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Abstract Recent work on the analysis of natural and robotic
hands has introduced the notion of postural synergies as a
principled organization of their complexity, based on the
physical characteristics of the hand itself. Such character-
istics include the mechanical arrangements of joints and fin-
gers, their couplings, and the low-level control reflexes, that
determine the specific way the concept of “hand” is embod-
ied in a human being or a robot. While the focus of work
done so far with postural synergies has been on motion plan-
ning for grasp acquisition, in this paper we set out to investi-
gate the role that different embodiments have on the choice
of grasping forces, and on the ultimate quality of the grasp.
Numerical results are presented showing quantitatively the
role played by different synergies (from the most fundamen-
tal to those of higher-order) in making a number of different
grasps possible. The effect of number and types of engaged
synergies on the distribution of optimal grasp forces is con-
sidered. Moreover, robustness of results is investigated with
respect to variation in uncertain parameters such as contact
and joint stiffness.
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1 Introduction

Recent advances in neuroscience research have shown that
the description of how the human hand moves during grasp-
ing is dominated by trajectories in a configuration space of
much smaller dimension than the kinematic count would
suggest. Such configuration space is sometimes referred to
as the space of postural synergies, or the eigengrasp space.

One of the explanations for human efficiency in selecting
appropriate grasps is that humans somehow unconsciously
simplify the large search space through learning and expe-
rience. In a developmental perspective, it can be conjec-
tured that learning is applied to a series of inner represen-
tations of the hand of increasing complexity, which varies
with the experience and the degree of accuracy required.
Santello et al. (1998) investigated this hypothesis by collect-
ing a large set of data containing grasping poses from sub-
jects that were asked to shape their hands in order to mime
grasps for a large set (N = 57) of familiar objects. Princi-
pal Components Analysis (PCA) of this data revealed that
the first two principal components account for more than
80% of the variance, suggesting that a very good character-
ization of the recorded data can be obtained using a much
lower-dimensional subspace of the hand DoF space. These
and similar results seem to suggest that, out of the ca. 20
DoFs of a human hand, only two or three combinations can
be used to shape the hand for basic grasps used in everyday
life. It might also be speculated that higher order synergies
can be recruited for executing more complex tasks, such as
adaptive grasp force control, fine manipulation or haptic ex-
ploration.

One first explanation of the observed inter-digit coordi-
nation could be advanced in terms of mechanical constraints
in the anatomy of the hand. More refined approaches rec-
ognize the role of peripheral and central nervous systems in
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establishing sensory-motor control synergies, as discussed,
e.g., in Mason et al. (2001) and Cheung et al. (2005). Cur-
rently, investigations in the role and origin of synergies are
being actively pursued by neuroscientists.

What the current knowledge about the neurophysiology
of human hands already suggests at this point is that the
brain uses the hand—meant as a cognitive entity for the or-
gan of the sense of active touch—not as a mere collection
of articular joints and muscles, but rather as an organized
and ordered ensemble. The organization is dictated by prin-
ciples that are embedded in the hand’s embodiment—i.e. in
its physical characteristics such as the mechanical arrange-
ments of joints and fingers, their couplings, and the low-
level control reflexes.

These ideas can be brought to use in robotics, as they sug-
gest a new and principled way of simplifying the design and
analysis of hands (as opposed to many empirical, often arbi-
trary design attempts), which has been the main roadblock
for research in artificial hands in the past (Bicchi 2000).

The application of synergy concepts has been pioneered
in robotics by Ciocarlie et al. (2007) and Brown and Asada
(2007). In Ciocarlie et al. (2007), and later on in Ciocar-
lie and Allen (2009), the idea has been exploited in the
dimensionality reduction of the search space in problems
of automated grasp synthesis, and has been applied effec-
tively to derive pre-grasp shapes for a number of complex
robotic hands. In Brown and Asada (2007), authors designed
a mechanical hand in which more or less accurate actuators
are connected to different groups of mechanically intercon-
nected joints, with a priority inspired by resemblance to pos-
tural synergies observed in human hands.

Much remains to be done to understand and exploit the
implications of the synergy approach to analysis and design
of artificial hands. For instance, the role of synergies in fine
manipulation and haptic exploration are completely unex-
plored at present. Very little is known even about all grasp-
ing phases subsequent to grasp pre-shaping and contact ac-
quisition, most notably on grasp force distribution and the
fundamental problems of form and force closure.

In this paper, we study the effect of the number and type
of engaged synergies on the distribution of optimal grasp
forces and on the ultimate quality of the grasp.

To investigate grasp force distribution problems in ba-
sic whole-hand grasps executed by a hand with a limited
number of (synergistic) DoFs, the analytical approach fol-
lowed by the majority of grasp force studies, which ab-
stract their analysis from the specific physical characteristics
of the grasping hand, is unsuitable. We therefore introduce
a novel analytical framework, which draws upon previous
work on underactuated grasps. Numerical results are pre-
sented showing quantitatively the role played by different
synergies (from the most fundamental to those of higher-
order) in making possible a number of different grasps. As

the analysis method we propose to solve force indetermina-
cies in the rigid-body system introduces a model of com-
pliance in the system, an issue may arise of how strongly
our results depend on a fundamentally uncertain and vary-
ing parameter such as compliance. To partially address this
problem, we show that our numerical results are quite robust
with respect to such uncertainties.

