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Design of Embedded Controllers Based on Anytime

Computing

Andrea Quagli∗, Daniele Fontanelli†, Luca Greco∗∗, Luigi Palopoli† and Antonio Bicchi∗

Abstract—In this paper we present a methodology for design-
ing embedded controllers based on the so–called any-time control
paradigm. A control law is split into a sequence of subroutine
calls, each one fulfilling a control goal and refining the result
produced by the previous one. We propose a design methodology
to define a feedback controller structured in accordance with
this paradigm and show how a switching policy of selecting the
controller subroutines can be designed that provides stability
guarantees for the closed loop system. The cornerstone of this
construction is a stochastic model describing the probability of
executing, in each activation of the controller, the different sub-
routines. We show how this model can be constructed for realistic
real-time task sets and provide an experimental validation of the
approach.

Index Terms—Embedded systems, Real–time control, Anytime
control.

I. INTRODUCTION

A trend that is widely recognised in modern embedded

control development is toward a very high utilisation of

hardware resources. Indeed, the increasing demand of control

functionalities even in low price product lines cannot be

satisfied by a proliferation of dedicated electronic devices,

both for cost reasons and for the unacceptable engineering

complexity of the resulting system. The price to pay for

resource sharing is a reduced predictability of the timing

behaviour: an application receives a different availability of

resources and suffer time-varying delays depending on the

“interference” suffered from other applications.

In this new context, classical digital control design method-

ologies suffer important limitations. Indeed, they require that

the computation of the control task always terminate within a

deadline. With this approach, it is imperative for the designer

to consider the worst case situation for the task computation

times. Hence, the designer is forced to conservative choices

in terms of computation complexity. The evident drawback is

that the control designer cannot capitalise on the additional

availability of resources when the system workload is low. In
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modern control systems strong fluctuations in the workload

are not infrequent. As an example, suppose, in an automotive

application, that a Electronic Computing Unit (ECU) is used

both for spark ignition control and for other control appli-

cations. The spark ignition task is activated by an “angular”

event (i.e., the piston reaching the dead-end). Therefore, it

generates a workload increasing with the rotation per minute

(RPM) of the engine. Designing the remaining applications

for the worst case, is in this case tantamount to assuming

that the engine always rotates at the maximum speed, which

is clearly an infrequent occurrence. Even more evident are

the workload fluctuations generated by control tasks using

multimedia data (e.g., visual servoing). In this case, depending

on the complexity of the scene and on the presence of

obstructions, the computation time required to track a feature

of interest in the image plane can change significantly.

While empirical approaches can be used to fine-tune the

application operating with the prototypical implementations,

the result rarely meets the robustness and portability require-

ments posed by modern industry. Indeed, the empirical fine-

tuning is made only with a specific architecture and it is not

guaranteed that the specific workload conditions considered

in the prototype tests will be the ones actually encountered

in the production system. In contrast, we advocate a theoret-

ically sound solution to this problem based on the notion of

anytime control. By using this paradigm, the computation of

the control law is split into a sequence of segments. Each

segment refines the result of the previous one catering for

increasingly aggressive control goals. The execution of the first

segment is mandatory, while the subsequent ones are executed

only when there is a sufficient availability of computation

time. The theoretical foundation of this approach has been

laid in our previous work [1], [2]. In these papers, we have

shown how to synthesise a switching policy that guarantees

closed loop stability (more precisely “almost sure stability”)

of the controlled system given the anytime controller and the

probability distributions of the availability of CPU time for

each of its executions (jobs).

The purpose of this paper is to show the practical applicabil-

ity of this idea in the context of realistic control applications.

To achieve this result, we offer two key contributions. The first

one is a design procedure that enables one to synthesise an

anytime control algorithm. This critical design step is carried

out starting from a list of increasingly aggressive goals on the

desired performance and simultaneously generating a sequence

of functional blocks that attain each of them when executed

iteratively. In essence, a block designed for a goal in the

hierarchy builds on top of the result obtained by the previous
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blocks (rather than starting the computation from scratch). The

second contribution is the construction of a stochastic model

representing the availability of computing time. This model is

based on a discrete–time Markov Chain that accounts for the

interference that a control task can suffer from stochastically

changing the execution time of higher priority tasks. Similar

models have been proposed in the past for soft real-time

systems. In our context, this model is used to estimate the

availability of time for each execution of the control task. In

some sense, it can be thought of as a “contract” between the

control application and the platform, much more descriptive

of its dynamic behavior than the worst case response time.

Notably, we show how a similar model can indeed be used to

describe the workload generated by realistic task sets.

The outcome of the anytime control design and the model

of the execution platform are perfectly compliant with the

requirements of the theoretical framework constructed in the

previous work. Thereby, we are now in condition to propose a

full-fledged design procedure based on this novel paradigm,

whose most critical steps are supported by a prototypical

CAD tool suite. More precisely, the software tool takes as

an input the task set, along with the stochastic description of

the computation times, and the plant model, producing as an

output the switching policy and the embedded task code of

each controller.

The methodology has been applied to the design of the

feedback controller of a real system (a 2 DoF helicopter).

The experimental results that we report on the paper are in

good accordance with our theoretical expectations and display

a remarkable performance gain with respect to the application

of standard and conservative hard real-time approaches. These

results are consistently present in a large batch of simulations,

suggesting an interesting potential for the future application

of this technique.

II. RELATED WORK

The problem of control/scheduling co-design has raised a

strong interest in the past few years. A remarkable line of

research [3], [4] has focused on optimal parameter selection

(w.r.t. a control theoretical performance metric) for set of

periodic tasks implementing digital control loops. In all of

these pieces of work, the classical model of digital control (i.e.,

a discrete–time controller) activated with a fixed frequency is

assumed. This work presents a departure from this assumption

opening to the possibility of incremental implementations for

the controllers.

