subset of leaders. Let C`i be the output matrix associ-
ated with the leader `i, and let w`i be the corresponding
measurement noise. The composite information available
to the set of leaders can be conveniently described by
the output matrix C(`) = [CT

`1
· · · CT

`m
]T , so that the

evolution of the network with the leaders observations
becomes

x(t+ 1) = Ax(t) + v(t),

y(t) = C(`)x(t) + w(t),
(7)

where w(t)T = [w`1(t)T · · · w`m(t)T ]T , and v(t), w(t)
satisfy the assumptions (2) and (3) at all instants t. Let In
denote the identity matrix of dimension n×n, and let 0m,n

denote the zero matrix of dimension m × n. Let |V | = n,
and let |N`i | = p`i . For s ∈ Z>0, let

Os
i =


C`i
C`iA
C`iA

2

...
C`iA

s−1

 , Y s
i =


y`i(0)
y`i(1)
y`i(2)

...
y`i(s− 1)

 ,
and

F s
i =



D`i 0 · · · · · · 0

C`iB D`i

. . .
. . . 0

C`iAB C`iB
. . .

. . .
...

...
. . .

. . .
. . .

...
C`iA

s−2B C`iA
s−3B · · · C`iB D`i


,

where

B = [In 0n,p`i
· · · 0n,p`m

],

D`i = [0p`i
,n · · · 0p`i

,p`i−1
Ip`i

0p`i
,p`i+1

· · · 0p`i
,p`m

].

Finally, let

Os =


Os

1
Os

2
...
Os

m

 , Y s =


Y s
1
Y s
2
...
Y s
m

 , F s =


F s
1
F s
2
...
F s
m

 ,
2 Given a vector w and a matrix A, we denote by ‖w‖ any vector
norm, and by ‖A‖ the corresponding induced matrix norm.

Algorithm 2 Sequential state estimator (Leader `i)

Input: Os
i , F

s
i Λ1/2, yi, ε;

if i = 1 then
x̂ := 0 and K := I;

else
receive x̂ and K from leader `i−1;

end if
x̂ := x̂+K([Os

i εF s
i Λ1/2]K)†(yi − [Os

i εF s
i Λ1/2]x̂);

K := Basis(K Ker([Os
i εF s

i Λ1/2]K));
if i = m then

transmit x̂ to every leader;
return x̂;

else
transmit x̂ and K to leader `i+1;

end if

and, for t ≥ 0,

U(t) =


v(t)
w`1(t)

...

...
w`m(t)

 , Us =


U(0)
U(1)

...

...
U(s− 1)

 .
Observe that

Y s = Osx(0) + F sUs. (8)

Assume that Ker(Os) = 0, and notice that F s has full row
rank. The minimum variance estimate of x(0) according
to equation (8) is given by

x̂(0) = ((Os)TQ−1Os)−1(Os)TQ−1Y s,

where

Q = E[(F sUs)(F sUs)T ] = (F sΛ
1
2 )(Λ

1
2 (F s)T ),

and Λ = E[Us(Us)T ]. Observe that Λ is diagonal and
positive definite. We now show how Algorithm 1 can be
used to compute the minimum variance estimate of x(0).
Let ε 6= 0, and consider the system of linear equations

Y s =
[
Os εF sΛ

1
2

] [
x(0)
Ūs

]
,

where Ūs is such that Us = εΛ
1
2 Ūs, E[Ūs(Ūs)T ] = ε−2I.

Assume that an ordering of the leaders has been defined in

a way that `i ∈ N (`)
i+1 for all i ∈ {1, . . . ,m−1}. A procedure

for the leaders to estimate x(0) is in Algorithm 2.

Theorem 5. (Minimum variance estimate) Consider the
noisy network (7). Let ε > 0, and assume that each leader
knows the matrices Os

i and F s
i Λ1/2. Then Algorithm 2

returns an estimate x̂(ε) such that ‖xwls − x̂(ε)‖ = εc,
where the constant c depends on Os, F sΛ1/2, and Y s.

It should be noticed that if the parameter ε converges
to zero, then the estimate obtained with Algorithm 2
coincides with the minimum variance estimate of the
network initial state. Finally, it can be shown that a leader
based procedure, such as Algorithm 2, is numerically more
reliable with respect to classical centralized solutions.