2 Preliminaries: Quasi-static manipulation model

2.1 Rigid multibody model

We model a cooperating manipulation system as a collec-
tion of an arbitrary number of robot “fingers” (i.e., simple
chains of links connected through revolute joints) attached
to a common base “palm”, and an object, which is in con-
tact with all or some of the links. With reference to Fig. 1
and adopting the notation in Table 1, let k be the number
of fingers, ni the number of degrees of freedom for the ith
finger, and set n = ∑k

i=1 ni as the total number of hand de-
grees of freedom (DoFs). Moreover, let q ∈ R

n be the vector
of joint angles for the whole hand, qi ∈ R

ni that for the ith
finger, and qij ∈ R the angle of the j th limb on the ith finger.

Adopting the notation introduced in Table 1, the balance
and congruence equations for the object can be respectively
written as

we = Gf, (1)

ξo = GT ξe, (2)

where G ∈ R
6×c is the grasp matrix.

Similarly, the balance and congruence equations for the
hand are, respectively,

τ = J T f, (3)

ξf = J q̇, (4)

where J ∈ R
c×n is the hand Jacobian.

Fig. 1 Schematic of whole-limb manipulation with synergies. Here,
the two-fingered hand is controlled by a single synergy “knob” σ1, and
only some of the limbs make contact with the object
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Table 1 Notation for grasp analysis with postural synergies

Notation Definition

P Palm (inertial) frame

Sij D.-H. limb frame, ith finger, j th limb

Lij Local limb frame, ith finger, j th limb

Cij Local contact frame, ith finger, j th limb

E Object frame

n Number of hand joints

q ∈ R
n Actual joint angles

qr ∈ R
n Reference joint angles

τ ∈ R
n Joint torques

s Number of postural syergies

σ ∈ R
s Synergistic displacements

η ∈ R
s Synergistic generalized forces

c Dimension of the contact force/torque vector

f Contact force/torque vector

ξf ∈ R
c Twists of the contact points on the fingers

ξo ∈ R
c Twists of the contact points on the object

u ∈ R
6 Position and orientation of the object

ξe ∈ R
6 Object twist

we ∈ R
6 Object wrench

J ∈ R
c×n Hand Jacobian matrix

S ∈ R
n×s Synergy matrix

G ∈ R
6×c Grasp matrix

For the reader’s convenience, a careful exposition of the
needed reference frames and a detailed derivation of (1)–(4)
can be found in the Appendix.

2.2 Introducing elasticity

Now, with reference to taxonomy in Prattichizzo and Trinkle
(2000), in order to handle statically-indeterminate or hyper-
static grasps, which occur when N (G) ∩ N (J T ) �= 0, we
follow Bicchi (1994), and introduce a set of virtual springs at
the interface between corresponding contact points cfij

and
coij

on the fingers and the object. These give raise to a sys-
tem of linear constitutive equations linking the components
of relative displacements δξof := δξo − δξf , that violate the
contact constraints, to the corresponding contact force

f = f0 + δf, δf = Kδξof , (5)

where f0 is the contact force in the reference configuration
δξo = δξf = 0. According to Cutkosky and Kao (1989), the
stiffness matrix K ∈ R

c×c can be computed as

K = (Cs + JCqJ T )−1, (6)

where Cs ∈ R
c×c is the structural compliance matrix (due

to, e.g., the flexibility of limbs and fingerpads), and with
Cq ∈ R

n the diagonal matrix whose element in position
(k, k) is the compliance at the k-th joint. Joint compliance
in animals is determined by the elastic properties of muscles
and tendons and by modulation of the stretch reflex. Similar
roles in robot hands are played by transmission and actua-
tor compliance, and by the gain of the kth position servo. It
should be noticed that in both cases joint compliance can be
varied, both intentionally and not, although not necessarily
in an independent way from joint to joint. Without loss of
generality, the matrices Cs and Cq employed for the numer-
ical tests reported in this paper are assumed as

Cs = (1/kstru)Ic×c, Cq = (1/kss)In×n, (7)

where kstru (N/mm) is the structural stiffness, while kss

(Nmm/rad) is the stiffness of a single joint.

3 The “softly underactuated” model

Consideration of synergies introduces a new vista on the
grasp problem. A direct interpretation of the results de-
scribed in Santello et al. (1998) would imply that the joint
configuration vector q could be represented as a function
of fewer elements, collected in a synergy vector σ ∈ R

s , as
q = q(σ ), which effectively constrains the hand configura-
tion in an s-dimensional sub-manifold of the joint config-
uration manifold. Synergistic hand velocities would belong
to the tangent bundle for this manifold, and could be locally
described by a linear map q̇ = S(σ )σ̇ . This situation is illus-
trated in Fig. 2, panels (a)–(d), where the reference posture
of the hand is reported as a function of the synergy coeffi-
cient σ1 scaling the first synergy vector S1.

However, the sole kinematic model of the hand fails to
describe the actual grasp of an object (Fig. 2, panels (e)–(h)).
Therefore, contact forces must be brought into play if a re-
alistic grasp analysis is in order.

Taking a step further, and in view of dealing with the most
general case of statically-indeterminate grasps, both contact
and joint compliances have to be included in the analysis.