Important proposals to overcome the limitation of the

classical model, although on a different conceptual line than

the one presented in this paper, have been presented in [5],

where the authors remodulate the periods in response to an

overload condition, and in [6], where the authors present

event-triggered task models as opposed to the classical time-

triggered alternative. But, the thread of work closest to ours is

probably that related to Firm Real Time Systems (FRTSs) [7],

[8]. Since in FRTSs occasional deadline misses are allowed,

the task instances that miss their deadlines are considered

valueless and they are dropped. In a series of papers [9], [10],

Param. Description
wi i-th task in W

Ti period of wi

φi initial offset of wi

Di relative deadline of wi (Di ≤ Ti)
Ji,k k-th job of wi (k ∈ N)
ai,k activation time of Ji,k (ai,k = φi + kTi)
ci,k execution time of Ji,k

di,k absolute deadline of Ji,k (di,k = ai,k +Di)
fi,k finishing time of Ji,k

Ωi,k interference on wi in the interval [ai,k ,di,k ] from higher priority tasks

Table I
NOTATION USED FOR THE TASK SET W .

[11], [12], Lemmon and co-workers consider performance of

Networked Control Systems (NCSs) in a FRTS framework,

introduce a Markov Chain model to describe the task dropout

process, and provide a general QoS constraint. Our model

differs from the one used in the FRTSs literature because

we define our probabilities on the space of execution times

rather than on the space of deadline misses. More substantial

differences, are that we regard the scheduler characteristics

to be a given in our problem, rather than a design objective,

while the design methodology is focused on the control law

implementation.

The resulting idea of anytime algorithms is closely related

to the notion of imprecise computation [13], [14]. The char-

acteristic of anytime algorithms is to always return a result on

demand; however, the longer they are allowed to compute, the

better (e.g. more precise) the result they will return. The peri-

odic task is split in a mandatory part and one or more optional

parts. The mandatory part of the task is the only one subject

to hard execution constraints [13]. In this paper, we apply this

paradigm to control applications. The theoretical foundations

of controllers have been described in [1], where the design of

a probabilistic switching policy ensuring the “Almost Sure”

stability of the closed loop system is proposed [15], [16]. The

results in [1] and the controllers’ design constraints in [2]

build upon the assumption of a probabilistic description of

the preemptive scheme. In this paper, we flesh up this scheme

showing how it can be used to model realistic systems of real-

time tasks. As pointed out in the introduction, in this paper

we display a methodology of practical interest based on these

theoretical achievements. This paper extends and subsumes the

preliminary results on the topic presented in [17]. In particular,

the tools needed to derive the stochastic description of the

scheduler are formally provided in Section IV. An interesting

inspiration for this part of our work was offered us by the work

of Kim and co-workers [18]. The first part of the discussion

in Section IV-B on the stochastic model for the platform was

partially covered in a previous work [19]. This paper extends

and subsumes the previous results that we presented in the

ETFA Conference [17].

III. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

A. Real-time task model

We consider a set W = {w1, . . . ,wm} of real-time periodic

tasks, whose relevant parameters are given in Table I. We
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assume a RTOS implementing a fixed priority scheduler [20]

allowing the adoption of preemptive algorithms. Hence, tasks

are scheduled according to a decreasing priority order and the

execution of a job can be suspended (resumed) when a job

with higher priority becomes active (finishes).

Each task generates a stream of jobs. Job Ji,k is started at

time ai,k = φi + kTi and finishes at time fi,k; it is said to meet

the deadline if fi,k ≤ di,k and to miss it otherwise. Clearly,

Ji,k meets its deadline if Ωi,k + ci,k ≤ di,k −ai,k, Ωi,k being the

interference suffered by job Ji,k from higher priority tasks.

B. The control problem

In this setting, one of the tasks, in the set W , Task

wm, is used to control a plant described by the “nominal”

transfer function G(s). The plant is affected by an external

disturbance d(t) (Laplace transform D(s)) and by internal

additive uncertainties ∆(s). In plain terms, if u(t) is the

input function (U(s) its Laplace transform) the output of

the plant is given by Y (s) = (G(s) + ∆(s))U(s) + D(s). At

each am,k k ∈ N, the hardware takes a sample of the plant’s

output and then wm computes the control value. Using a time-

triggered computation model [21], [22], the control output is

released (with high accuracy) within a relative deadline from

the arrival of the sample(e.g., equal to the arrival of the next

sample dm,k) and is held constant until time dm,k+1 by means

of a Zero order Hold (ZoH). This way, the output jitter is

nullified.

It is then possible to compute a discrete time equivalent

G(z) of the plant using the standard conceptual tools of

digital control [23]. Likewise we will use the discrete time

counterparts for the disturbance (D(z)) and for the plant

uncertainties (∆(z)). The Z-transform of the sampled output

of the system is given by:

Y (z) = (G(z)+ ∆(z))U(z)+ D(z). (1)

For the purposes of control design, the fixed delay introduced

by the time-triggered model can be accounted for inside G(z).
The closed loop evolution of the system is given by:

Y (z) =
C(z)G̃(z)

1 +C(z)G̃(z)
R(z)+

D(z)

1 +C(z)G̃(z)
, (2)

where G̃(z) = G(z)+∆(z) and C(z) represents the Z-transform

of the control algorithm.

In the control literature [23], [24] it is customary to translate

the practical control problem in a set of goals or objectives to

be achieved. Each of these goals catches a specific desired per-

formance for the controlled system. The first essential require-

ment, instrumental to any other goal in control engineering, is

the stability. Dealing with linear systems, asymptotic stability

is commonly called for, as it ensures that the closed loop

system reacts to a perturbation of the equilibrium by remaining

in a neighborhood of the equilibrium point and by eventually

restoring it. Performance specifications are given by control

engineers both in time and frequency domain. Examples of

time domain specifications are those related to the transient

and steady state response of the system to a step input:

rise time, settling time, overshoot, undershoot, steady state

Figure 1. Our methodology to produce the real-time code for anytime
controllers.

error, etc. They are particularly useful whenever the typical

input signal is constant or slowly varying for long periods.