Remark 1. (Function evaluation). The proposed method
can be effectively employed to achieve the minimum vari-
ance estimate of a linear function of the network initial
state. Indeed, suppose that the function f(x(0)) needs to
be computed by all (or a subset of) the leaders, and recall



from Luenberger (1969) that the minimum variance esti-
mate of f(x(0)) is f(x̂), where x̂ is the minimum variance
estimate of x(0). Hence, the function evaluation problem
is a direct extension of the state estimation problem.

Remark 2. (Network knowledge). The computation of the
matrices Os

i and F s
i Λ1/2, i ∈ V (`), does not require the

knowledge of the entire network model. Let a path be a
sequence of vertices, such that any two consecutive vertices
in the sequence are connected through an edge. Let the
length of a path equal the number of its edges. Let A be
the network matrix, and observe that the (i, j)-th entry of
Ak, with k ∈ Z, is nonzero if and only if there exists a path
of length k connecting the agent j to i. Let Ns

`i
⊆ V denote

the set of the neighbors connected to `i through a path of
length at most s. It can be shown that the matrix Os

i and
F s
i Λ1/2 can be computed by only knowing the sub-matrix

of A and Λ1/2 with rows and columns in Ns
`i

.

5. ANOMALY DETECTION

Because of the absence of a centralized and omniscient
entity that monitors the behavior of the network, the
system (1) is prone to malfunctions and external attacks.
It can be shown that the presence of sensor and actuator
failures, as well as of external attacks, can be modeled
by adding an unknown and unmeasurable input to the
network, e.g., see Pasqualetti et al. (2010a). We say that
the network (1) undergoes an anomaly if it is affected by
an exogenous input that steers the network along state
trajectories not belonging to (1). Precisely, the network
model in the presence of an anomaly e becomes

x(t+ 1) = Ax(t) + Ee(t) + v(t), (9)

where the matrix E is referred to as the anomaly or failure
signature. We show in this section how our estimation
procedure can be used to allow the leaders to detect
an anomaly in the network by only using local model
information. It should be noticed that the presence of the
noise v and w limit the class of detectable anomalies.

Because the failure signature is a priory unknown, the
leaders needs to detect the anomaly by means of only the
past observations. Let Y s

i,t denote the vector containing the
measurements taken by the leader `i from time t up to time
t+s−1. Analogously, let Us

t and Us
e,t contain, respectively,

the noise value and the exogenous input from time t up to
time t+ s− 1. Then, with the notation introduced in the
previous section, we have

Y s
1,t

Y s
2,t
...

Y s
m,t

 =


Os

1
Os

2
...
Os

m

x(t) +


F s
1
F s
2
...
F s
m

Us
t +


F s
1 (E)
F s
2 (E)

...
F s
m(E)

Us
e,t,

(10)

where, for i ∈ {1, . . . ,m},

F s
i (E) =



0 0 · · · · · · 0

C`iE 0
. . .

. . . 0

C`iEA C`iE
. . .

. . .
...

...
. . .

. . .
. . .

...
C`iA

s−2E C`iA
ni−1E · · · C`iE 0


.

Algorithm 3 Sequential anomaly detector (Leader `i)

Input: Os
i , εF

s
i Λ1/2, Γ;

loop
collect the measurements Y s

i,t;
execute Algorithm 2;
compute ri = ‖Y s

i,t −Os
i x̂‖∞;

if ri > Γ then
return Anomaly ;

end if
end loop

Assume that Ker(Os) = 0, and recall that the noise

covariance matrix is Q = QT = (F sΛ
1
2 )(Λ

1
2 (F s)T ).

The following condition ensures the detectability of the
anomaly from the measurements.

Theorem 6. (Detectability). Consider the network (9). Let
x̂(t) be the minimum variance estimate of x(t) according
to the measurements Y s

t . An anomaly is present if

‖Y s
t −Osx̂(t)‖ > ‖(I −OsW )‖‖Us

t ‖,
where W = ((Os)TQ−1Os)−1(Os)TQ−1.