Therefore, in the model we propose, the synergistic hand
displacements δσ ∈ R

s do not command the joint displace-
ments δq ∈ R

n directly, as assumed in the analysis in Cio-
carlie and Allen (2009) and implemented in the design in
Brown and Asada (2007). Instead, the synergistic displace-
ments input δσ command the joint reference positions qr , as
described by the following linear equations (see also Fig. 1)

δqr = S δσ, S ∈ R
n×s (1 ≤ s ≤ n). (8)

The joint reference positions, in turn, are related to the
actual joint displacements by the constitutive equation

δq = δqr − Cqδτ, (9)

where Cq is the joint compliance introduced in (7).
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Fig. 2 Effect of the first
synergy S1 on the hand posture
as a function of the normalized
synergy coefficient σ1 ∈ [0,1].
Figs. (a)–(d): reference motion
of the hand.
Figs. (e)–(h): motion of the
hand without contact
interaction. Figs. (i)–(l): motion
of the hand with contact
interaction and joint elasticity

Therefore, the posture (kinematic) synergy model only
rules an internal “reference” representation of the hand con-
figuration, and the higher level control of the hand com-
mands this internal representation within the synergy mani-
fold. The actuator system of the hand is controlled towards
this reference hand set-point. Then, the hand fingers and
palm interact with the manipulated objects and the envi-
ronment through contacts, and the physical hand reaches
an equilibrium under the effects of: attraction towards the
synergy-driven reference hand, repulsion by contact forces,
stiffness of actuators, tendons, and deformable bodies.

It is worth mentioning that this model, whereby mo-
tion is controlled by a reference position and modulation
of joint stiffness, has apparent similarities with the equilib-
rium point hypothesis in the motor control literature (Feld-
man and Levin 2009).

In the pre-grasp phase, forces are null δτ = 0, hence
δq = δqr and the reference and actual posture of the hand
overlap perfectly (first three columns in Fig. 2). Hence, in
this approach phase, the rigid synergy model q = q(σ ) is
valid. When an actual grasp of an object occurs, however,
the interference (contact) forces and hand compliance cause
the actual hand to deviate from the reference hand (panel (l)
in Fig. 2). Thus, in our model, the actual hand configuration
is driven by synergies, but modifies its posture according to
the object shape and compliance. We denote this as a soft
synergy model of hands.

In the following, we employ the data recorded in San-
tello et al. (1998) and the definition of finger coordination
patterns defined through PCA, to obtain numerical values
for the synergy matrix S (also known as “eigengrasp ma-
trix”, Ciocarlie and Allen 2009). More specifically, different
simplified synergy matrices S can be obtained by extracting

a number of columns from the orthogonal full synergy ma-
trix S̄ ∈ R

n×n obtained from PCA data, and whose columns
are ordered according to the relative contribution to the vari-
ance. Each of these extracted synergy matrices will be used
as a model of a specific (underactuated) hand.

For later use in Sect. 5, let us further introduce the bal-
ance equation

η := ST τ = ST J T f, (10)

where η ∈ R
s are the generalized synergistic forces corre-

sponding to synergistic displacements.
After modeling the soft synergies, we shift our attention

onto the effect of introducing motion coordination patterns
for fingers on the ability of the hand to exert internal forces
actively (full derivation of the analytical results is omitted
for brevity).

3.1 General solution of the grasping problem with
synergies

Extending the work Bicchi (1994), it can be shown that for
a general grasping system with elastic contacts that applies
a wrench we to the object, the general solution to the force
distribution problem is given by

f = GR
Kwe + δfhrs + δfhos ,

δfhrs = Esy, δfhos = Psz, (11)

where GR
K = KGT (GKGT )−1 ∈ R

c×6 is the K-weighted
pseudoinverse of G, providing the particular solution GR

Kwe

that minimizes the potential energy 1
2δξT

of Kδξof , (see Hana-
fusa and Asada 1997; Joh and Lipkin 1991). In (11), the
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columns of matrix Es ∈ R
c×es form a basis for the range

space of the matrix Fs ∈ R
c×s , mapping the δσ ’s into the

active internal forces δfhrs that can be commanded by syn-
ergistic displacements

δfhrs = Fs δσ, Fs := FS, rank(Fs) = es. (12)

The matrix F ∈ R
c×n has expression

F := (I − GR
KG)KJ, rank(F ) = e, (13)

and maps independently controlled joint reference displace-
ments δqr ’s into active internal forces

δfhr = Fδqr . (14)

It is worth noting that if all the DoFs of the hand are inde-
pendently controlled, δqr = δσ , S = I ∈ R

n×n, and (12) re-
duces to (14). Furthermore, note that for simplicity the force
distribution analysis here presented disregards the geomet-
ric effects on contact force due to the change of postures of
the object and the hand (Chen 2000).