More complex control objectives can be specified in terms

of frequency shaping of meaningful transfer functions (such

as for instance the sensitivity and complementary sensitivity

transfer functions) or in terms of gain and phase margins.

Requirements typically specified in the frequency domain are

disturbance rejection and robust stability. With reference to the

transfer function (2), disturbance rejection aims at attenuating

the effect of the term
D(z)

1+C(z)G̃(z)
, while robust stability aims at

guaranteeing asymptotic stability against parametric variations

and model uncertainties (modelled by the term ∆(z)). Another

important requirement is represented by the simplicity of the

controller. Indeed, it is often desirable to keep the controller’s

order as much low as possible.

A classical control design try to build an overall controller

to match the entire set of goals, whilst in the anytime approach

we pursue an incremental design. A set of controllers with in-

creasing complexity has to be designed to ensure progressively

the desired performance. A typical set of control goals for the

system (2) is as follows:

1) Closed loop asymptotic stability of the nominal system,

2) Rejection of the disturbance term D(z),
3) Robust stability w.r.t. model uncertainties ∆(z).

The computing time and the complexity of the controllers

achieving the previous goals increase with the goal (Goal 3

being by large the most demanding).

C. Problem Formulation

In the setting described above, the time available for the

computation of the control value, for the k-th job execution,

is given by Dm − Ωm,k. The classical (worst case) way of

designing the controller is to choose a control law C(z) such as

it can be accommodated in the time interval Dm −maxk Ωm,k.

This way, the number of deadline misses is null ([25]). To

meet this constraint, control algorithms have to be simplified

to be computable within the allotted time.

In this paper, we take a different approach. Assuming that,

for all tasks w j ,
{

c j,k

}
k∈N

is a stochastic process with known

stochastic characterisation, the available time Dm−
{

Ωm,k

}
k∈N
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for the task wm m > j, is a known stochastic process in its

turn. As long as the RTOS notifies the task when its available

time has been exhausted, we can build an anytime controller

as follows: 1) the execution of a controller ensuring the

attainment of the first goal (stability) has to be guaranteed in

the worst case before the relative deadline chosen to release the

output, 2) in case the available time is sufficient we can execute

additional pieces of computation that attain progressively the

other performance goals (e.g. disturbance rejection and robust

stability).

To make this approach viable we propose a development

process organised in the following steps (see Figure 1): a)

Provide a characterisation for the execution environment of

wm, tightly related to the stochastic process Dm −
{

Ωm,k

}
k∈N

,

b) Design a controller such that a set of increasing control

goals are incrementally obtained by executing different “sub-

routines” c) Choose a switching policy for the subroutines

such that, given the process Dm −
{

Ωm,k

}
k∈N

, global stability

of the resulting system is guaranteed in a stochastic sense.

The last step deserves some attention. Since we switch

between different controllers, the resulting closed loop system

is a (linear) switching system ([26]). It is well known that arbi-

trary switching between linear asymptotically stable systems

can likely produce unstable dynamics (see [27]). Therefore,

we need a systematic way to avoid the switching sequences

that could determine this anomaly. In the rest of the paper, we

will separately show how each of these steps is performed.

IV. STOCHASTIC DESCRIPTION OF THE PLATFORM

The anytime control task wm is coded as a sequence of n

different subroutines. Each of the n subroutines is the software

implementation of a discrete–time dynamic controller, whose

state space representation is denoted as Γp for p = 1, . . . ,n.

According to the theoretical results presented in our previ-

ous work [1], a stabilising switching policy, choosing among

the various Γp, can be synthesised if, 1) for every job we know

the distribution for the probability of completing the different

subroutines, 2) this distribution eventually reaches a steady

state.

In the rest of the section we will show how to construct this

information. Our procedure is in two steps and it assumes that

the anytime control task wm share the CPU with a number of

higher priority periodic tasks. The first step takes as input the

probability mass functions (PMFs) of the higher priority tasks.

Since these tasks can preempt the execution of the wm, they

generate an interference Ωm,k on its execution. The goal of this

step is to find a stochastic model for the interference. More

specifically, we are interested in the steady state distribution

of the available computation time c̄
m, k̃

.

The second step starts from this model and produces a

different discrete valued stochastic model describing the prob-

ability of executing each subroutine, the information required

by the anytime control theory. Essential is the ability to show

that this stochastic process reaches an invariant distribution.

A. Step 1: A Stochastic Model for the Interference

In this section, we will provide a time–varying description

of the stochastic process
{

Ωm,k

}
k∈N

and show that it eventu-

ally reaches a steady state.

a) The probability distributions of the execution time:

The starting point of our procedure is a model of the stochastic

process {c j,k} describing the execution time of any task w j

with a higher priority than wm. This process takes values in the

discrete set C j , {0, 1, . . . , l j}. We have adopted a normalised

notation whereby c j,k = h, h ∈ N means that the execution

time of w j in the kth period is h∆T , where the ∆T constant is

the time granularity of the CPU (related to the clock period).

Since in a hard real-time setting relative deadlines have to be

greater than the worst case execution time, the execution time

is upper bounded by l j.

The simplest situation is one for which the process {c j,k} is

independent and identically distributed (i.i.d). In this case the

PMF of the process is a time–invariant function g j defined

as g j(·) : C j → [0,1], where g j(h) represents the probability

Pr{c j,k = h} that the execution time in the kth job of task w j

is exactly h.