Following Theorem 6, a procedure to detect the presence
of an anomaly in the network via distributed computation
is in Algorithm 3. Notice that the value of the threshold Γ
determines the false alarm and misdetection rate. Clearly,
if Γ ≥ ‖(I −OsW )‖‖Us

t ‖ then no false alarm is triggered,
at the expenses of the misdetection rate. By decreasing
the value of Γ the sensitivity to failures increases together
with the false alarm rate. Observe that, if the magnitude
of the noise signals is bounded by γ, then a reasonable
choice of the threshold is Γ = γ‖(I−OsW )‖∞. We present
a related example in the next section, and we leave the
case of unbounded noise, e.g., gaussian noise, as future
work. Finally, observe that the use of the infinity norm
in Algorithm 3 is also convenient for the implementation.
Indeed, once the estimation x̂(t) has been computed, the
condition ‖Y s

i,t−Os
i x̂(t)‖∞ > Γ can be checked individually

by each leader without any further communication.

6. SIMULATIONS

In this section two numerical studies are considered to
demonstrate the effectiveness of our numerical procedures.
First, following Theorem 5, we show that, as the parameter
ε decreases, the estimation of the network initial state
converges to the minimum variance estimate of the initial
state. Second, we demonstrate the performance of our
Anomaly detection procedure. Let G denote the graph of
Fig. 1, and construct the matrix A = [aij ] as follows:

(i) if the agents i and j are connected, then set the value
of aij = aji according to an uniform distribution 3 in
the interval (0, 1), and set aij = aji = 0 otherwise;

(ii) normalize the rows of A such that ‖A‖∞ = 1.

Let V (`) denote the leader set, and let C(`) be the com-
posite observation matrix. The evolution of the network
is described by (7), where the random vectors v(t) and
w(t) satisfy the assumptions (2) and (3) at all instants

3 If the entries of A are chosen uniformly and independently in the
interval (0, 1), then the pair (A,Cj) is observable with probability
one for every output matrix Cj .
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Fig. 1. A grid network with 121 agents. The 9 leaders and
the leaders graph are in red. The misbehaving agent
is in blue (square). The shaded region denotes the
subnetwork known to the leader `1.
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Fig. 2. The estimation error ‖x̂(ε)− xwls‖2 decreases to 0
with the parameter ε.

t, and their entries are uniformly distributed in the in-
terval [−γ, γ]. For the simulation we let γ = 0.15 and,
consequently, σ2

v = σ2
w = γ2/12. As in Section 4, we have

Y s = Osx(0) + F sUs, and Q = E[(F sUs)(F sUs)T ] =
(F sΛ1/2)(Λ1/2(F s)T ). The estimation error ‖x̂(ε)−xwls‖2
is plotted in Fig. 2 as a function of the parameter ε.

We consider now the problem of detecting an anomaly
in the system. Suppose that the blue square agent in
Fig. 1 injects the signal e(t) = ē + ew(t), for t ≥ t̄,
into the network, where ē is a positive constant, and
E[ew(t)] = 0, E[ew(t)ew(τ)T ] = σ2

eδ(t − τ). For the
simulation, we let ē = 0.4, σ2

e = 0.16, and t̄ = 15, and we
assume that the anomaly signature E coincides with the
vector of the canonical basis corresponding to the index
of the misbehaving agent in the network. The residual
functions computed by the leaders are in Fig. 3, where the
threshold Γ is approximately 0.1. Notice that the behavior
of the residual functions can also be used to locate the
misbehaving agent in the network. Indeed, because the
residuals computed by the leaders `2, . . . , `9 do not cross
the detection threshold, the misbehaving agent is more
likely to be closer to `1 and `2. This conjecture, together
with a systematic procedure to identify the misbehaving
components, is left as the subject of future research.

7. CONCLUSION

The problems of reconstructing the initial state and of
detecting anomalies in a linear network driven by process
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Fig. 3. The residual functions (continuous) and the de-
cision threshold (dashed). The anomaly is correctly
detected by the leaders `1 and `2.

and measurement noise have been considered. Finite time
algorithms that only assume local knowledge of the net-
work model have been proposed and characterized.
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