The expression for δfhrs in (11) is a parameterized ver-
sion of the active homogeneous solution: optimal grasp
force distributions can be found by minimizing a cost func-
tion with respect to y ∈ R

es .
The third term δfhos in (11) is a fixed homogeneous solu-

tion representing internal, passive (preload) contact forces:
this corresponds to contact forces that are preloaded at the
beginning of the grasp operation (in the rest of the paper
it will be assumed z = 0 ∈ R

ps ). Matrix Ps ∈ R
c×ps rep-

resents a basis for this subspace. When all the hand joints
are independently controlled, the basis matrix is denoted by
P ∈ R

c×p , where p is the dimension of this subspace.
We summarize the above results by introducing the fol-

lowing subspaces

Fh = R(A) = N (G) ⊂ R
c, (15)

Fhrs = R(Es) = N (G) ∩ (
R(KJS) + R(KGT )

)
, (16)

Fhos = R(Ps) = N (G) ∩ N ((JS)T ), (17)

that yields the natural decomposition

Fhs = Fhrs ⊕ Fhos , R
c = Fhs ⊕ R(GR

K). (18)

In case of independent joint control (S = I ∈ R
n×n), active

and passive subspaces in (15) reduce to Fhr and Fho, re-
spectively, as in Bicchi (1994).

It is worth noting that among the free vectors y ∈ R
es , ŷ

will denote a particular choice corresponding to an optimal
grasp force distribution with respect to a chosen cost func-
tion.

From a computational point of view, the calculation of
the desired basis matrix Es = colbasis(Fs)

1 from (12) is
not optimal, since it entails the explicit calculation of GR

K .
A more efficient algorithm can be obtained by intersec-
tion of subspaces, observing that a consistent set of inter-
nal forces, parameterized by x ∈ R

h, synergy displacements
δσ ∈ R

s , and object motions δξe ∈ R
6, must belong to the

nullspace of Qs ∈ R
c×(h+s+6) (whose nullity is bs ), i.e.,

[
A −KJS KGT

]

︸ ︷︷ ︸
Qs

⎡

⎣
x

δσ

δξe

⎤

⎦ = 0. (19)

Defining Bs ∈ R
(h+s+6)×bs , such that R(Bs) = N (Qs), and

partitioning Bs as

Bs = [
BT

s1
BT

s2
BT

s3

]T
, (20)

where Bs1 ∈ R
h×bs , Bs2 ∈ R

s×bs , and Bs3 ∈ R
6×bs , such that

[
xT δσT δξT

e

]T = [
BT

s1
BT

s2
Bs3

]T
γ, γ ∈ R

bs , (21)

the subspace of active internal forces can be profitably ob-
tained as

Fhrs = R(ABs1), Es := colbasis(ABs1). (22)

The synergy displacements δσ̂ that must be commanded if
a desired internal force δf̂ = Esŷ is to be applied are given
by

δσ̂ = Bs2(ABs1)
+Esŷ. (23)

According to (8) and (23), the joint reference position is
displaced by

δqr = SBs2(ABs1)
+Esŷ, (24)

and the object moves to a new equilibrium position defined
by

δξe = Bs3(ABs1)
+Esŷ. (25)

Due to contact forces in the interaction with the object
and the joint compliance, the hand joints moves differently
with respect to the commanded reference, i.e., δq �= δqr .
Their values can be explicitly calculated as

δq = [
I − CqJT

(
I − GR

KG
)
KJ

]
S δσ̂ , (26)

where δσ̂ can be recovered from (23). It is worth observing
that in case of perfectly rigid joints, Cq = 0 ∈ R

n×n, and

1The operator colbasis(Fs) returns a basis for the column space of the
input matrix Fs .
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δq = δqr . The other quantities are also modified due to the
increased global stiffness, as evident from the definition of
K in (6).

Finally, corresponding variation of the joint torques δτ

can be obtained as

δτ = J T
(
I − GR

KG
)
KJ S δσ̂ , (27)

and the associated variation of the synergistic forces δη is

δη = ST δτ. (28)

3.2 Qualitative analysis of hand embodiment

With reference to (12), the following relationships between
ranks hold

rank(Fs)︸ ︷︷ ︸
es

= rank(S)
︸ ︷︷ ︸

s

−dim(N (F ) ∩ R(S)), (29)

rank(Fs) ≤ min{rank(F ), rank(S)}, (30)

rank(Fs) ≥ rank(F ) + rank(S) − n. (31)

Therefore, under the condition that each synergy Si

(i ∈ S )2 has a non-null projection onto R(F T ), we can
assume that es = s. In this case, consider a fully actuated
grasp with rank(F ) = e. For the same grasp, consider un-
deractuation and increase one by one the number of the en-
gaged columns of S. As the number of synergies engaged
increases, say 1 ≤ s ≤ e, the dimension of the subspace
Fhrs of active internal forces also increases in the same
manner. For s > e, according to (30), es = e, and the di-
mension of the subspace Fhrs reaches a plateau. This means
that for fully actuated grasping systems characterized by an
e-dimensional Fhr , underactuation with a number of syner-
gies s ∼ e does not endanger the ability to exert the same
internal forces. If e is “small”, say e.g. s = 2 or s = 3, appli-
cation of an equally “small” number of synergies s results
in a great control simplification without side effects on the
grasping ability of the system, see results in Sect. 5.3.