In this paper, we consider a more general model: each task

w j can have r j different execution modes, and each mode is

associated with a discrete random variable c
q
j modelling the

execution time of w j in mode q ∈I j , {1, . . . ,r j}. We denote

with g j,q the PMF related to c
q
j . For example, if the task w j

is allowed to skip some executions, there exists a q ∈ I j s.t.

g j,q(0) = Pr{c
q
j = 0} = 1.

The mode switches are due to asynchronous events but, if

they take place during a job, their execution is deferred to

the end of the job. We assume that such events are triggered

by a random process described by a Finite-State discrete-time

Homogeneous Irreducible Aperiodic Markov Chain (FSHIA–

MC) η j(k), taking values in C j , with transition matrix S j =

(s j
pq)l j×l j

, s
j
pq , Pr{η j(k+1) = q | η j(k) = p}, and with initial

probability measure πη j
(0) = [π j

1(0), . . . , π
j

r j (k)].
In such a model, the PMF associated with the random

variable c j,k (execution time of w j in the k-th period) is repre-

sented by the time dependent function g j(·, ·) : N×C j → [0,1],
where g j(k,a) represents the probability Pr{c j,k = a}. Using

the Bayes Theorem we can write ∀a ∈ C j

g j(k,a) =
r j

∑
q=1

π j
q(k)g j,q(a).

Due to the fact that g j(·, ·) assumes finitely many val-

ues, we can compactly write it as a vector g j(k) =
[g j(k,0), . . . ,g j(k, l j)]. Collecting all g j,q(a) ∀q ∈ I j and

∀a ∈ C j in the stochastic matrix

G j =




g j,1(0) · · · g j,1(l j)
...

...

g j,r j
(0) · · · g j,r j

(l j)


 (3)

allows us to write

g j(k) = πη j
(k)G j. (4)

Hence, g j(k) is the probability distribution associated with the

stochastic discrete-time process
{

c j,k

}
k∈N

.

Motivational example The Markov model proposed above

has very strong industrial motivations. For instance, in the
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automotive domain, the spark ignition controller task changes

its computation time with respect to the drive shaft angular

event. This task, as well as the active suspensions controller,

the Electronic Stability Program (EPS) or the Traction Control

System (TCS), are all related to the driving style. In the

literature, it is customary to model the behaviour of a driver

by using a hidden Markov Model, where each state represents

a driving mode (e.g., constant speed, accelerations, neutral).

The observations of the behaviour of each driver can in this

case be fed into a hidden Markov Model estimator. The DTMC

describing the mode changes for the control tasks is then easily

obtained.
b) Interference generated by a single task: Let us now

consider the problem of computing the interference experi-

enced by the anytime control task wm due to a higher priority

task w j, with j < m. For the sake of simplicity, we make two

assumptions: 1) the two tasks do not have any activation offset

(i.e., the first job starts at 0 for both), 2) the period of wm is

an integer multiple of the period of w j: Tm = h jTj.
Each job of task wm contains h j activations of w j. The

amount of interference suffered by the job then depends on the

sequence of operating modes for each job of w j . A probability

distribution for the interference can then be found merging two

different pieces of information: the distribution that we get for

a specific sequence of modes and the probability associated

with the different sequences of modes.
Interference for a specific sequence of modes. Consider the

k̃th job of the task wm. Let p̃ = (p1, p2, . . . , ph j
) represents

the sequence of modes associated to w j during the k̃th job.

The interference of w j is then given by the random variable

Ω
m, k̃

= ∑
h j

k=1 c
pk

j,(k̃−1)h+k−1
. Due to the independence of each

c
q

j,k ∀q ∈ I j for fixed j ∈ {1, . . . ,m−1} and k ∈ N, we have

that the PMF associated to the sequence of modes p̃ is given by

the convolution of all the PMFs of the modes in the sequence:

g j, p̃ = g j,p1
∗ g j,p2

∗ · · · ∗g j,ph j
, (5)

defined in the set C̃ j , C
h j

j , i.e., the set of all the sequences

of h j computation times.
Probability distributions for mode sequences. Each se-

quence of modes p̃ is an element of the set Ĩ j = I j × . . .×I j

and can be associated with a possible state of a lifted MC

obtained from the MC that describes the mode transitions.

Strictly speaking, each state of the lifted MC is obtained by

collecting h j samples of the states of η j(k).
A simple example can clarify this idea. Suppose that task

w j has period 1, that task wm has period 2 and that the

operating modes of w j are 1 and 2. Based on the notation

introduced above, the transition from mode p to mode q of the

FSHIA–MC η j(k) is associated with a probability s
j
p,q. The

state space of the lifted Markov Chain is, in this example,

given by {(1,1),(1,2),(2,1),(2,2)}. Suppose we want to

compute the transition probability between the sequence (1,2)
and the sequence (1,1). By applying the Markov property,

this probability is simply the one associated with the two

transitions 2 → 1 and 1 → 2; therefore, it is given by s
j
2,1s

j
1,1.

In more general terms, for the lifted MC the state at

step k̃ is given by η̃ j(k̃) =
[
η j(k̃h j), · · · ,η j(k̃h j + h j −1)

]
.

The cardinality of the state space is obviously given by

(r j)
h j . The transition matrix can be found as follows. Let

p̃ = (p1, p2, . . . , ph j
) ∈ Ĩ j and q̃ = (q1,q2, . . . ,qh j

) ∈ Ĩ j, the

transition matrix S̃ j has elements s̃
j

p̃q̃
, Pr{η̃ j(k̃ + 1) = q̃ |

η̃ j(k̃) = p̃} given by s̃
j

p̃q̃
= s

j
ph j

q1 ∏
h j−1

l=1 s
j
qlql+1

.

An important observation to make is that since the original

MC (the one describing the mode changes) is a FSHIA–MC

it reaches a steady state; hence each mode has a invariant

probability distribution (i.p.d). This property is inherited by

the lifted MC (which in fact is a different description of the

same process). Therefore the lifted MC has an i.p.d. whose

p̃-th element is given by π̃
j

p̃ = ∏
h j−1

l=1 s
j
pl pl+1

π j
p1

.

Computation of the PMF of the interference. The two

results displayed above can be merged exploiting the theorem

of total probability. In plain words, the probability that the

interference is equal to a specific value is given by the

sum of the probabilities that this event occurs for a specific

sequence of modes for task w j weighted by probability that

this sequence takes place:

Pr{Ωm,k = a} = ∑
p̃∈I j

Pr{Ωm,k = a|p̃}π̃
j

p̃.

Recalling the vector notation (4), we can write the complete

PMF for c
j,̃k

as follows

g̃ j(k̃) = π̃η j
(k̃)G̃ j, (6)

where π̃η j
(k̃) is the probability distribution of the lifted

FSHIA–MC η̃ j(k̃) and G̃ j = G j ⊗ ·· ·⊗G j (h j times), where

⊗ represents the Kronecker product (see [28]). Due to the

use of the Kronecker product, the vector g̃ j(k̃) in (6) has

(l j)
h j elements. However, since we are assuming that the

mandatory part of the anytime control task is schedulable,

the interference can be no larger than Tm. Therefore, only

the first lmax , Tm/∆T elements can be not null. To get

ride of the null elements, we can truncate the vector to its

first lmax elements by right multiplying g̃ j(k̃) for the matrix

Ñ =

[
Ilmax×lmax , 0

lmax×
(
(l j)

h j−lmax

)
]T

.

The probability distribution of the available computation

time c̄
m, k̃

of the control task wm in the k̃-th period, is simply

obtained by g̃ j(k̃) recalling that c̄
m, k̃

= Dm −Ω
m, k̃

and that, in

the case of only one higher priority task, Ω
m, k̃

= c
j,̃k

. Indeed,

it will amount only to flipping the truncated vector by using a

permutation matrix M̃, which is a lmax × lmax matrix with null

entries except for the antidiagonal of 1’s. Finally, in the case

of a unique higher priority task w j, we can write

πc̄m(k̃) = π̃η j
(k̃)G̃ jÑM̃.

c) Multiple higher priority tasks: A straightforward gen-

eralization of this result is derived for more than one higher

priority task. We want to write the probability distribution

πΩm(k) of the total interference Ωm,k on the control task wm

exerted in the k-th period by tasks w j having higher priorities.

Due to the independence of each FSHIA–MC η̃ j(k̃) and each
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c
p̃
j,k ∀ j ∈ {1, . . . ,m−1}, ∀p̃ ∈ Ĩ j for k̃ j ∈ N, it can be written

as follows

πΩm(k) =
m−1⊗

α=1

g̃α(k̃α) =

(
m−1⊗

α=1

π̃ηα (k̃α)

)(
m−1⊗

α=1

G̃α

)
, (7)

where we used (6) and the mixed product rule for Kronecker

product. A deeper insights in the previous relation is achieved

if one recognizes that
⊗m−1

α=1 π̃ηα (k̃α ) is the probability dis-

tribution of the FSHIA–MC ρ(k) describing all the mode

changes occurring in the period Tm to the processes with higher

priority than the process wm. Again due to the independence

of each FSHIA–MC η̃ j(k̃α), the transition matrix R of ρ(k)

is simply given by R =
⊗m−1

α=1 S̃α . The use of the Kronecker

product makes the vector πΩm(k) in (7) have ∏m−1
α=1 (lα)hα

elements. Since the schedulability of the mandatory part

requires that the first lmax be not null, we can define (as in

the case of a single task) a truncation matrix N and flipping

matrix M of suitable dimension to write

πc̄m(k) = πΩm(k)NM = πρ(k)

(
i−1⊗

α=1

G̃α

)
NM. (8)

It can be easily verified that, being the time varying dis-

tribution πc̄m(k) linearly related to πΩm(k), it converges to a

unique invariant distribution since ρ(k) is a FSHIA–MC.

B. Step 2: Probability of execution for the subroutines

As we discussed above, in our model, the available com-

putation time c̄m,k is generated by a stochastic process with

time-varying distribution. Since this vector takes finitely many

values, we can compactly write it as the vector πc̄m(k) =
[πc̄0

m
(k), · · · ,π

c̄
lm
m

(k)].

The value of c̄m,k for the kth job of the control task is clearly

unknown before its execution: the subroutines are sequentially

executed until the deadline expires. Hence, the computation of

Γi cannot start until the computation of Γi−1 has terminated.

Let us define cm,k,p as the “computation time required by the k-

th job of the control task wm to execute the first p subroutines”.

The sequence {cm,k,p}k∈N is assumed an independent and

identically distributed (i.i.d.) stochastic process taking values

in Cm. Its (time invariant) PMF is given, in vector notation, by

πcp = [πc1
p
, · · · ,π

c
lm
p

], where πc
q
p
, Pr

{
cm,k,p = q

}
, 0≤ πc

q
p
≤ 1

and ∑
lm
q=0 πc

q
p
= 1. Notice that for each subroutine of task wm,

a vector of probabilities πcp is needed.

We can now define the scheduler stochastic process

{τk}k∈N
, taking values in the discrete set Lτ , {1, · · · ,n}. In

this setting, τk = p means that in the kth job the subroutines

up to Γp can be executed but Γp+1 can not. Since τk ≥ 1 the

execution of the mandatory part is always guaranteed.

As shown in our previous work [19], defining the cumulative

distribution of cm,k,p as κcm,p =
[
πc1

p
,πc1

p
+ πc2

p
, · · · ,∑

lm
q=1 πc

q
p

]
,

we can write the relation between the distributions of the

stochastic processes c̄m,k and τ as follows:

πτ(k) = πc̄m(k)L, (9)

where

L =




κcm,1 −κcm,2

...