A fundamental issue we want to investigate is the link
between basic synergies, i.e., the first components obtained
via PCA, accounting for much of the variance in geomet-
ric posture space, and the ability of the corresponding un-
deractuated system to firmly grasp an object. However, the
sole rank count in (29) does not allow to compare quantita-
tively synergies with different shapes, i.e., different columns
of S. Therefore, in this analysis the behaviour of a system
underactuated by means of different number of synergies
and, once fixed their number, with different synergies Si , is
presented. The performance parameter is the ability to attain

2 S is a set of indices used to select the corresponding columns in S̄ to
build S.

force-closure conditions and, if this is the case, in obtaining
lower values of a suitably defined cost function in determin-
ing optimal grasping forces. Then, we discuss robustness is-
sues with respect to variations of the grasping stiffness: the
range, going from values typical of robotic hands to those
of the human hand, is elicited from Kao et al. (1997), and
Friedman and Flash (2007).

4 Force-closure problem with synergies

At an intuitive level, the meaning of “force-closure” is that
motions of the grasped object are completely restrained
against arbitrary external disturbances, by virtue of the con-
tact forces that the hand is capable to exert on the object. We
emphasize here that this definition is very relevant to syner-
gistically (under)actuated hands. Indeed (as opposite to the
purely geometric nature of form-closure), force-closure in-
volves consideration of which contact forces can be actively
applied on the object by the specific hand under consider-
ation. Under this regard, it clearly makes a difference if an
object is grasped by a hand controlled by different numbers
and types of synergies (corresponding to different active in-
ternal force subspaces, as discussed in the previous section).

Accordingly, we adopt here the definition of force-
closure given in Bicchi (1995), which considers the case
of underactuated hands:

Definition 1 (Force-Closure) A grasp is defined Force-
Closure if and only if the following conditions are satisfied:

1. Forces in arbitrary directions are resistible, i.e.
rank(G) = 6.

2. The hand configuration is prehensile, i.e. ∃y such that
f (y) ∈ Int(F ),3 with f (y) = Ey.

In Definition 1, F is the composite friction cone defined
as F = F11 × · · · × Fk,nk

. For brevity, we recall here only
those types of friction cone implemented in our software,
used to carry out numerical results in later sections. For a
point contact with friction (PCWF), we have fij ∈ R

3 and

Fij =
{

fij ∈ R
3|fij3 ≥ 0,

1

μij

(f 2
ij1

+ f 2
ij2

) ≤ f 2
ij3

}

, (32)

where fij3 is the normal component of the contact force at
the point of contact cij , fij1, fij2 the components in the tan-
gential directions, and μij the Coulomb friction coefficient.

For a soft-finger with elliptical friction limit approxima-
tion (Buss et al. 1996), we have fij ∈ R

4 and

Fij =
{

fij3 ≥ 0,
1

μij

(f 2
ij1

+ f 2
ij2

) + 1

μijt

f 2
ij4

≤ f 2
ij3

}

,

(33)

3Int(F ) denote the internal part of the composite friction cone F .
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where μijt
is a proportionality constant between the torsion

and shear limits. It is worth noting that the above models
do not necessarily assume equal friction coefficients at all
contact points: however, for brevity, in the numerical tests
reported in Sects. 5.3 and 5.4, the friction coefficients will
be assumed constant, i.e., μij = μ and μijt

= 1.

4.1 Force closure problem as a second order cone
programming (SOCP)

In view of formulating and solving the problem as a second
order cone programming (SOCP) one, for which efficient al-
gorithms and interfaces are today a mature technology, we
recall that the satisfaction of the friction limit constraints
in (32) and (33) is equivalent to the positive definiteness of
matrix P = Blockdiag(Pini

), P � 0, where the explicit ex-
pression for each Pij , with (i = 1, . . . , k; j ∈ ν(i)), can be
found in Buss et al. (1996).

Then, consider the problem of finding the optimal distri-
bution of contact forces f in the grasp of an object subject
to the external load with regard to the minimization of a suit-
able cost function Ψ (y). To formalize this problem, we give
the following definition:

Definition 2 (Grasping Force Optimization) Given a grasp
characterized by GR

W , Es , and Ps , and an object wrench
we ∈ R

6, find ŷ in (11), such that f (ŷ) ∈ Int(F ), and the
cost function Ψ (f (ŷ)) is minimized.

In numerical tests, we assume: (i) zero preload at the be-
ginning of the grasp (z = 0 in (11)); (ii) zero net wrench
applied to the object, we = 0; (iii) an auxiliary constraint on
the minimum value for all the normal components fn of the
contact force. Under these hypotheses, the grasping force
optimization problem is set up in the following way

ŷ = argminΨ (y)

subject to f = Esy, P (f ) � 0, fn � fmin.
(34)

Optimal contact force distribution is sought by employing,
in turn, each of the following cost functions

Ψf (y) := ‖f (y)‖2, Ψf∞(y) := ‖f (y)‖∞,

Ψτ (y) := ‖τ(y)‖2, Ψη(y) := ‖η(y)‖2,

where f ∈ R
c are the contact forces, τ ∈ R

nc the joint
torques for the contacting fingers in (3), and η ∈ R

s the syn-
ergistic forces in (10).

The problem is set up and solved as a semidefinite pro-
gram (SDP) by employing the CVX modeling system for
convex optimization based on MATLAB, see Grant and
Boyd (2004) and Grant and Boyd (2008) for further de-
tails. The solver used is SDPT3 (Toh et al. 1999), which

implements an infeasible path-following algorithm for solv-
ing general SQLP—conic optimization problems involving
semidefinite, second-order and linear cone constraints.