κcm,n−1
−κcm,n

κcm,n




T

is a stochastic matrix. Relation (9) expresses the probability

distribution of completion of each different subroutine as a

linear function of the probability distribution of the avail-

able time for the execution of the control task. Therefore,

if πc̄m(k) eventually converges to a steady state (invariant)

distribution regardless of the initial condition πc̄m(0) (i.e.

π c̄m , limk→∞ πc̄m(k)), then πτ(k) converges as well. If we

assume, without loss of generality, that lm = lmax, then the

distribution in (8) is exactly the one needed in (9) for building

πτ(k). Hence, the machinery of anytime control can soundly

be applied.

C. Example

Consider an embedded platform with a real-time operating

system (RTOS) that uses the Rate Monotonic scheduling. Let

w1, w2 and w3 be the tasks with higher priority than the

control task w4. In order to have the best exploitation of the

platform computational resources, we assume a task set with

harmonic periods. More in depth, T1 = 125∆T , T2 = 250∆T ,

T3 = 500∆T and TH = T4 = 1000∆T , where ∆T = 1 µs.

Assume that w1 and w2 have a number of execution modes

r1 = r2 = 2, governed by two FSHIA-MCs, whose transition

matrices are respectively

S1 =

[
0.25 0.75

0.3 0.7

]
and S2 =

[
0.4 0.6
0.35 0.65

]
.

The task w3 has, instead, only one mode of execution.

Since the tasks are always active in the considered time

window, Ci , {1, · · · , li}, ∀i = 1, · · · ,4. The PMFs gi, j of the

workload tasks differ from zero only in the subset C ⊂ Ci,

∀i = 1, · · · ,3, with C , {10, · · · ,70}. The PMFs values for

the three tasks are summarized in Table II.

On the other hand, let the control task w4 be implemented

by three subroutines. The execution time PMFs are considered

to be Kronecker delta centered respectively at 90∆T for Γ1,

280∆T for Γ1 and Γ2 and 480∆T up to Γ3. The assumption is

not infrequent for a task implementing a linear controller, since

very often there are no code branches and the computation

only accounts for matrices multiplications and vector sums.

Notice that the task set W of this example is schedulable

under Rate Monotonic considering only the first subroutine

Γ1 of w4. In plain words, the platform will always execute

Γ1, hence a control input to the plant is always produced. By

Equation (8), we have that the stationary distribution of the

scheduler is given by πτ = [0.0143, 0.7471, 0.2385].

V. ANYTIME CONTROLLER DESIGN

The first step towards the implementation of Anytime

control on a real RTOS is the development of an automatic

procedure to design controllers suitable to Anytime approach.
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PMF c
q
j

10 15 20 25 30 35 40 45 50 55 60 65 70

g1,1 0 0 0.3 0 0.31 0 0 0.17 0.22 0 0 0 0
g1,2 0 0 0 0 0 0 0.61 0 0 0.03 0.36 0 0
g2,1 0 0 0 0 0 0 0.46 0 0.23 0 0.31 0 0
g2,2 0.57 0 0.01 0 0 0 0 0 0 0 0 0 0.42
g3,1 0.56 0 0.01 0 0 0 0 0 0.01 0 0.42 0 0

Table II
PMFS FOR THE TASK SET W IN SECTION IV-C.

The design problem for anytime controllers is to obtain a

family of controllers which, when executed under the con-

straints dictated by the schedulability conditions, exhibit an

overall performance which exceeds that of the conservative

worst-case (non-switching) controller.

It should be observed that designing anytime controllers is

a much more complex problem than designing other anytime

algorithms, such as e.g. anytime filters, because controllers

interact in feedback with a dynamic system, thus giving raise

to stability problems.

The main guidelines of our approach to the design of

anytime controllers can be summarized as follows.

• Switched System Performance: stability and performance

of the switched system must be addressed.

• Hierarchical Design: controllers must be ordered in a

hierarchy of increasing performance;

• Practicality: implementation of both the control and the

scheduling algorithms must be efficient;

• Modularity: computation of more complex controllers

should exploit computations of the simpler ones (recom-

mended);

Let the closed-loop system Σi obtained by connecting the

i–th controller Γi(z) with the plant G(z) be described by the

state-space dynamics xk+1 = Âixk. It can be safely assumed

that each of the n ensuing closed loop systems, individu-

ally considered, is asymptotically stable (i.e., Âi is a Schur

matrix). However, if the execution of different controllers at

different times is imposed (e.g. by schedulability constraints

as described in Section IV) the resulting Jump Linear System

(JLS) may well result in an overall unstable behavior ([26]).

In order to prevent harmful switches between controllers,

one can design a switching policy that selects which controller

should be executed in the next period of the control task.

More precisely, a switching policy is defined as a map s :

N → Lτ , k 7→ s(k), and determines an upper bound to the

index i of the controller to be executed at time k. In other

terms, for the kth period Tm, the system starts computing the

controller algorithm until it can provide the output of Γs(k),

unless the computational resources are not sufficient. In such

a case, a preemption event occurs forcing the control task wm

to provide only the output of Γτ(k). By applying a switching

policy s to the set of controllers Γi, i ∈ Lτ , a Markov JLS is

generated. The set of all the possible switching policies ranges

from the most conservative one s(k)≡ 1, i.e. forcing always the

execution of the simplest controller Γ1 of the mandatory part,

to the most aggressive one s(k) ≡ n, which leads to providing

Γτ for all k. While the conservative policy always generates

a stable system (with poor performance), the aggressive may

generate an unstable system.

In our present approach, the switching policy aims at

ensuring stability in the stochastic meaning of “Almost Sure”

(AS) Stability [15]. In [19] a linear program is presented that,

given a set of controllers and a stochastic description of the

available computation time, produces a stochastic switching

policy σ which guarantees AS stability.

With respect to that work, in this section we consider a

more general, and very practically relevant problem of jointly

designing the controllers and the switching policy.

The general problem of anytime controller design, in our

framework, can be put in these terms:

Problem 1:

Given

A1 a plant G(z);
A2 an invariant probability distribution πcm describing

the available computation time cm (cf. sec. IV),

A3 a set of performance requirements Pi, i = 1,2, . . . ,n,

prioritized such that Pi ⇒ Pi−1, ∀i;

find

B1 a set of controllers Γi, i = 1,2, . . . ,n;

B2 an invariant probability distribution πσ describing

the switching policy,

such that

C1 performance is maximized,

under the constraint that

D1 the switched system is stable.

Points (A1) and (A2) above have been discussed previously.

Typical performance requirements (A3) for Problem 1 are

e.g. closed-loop asymptotic stability, steady-state error, rise

and settling time, overshoot and undershoot. Alternatively,

performance can be specified using quadratic index costs

(LQG), and/or in the frequency domain by requiring certain

stability margins, or a given H∞ norm of the complementary

sensitivity function.

The unknown controllers in point (B1) can be parameterized

in several different ways. The practicality guideline on the

controller implementation however excludes useful but compu-

tationally expensive techniques such as Youla parameterization

of stabilizing controllers. We therefore recur to a minimal

representation of controllers in terms of their transfer function

coefficients. As a consequence of the hierarchical design

guideline, the order of the Γi controller is greater than the

order of Γi−1. The modularity guideline can be implemented

by choosing a parallel structure for the controllers, i.e. Γi:

Γ1 , C1 and Γi , ∑i
j=1 C j.
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Based on the hypothesis that controllers are hierarchically

ordered by their closed-loop performance (i.e., use of con-

troller Γi provides better results than Γ j, j < i) a natural

“Quality of Control” metric for point (C1) can be simply given

as

J(πd) =
n

∑
i=1

d2
i πdi

, (10)

i.e. the second moment of a random variable d ∈ {d1, . . . ,dn},

where di is the performance index associated with Γi, 0 <
di < d j, i < j, associated with the i.p.d. πd describing the

probability of controller Γi to be executed under the switching

policy above.

Finally, the crucial condition (D1) can be verified through

the sufficient condition for AS-stability (cf. [15]) that there

exist a matrix norm ‖ · ‖p, such that

∏
i

‖Âi‖
πdi
p < 1. (11)

Notice that this inequality does not specify any particular p–

norm, hence 0 < p ≤ ∞ should be considered as a further vari-

able of the optimization problem. p–norm can be efficiently

computed by means of the algorithm presented in [29].

Problem 1 is a complex nonlinear constrained optimization

problem, whose numerical solution is greatly simplified by the

Lemma below.

Lemma 1: For a plant G(z) and a set of controllers Γi,

i = 1,2, . . . ,n, an AS-stabilizing switching policy exists for

the scheduler i.p.d. πτ = πcmL if the following condition is

satisfied

min{πτ Mc} < 0 (12)

where (Mc)i j = ln
(∥∥∥Âmin(i, j)

∥∥∥
)

.

As a consequence, the design problem can be subdivided

in two steps: I) solve the optimization problem obtained from

Problem 1 by removing the variables (B2) and replacing (11)

with (12) for (D1); II) once a set of controllers Γi and a value

of the norm index p is obtained, apply the linear program

in [19] to obtain the switching function.

VI. A REAL SYSTEM: SIMULATION AND EXPERIMENT

In this section we report the application of our methodology

to a real system. After describing the model of the system, we

will show how the control design is carried out. Then, we will

provide evidence of the effectiveness of the approach both in

simulations and in the experiments. The simulation of the JLS

resulting from the closed loop connection has been carried

out using TrueTime [30], a tool for co-simulation of a system

and real-time embedded controllers. For the implementation,

we used a prototyping platform endowed with a real-time

operating system (RTOS) that features real-time scheduling

based on fixed priorities.

A. The system

The system is a 2 DOF helicopter model (see Figure 2),

consisting of a rotating base linked to a rod having length 2l.

Two fan actuators, producing forces F1 and F2, are installed

(A)

(B)

Figure 2. 2 DOF helicopter model. A) schematic diagram , B) picture of
the system

Name Description Value
m1 mass 0.110 kg
m2 mass 0.090 kg
l rod half length 0.2 m

cα friction coefficient on α 0.01 kg s−1

cβ friction coefficient on β 0.01 kg s−1

J1 complete moment of inertia on x 0.00463 kg m2

Jy moment of inertia on y 0.00023 kg m2

Jz moment of inertia on z 0.00364 kg m2

Ib base axial moment of inertia 0.00023 kg m2

Table III
NUMERIC VALUES OF THE HELICOPTER CONSTANTS

at the two ends of the rod. We name the pitch angle α and

the yaw angle β .

The system can be described by the following equations:

α̈ = −
J2

J1
β̇ 2 sinα cosα −

cα

J1
α̇ −

l

J1
F1 +

(m2 −m1)lg

J1
cosα

β̈ = −
2J2

J3(α)
α̇β̇ sinα cosα −

cβ

J3(α)
β̇ +

l cosα

J3(α)
F2,

where J1 = Jx + (m1 + m2)l
2, J2 = Jy − Jz − (m1 + m2)l

2,

J3(α) = Jy sin2 α +
(
Jz +(m1 + m2)l

2
)

cos2 α + Iβ .