4.2 Barrier formulation of the force optimization problem

Hitherto, the force closure problem has been setup and
solved as a constrained minimization problem. An alterna-
tive approach, originally proposed in Bicchi (1995) in the
force optimization context, suggests the inclusion of the
constraints in the cost function V (y), according to a bar-
rier strategy (Borgstrom et al. 2010). This can be solved as
an unconstrained minimization problem as follows

ŷ = argminV (y), (35)

whose solution ŷ corresponds to the contact forces f (ŷ)

maximizing (in the sense to be defined later) the dis-
tance from the constraint boundaries. As already described
in (4.1), in order to assure the feasibility of the grasp, thus
avoiding contact losses and slippage, the contact forces must
belong to a nonlinearly bounded set (friction cone). More
precisely, in order to fulfill contact constraints, the com-
ponents of the internal force vector must belong to some
nonlinearly bounded subset of the image of E. In Bicchi
(1995) such subset was proven to be convex, and an effi-
cient algorithm to find the internal force set, maximizing the
distance from this boundary, has been provided. In Bicchi
and Prattichizzo (2000) the algorithm was then generalized
for tendinous actuated hands.

For the sake of simplicity, let us assume Hard Finger
(PCWF) contact model (in Bicchi and Prattichizzo 2000 the
algorithm was generalized also to different contact types).
The friction constraint previously introduced in (32) can be
expressed by the following inequality:

ψij,f = αij‖fij‖ − fij3 < 0 (36)

where αij is defined as αij = (1 + μ2
ij )

−1/2. If inequality
(36) is satisfied, the (i, j)th contact force lies inside the fric-
tion cone. According to (11), the contact forces depend on
external wrench w and on y.

Other inequalities can be defined in order to constrain the
minimum value of the normal component fij3 of the contact
force

ψij,m = fmin − fij3 < 0. (37)

Likewise, the maximum value of the contact force norm
‖fij‖ can be reasonably constrained, due to actuator maxi-
mum allowable effort or hand structural properties or object
strength:

ψij,M = ‖fij‖ − fmax < 0. (38)
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Table 2 Force constraint coefficients

Constraint type αij,k γij,k δij,k

Friction cone (k = f ) αij −1 0

Min. normal force (k = m) 0 −1 fmin

Max. force module (k = M) 1 0 −fmax

The above constraints (36), (37) and (38) can be rewritten in
a more compact form as

ψij,k = αij,k‖fij‖ + γij,kfij3 + δij,k < 0, (39)

where the subscripts ij refers to the contact point, and the
subscript k = f,m,M refers to the constraint type. The co-
efficients in the above inequality assume the values reported
in Table 2.

In Bicchi and Prattichizzo (2000) other inequalities re-
lated to bounding minimum and maximum values of tendon
efforts were added: those are not included here for the sake
of simplicity.

For a given wrench w, let us define Ωε
ij,k the set of y that

satisfies (39) with a positive margin ε:

Ωε
ij,k = {y|ψij,k(w,y) < −ε}. (40)

Let us then introduce, for the (i, j)th contact and the kth
constraint, the function

V ε
ij,k(w,y) =

{
(dψ2

ij,k)
−1, y ∈ Ωε

ij,k,

aψ2
ij,k + bψij,k + c, y �∈ Ωε

ij,k.
(41)

This function can be made twice continuously differentiable
by choosing d = 2N−2, a = 3

2ε4 N−2, b = 4
ε3 N−1, c = 3

ε2 .
Since ε is dimensionally a force, the coefficients multiply-
ing ε−4, ε−3 and ε−1 (i.e. 3

2 , 4 and 3) are expressed in N2.
With the above assumptions for the a, b and c units, V is a
dimensionless quantity. Furthermore, let us associate to the
grasp the function V ε(w,y) defined as

V ε(w,y) =
∑

i,j

∑

j=f,m,M

V ε
ij,k(w,y). (42)

In Bicchi (1995), the author showed that the function is
strictly convex. Indicating with ŷ the (unique) solution of
problem (35), the reciprocal of V (ŷ) is a well defined force
closure quality index that reflects the distance of the grasp
from violating the constraints (39).

5 Numerical tests

5.1 Paradigmatic hand model

The paradigmatic hand model is schematically represented
in Fig. 3. This is the same model for which detailed data

Fig. 3 15 DoFs kinematic model of the paradigmatic hand

were collected and presented in Santello et al. (1998). The
fact that the large amount of high-quality data taken in San-
tello et al. (1998) was kindly made available to us is a reason
for this choice, along with the motivation that synergies can
be defined for no other kinematic structure without a dose of
arbitrarity.

Examples of human hand biomechanical models are
available in the literature (Lee and Kunii 1995; Lin and
Wu 2000; Linscheid et al. 1991). The fingers are usually
modeled as kinematic chains independent from each other,
sharing only their origin in the hand palm. In absence
of disabilities or handicaps, the ratios between the bones
lengths of each finger are almost constant (Kim et al. 2002;
Youm et al. 1977).