Numeric values for the helicopter constants are reported in

Table III. Linearizing the system around the point ᾱ = β̄ =
0 rad with F̄1 = (m2 −m1)g and discretizing the continuous-

time model with a sample time of 1 ms, we obtained a

diagonal discrete-time transfer function matrix G(z). Hence,

the dynamics of α and β in the linearized system can

be regarded as two independent Single Input Single Output

(SISO) systems:
α(z)
F1(z) = G(z)(1,1) = −2.16 10−5(z+0.999)

(z−1)(z−0.998) and

β (z)
F2(z)

= G(z)(2,2) = 8.42 10−6(z+1)
(z−1)(z−0.999) .
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Figure 3. Output of Σ1,Σ2,Σ3 . The reference signal is a step

B. Controllers design

Due to space constraints, we present the results given by

the methodology proposed in Section V only for G(z)(1,1).
In addition to stability, the performance are specified by a

quadratic cost index and by constraints in the frequency do-

main. More in depth, the controllers produced by the method-

ology are: Γ1(z) = −0.499 for stability, C2(z) , Γ2 −C1 =

−3196.71
(z−0.56)

(z2+0.28z+0.62)
, which is based on an LQG design,

and

C3(z) = −19352.47
(z−0.81)(z+ 0.38)(z2+ 0.15z+ 0.63)

(z2 + 0.6z+ 0.143)(z2 + 0.29z+ 0.61)
,

which minimizes the H∞ norm of the t.f. Tre(z), i.e., the t.f.

between the reference r and the tracking error e. The closed

loop output to a step reference is reported in Figure 3.

Assuming the computation times of the three subrou-

tines implementing the controllers and, hence, the invari-

ant probability distribution πτ are given in the example in

Section IV-C. A solution to the steady state invariant dis-

tribution for the switching policy is then given by πσ =
[0.0342 0.9356 0.0302]. As we can see, the switching policy

most likely chooses Σ2.

C. Simulation Results

Using Matlab/Simulink TrueTime toolbox, we simulated the

execution environment with the three load tasks Load1, Load2

and Load3 having the stochastic characterization given in the

example in Section IV-C.

In Figure 4 we compare the Root Mean Square (RMS) of

the JLS induced by the Anytime control with the RMSs of

Σ1, Σ2 and Σ3. The reference signal is the same we used in

Section VI-B.

The performance of the JLS is very similar to the one

Σ2. Hence, the Markov policy behaves almost like computing

always the second controller, which is not a feasible policy

(from a hard real-time perspective) since when the interfering

tasks executes Load1, Σ2 is not schedulable.
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Figure 4. RMSs of Σ1,Σ2,Σ3 and Anytime control
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Figure 5. RMSs of Σ1,Σ2,Σ3 and Anytime control in the PXI RTOS

D. Experimental Results

The choice of a real hardware-software Real Time platform

to implement the Anytime control has been done considering

different criteria. We decided for a widespread industrial

platform, executing its proprietary RTOS and providing an

intuitive visual programming language, the PXI (PCI eXten-

sions for Instrumentation) modular instrumentation platform

from National Instruments. To monitor and to implement the

anytime controller on the PXI platform, we used LabVIEW

(Laboratory Virtual Instrumentation Engineering Workbench).

For the implementation of the paradigm, we use the task set

W introduced in Section IV-C, in which we design the three

sub-routines of the control task w4 with the real execution time

of the Γi controllers that we have found in VI-B.

We applied the resulting architecture to some test regulation

tasks. Let us illustrate one of them. The helicopter starts from

the initial position α = 0.59 rad and β = 0 rad and reaches

the horizontal position α = β = 0 rad, i.e. the operating point.

In Figure 5 we compare the Root Mean Square (RMS) of the

JLS with the RMSs of Σ1, Σ2 and Σ3.

Figure 6 depicts the measured outputs (α and β ) when

the system is perturbed by external forces in order to test

its robustness. Starting from the initial position, the heli-
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Figure 7. Excerpt of the task set scheduling
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Figure 6. Pitch (α , solid) and yaw (β , dashed) angles of the Anytime
controlled helicopter.

copter reaches the horizontal position in about 20 seconds.

At T = 23 s an external impulsive force is applied to the

system in order to perturb the pitch posture. The dynamics of

β turns out to be perturbed as well. The system returns to the

equilibrium point at T = 46 s and after a few seconds another

impulse is applied, in order to perturb the yaw posture. The

plots in Figure 6 show how the Anytime control stabilizes

the system even in presence of strong external disturbances

and the anytime regulation task fulfils the control objective in

the presence of noise in the input and output channels and of

model uncertainties (e.g., resulting from the linearization).

Using a LabVIEW toolkit (Real-Time execution Trace

toolkit), the task scheduling of the RTOS for the experiment

shown in this section could be traced. In Figure 7 we report

one hyperperiod as an example. We highlighted the three

Load task (w1, w2 and w3), the Controller task, that are

the subroutines of w4, and, for completeness, the ETS Null

Thread, the dummy process of the RTOS. For each of the

previously introduced tasks, we report in Figure 7, left, the

priority value (higher value, lower priority, except for the ETS

Null Thread) in square brackets. It is worth noting that in the

computational time of the first controller task there is some

additional time (23 µs) accounting for the input acquisition

from the helicopter sensors as well as in the third controller

task there are 26 µs that are spent in writing the outputs to the

motor drivers (hence, a little portion of the third controller is

always executed and can be considered as a deferred fragment

of the mandatory part).

The main contributions of this paper are in the direction

of providing a methodology for an automatic control design

complying with the Anytime control paradigm, and in formal-

izing a stochastic model for a particular, practically motivated,

scheduler for the interaction with the control design.

The effectiveness of the proposed approach has been proved

by both simulating the designed control tasks and the stochas-

tic scheduling policy in TrueTime, and by a real experimental

setup. The good adherence with the theoretical expectations,

as well as the evident improvement with respect to the hard

real-time setting, discloses interesting perspectives for the

application of this technique to resource constrained embedded

controllers.
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