For our analysis, the objective of the kinematical model
is to closely copy the properties of the hand rather than its
intrinsic structure. The human hand joints can mainly be di-
vided into 1-DoF and 2-DoF joints. The 1-DoF joints in the
hand can be represented as revolute joints; the 2-DoF joints
can be divided into two types. The trapeziometacarpal joint
of the thumb is a saddle joint with non-orthonormal axes,
the metacarpophalangeal joints of the fingers are condyloid.
The main difference between saddle and condyloid joints is
that condyloid joints have approximately intersecting axes
while saddle joints do not. For the thumb, the axes of the
metacarpal are non-orthogonal screw.

Therefore the metacarpophalangeal joint of the index,
middle, ring and little fingers are usually modeled as a two
DoFs joint (one for adduction/abduction and another flex-
ion/extension). The proximal interphalangeal and distal in-
terphalangeal joints of the other fingers can be modeled as
a one DoF (revolute) joint. The thumb has at least 5 DoF:
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Table 3 D.-H. tables for the 15 DoFs paradigmatic hand

(a) D.-H. table for the Thumb finger

Limb a (mm) α (rad) d (mm) q (rad)

l11 0 −π/2 0 q11

l12 a12 0 0 q12

l13 a13 0 0 q13

l14 a14 0 0 q14

(b) D.-H. table for Index, Ring and Little fingers. Indices take the

following values: i = 2,4,5 and j = 1,2,3

Limb a (mm) α (rad) d (mm) q (rad)

lij 0 −π/2 0 qij

lij aij 0 0 qij

lij aij 0 0 qij

(c) D.-H. table for the Middle finger

Limb a (mm) α (rad) d (mm) q (rad)

l31 a31 0 0 q31

l32 a32 0 0 q32

2 DoF in trapeziometacarpal joint, 2 DoF in metacarpopha-
langeal joint, and 1 DoF in interphalangeal joint. Anyway,
the range of deviation of metacarpophalangeal joint is so
small that generally can be modeled as a single DoF joint,
while the trapeziometacarpal joint is more important in the
analysis of the thumb kinematics (Kim et al. 2002).

Our model has 15 DoFs corresponding to: 4 DoFs for
the thumb: TR, TA, TM, TI (Thumb Rotation, Abduc-
tion, Metacarpal, Interphalangeal); 3 DoFs for the index:
IA, IM, IP (Index Abduction, Metacarpal, Proximal inter-
phalangeal); 2 DoFs for the middle: MM, MP (Middle
Metacarpal, Proximal interphalangeal); 3 DoFs for the ring:
RA, RM, RP (Ring Abduction, Metacarpal, Proximal inter-
phalangeal); 3 DoFs for the little: LA, LM, LP (Little Ab-
duction, Metacarpal, Proximal interphalangeal). It is worth
noting that the middle finger has no abduction since it is
considered the “reference finger” in the sagittal plane of
the hand. Moreover, the Distal Interphalangeal (DI) angle
is not present in none of the four fingers due to the limita-
tion in the sensors embedded in the measuring glove em-
ployed, see Santello et al. (1998) and references therein.
With P = (Op;xp, yp, zp) with indicate the palm frame, and
with Sij = (Oij ;xij , yij , zij ) and Cij = (Cij ;xcij

, ycij
, zcij

)

the D.-H. and the normalized Gauss frame, respectively, for
the j th limb on the ith finger. The D.-H. tables for each fin-
ger/group of fingers are shown in Tables 3a–3c.

5.2 Assumptions in the definition of grasp layouts

To define possible grasp configurations, we rely on data re-
ported in Santello et al. (1998). In that work, no measure-

Table 4 Nominal data common to all tests

Net wrench we Contact type Frict. coeff. μ fmin(N)

0 PCWF 1.0 0.1

Fig. 4 Hand postures analyzed

ment of the object position, nor spatial location of the con-
tact points, was registered (since the subjects were asked to
shape their hands in order to mime grasps, with no physical
object present). Therefore we made the following assump-
tions. Firstly, the hand configuration relative to the imagined
grasp of an object, say a cherry, was defined as the mean
joint configuration vector recorded in the grasp of that ob-
ject, among a total of five trials. Therefore, the configuration
of the hand is identified with the name of the object grasped.
Secondly, a reasonable position of the center of gravity CG
for the grasped object was defined, taking into account both
the hand configuration previously defined and a reasonable
shape for that object. Then, the candidate contact point cfij

on each limb lij was found as the nearest point on the same
limb to CG. Last step was to define the final grasp by se-
lecting the limbs in contact, according to both the shape of
the hand and the position of the object relative to the hand
the same grasp suggests. The numerical data common to all
tests are listed in Table 4.

5.3 Precision grasp—the cherry

As a first test case we consider the grasp of a cherry. The
hand configuration, the estimated position of the center of
gravity CG of the object and the contact points are rep-
resented in Fig. 4a. The contact parameters employed are
listed in Table 4 and, with reference to (6) and (7), the
numerical value of the stiffness matrix K is specified by
setting kstru = 1 N/mm and kss = 100 Nmm/rad. For this
case, rank(G) = 6, c = 9 and, with reference to (12), (13),
and (15), h = e = 3, p = 0. The optimal contact force dis-
tribution is found with respect to y minimizing ψf (y) =
‖f (y)‖2.

Let us concentrate on the black curve in Fig. 5a. Inter-
estingly enough, this grasp is force-closure even when en-
gaging only the first synergy (S1, first column of S), for
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Fig. 5 (Color online) The cherry. Norm of the optimal contact force
f w.r.t. the cost function ‖f ‖2, with increasing number of synergies

which an optimal value of ‖f ‖2 = 0.284 N, is found. When
more synergies are engaged in the grasp, the norm of the
contact force decreases as the dimension es = s of Fhrs in-
creases, and there is a higher dimensional space where the
optimal solution can be sought. Then, a plateau is obtained
once the dimension es reaches e, as confirmed by rank con-
siderations in (29). Therefore, as far as controllable internal
contact forces are concerned, no improvement can be ob-
tained in the quality of the grasp by engaging a number of
synergies s > e.

It is worth stressing that the trend in Fig. 5 is highly de-
pendent on which synergies are considered. Had we engaged
synergies in a backward fashion, i.e., from S15 to S1, we
would have obtained a completely different trend. Put an-
other way, if we plug in only one synergy at a time, the grasp
is force-closure only for synergies S1, S3 and S4, meaning
that maybe the first synergies are more fundamental to grasp
objects than those of higher-order, but not in a strictly or-
dered fashion. However, we have no ambition of drawing
general conclusions here, since fundamental roles are played
by location of the contact points, surface normals, and types

Fig. 6 (Color online) The cherry. Norm of the optimal contact force
f w.r.t. the cost function ‖f ‖2, with increasing number of syn-
ergies—sensitivity on object CG displacement

of contact constraints, which are here only reasonably esti-
mated.

Figure 6 shows the results obtained moving the center of
gravity CG in the x, y and z directions and, consequently,
changing the contact point positions and the corresponding
normal directions. The applied CG displacement is ±5 mm.
The simulation results show that curve trends are consistent
with respect to variations of contact point location.

Figure 7 shows the optimal contact force distribution
found with respect to y minimizing ψf∞(y) = ‖f (y)‖∞.
Even with this cost function, the grasp is again force-closure
when engaging only the first synergy. When more synergies
are engaged in the grasp, again a plateau is obtained once
the dimension es reaches e. We observe that the saturation
value obtained for s ≥ e is ‖f ‖∞ = 0.1 N, that corresponds
to the minimum force limit fmin in Table 4.

In order to assess the robustness of the above trends with
respect to the grasp stiffness, the previous analyses are re-
peated for different values of K obtained varying kss and
kstru, as shown in Figs. 5a–5b and Figs. 7a–7b.

Interestingly, if we select Ψη(y) = η2 as cost function,
we obtain the trends depicted in Figs. 8a–8b. These show
that, in terms of synergistic forces, adding more synergies
than those strictly necessary to fulfill the dimension of Fhr

worsens the cost, as the range of S (where we project the
same τ ’s, see (10)) increases. In other words, if a synergy is
not actuated, synergistic forces in its direction are absorbed
by the mechanical structure directly, and are not reflected in
actuation costs.

Minimization of Ψτ (y) = τ2 bears trends similar to those
of Fig. 5, and are here omitted for brevity.

The optimal value ŷ minimizing the function V (y)

in (42) has been analyzed as a function of the number of
engaged synergies. The following values have been ini-
tially chosen for the constraints: μ = 0.5, fmin = 1 N,
fmax = 30 N.
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Fig. 7 (Color online) The cherry. Infinity norm of the optimal con-
tact force f w.r.t. the cost function ‖f ‖∞, with increasing number of
synergies

The fminsearch MATLAB function has been em-
ployed. Figure 9a shows the cost V as a function of the num-
ber of engaged synergies. The function decreases for syner-
gies increasing from 1 to 3 and then it remains constant.

Furthermore, for each optimal configuration, the single
contributions to V of each constraint have been evaluated:
V κ

k = ∑
ij V κ

ij,k . In the same figure, the different curves rep-
resent the contributions of each constraint: friction contribu-
tion Vμ, minimum value of normal component of the con-
tact force Vmin, maximum value of contact force magnitude
Vmax, in order to highlight the relative weight of each con-
straint. As clearly visible, in the selected configuration, the
main contribution in V is due to the friction constraint Vμ.

In order to highlight the contact force distance from
the friction cone boundary, Fig. 9b shows for each of the
three contact points (1-thumb, 2-index, 3-middle), the an-
gle θi = cos−1(f T

i ni/‖fi‖) between the contact force and
the direction normal to the contact surface, and their sum
Θ = ∑3

i=1 θi , as a function of the engaged synergies. The
qualitative behavior of Θ is similar to V : its value decreases

Fig. 8 (Color online) The cherry. Norm of the optimal synergistic
force η = ST τ w.r.t. the cost function ‖η‖2, with increasing number
of synergies

for synergies increasing from 1 to 3, and then it remains
constant. Furthermore, we can observe that, while θ1 and
θ3 are substantially constant, θ2 sensibly decreases. This re-
sult is evident in Fig. 10, that shows in the xy projection
of the operative hand space, the contact points (red stars),
the normal directions (blue arrows) and the optimal contact
forces (black arrows) when only the first synergy is engaged
(Fig. 10a), and when the first three synergies are activated
(Fig. 10b). Of course these specific results, relative to each
single contact points, are highly depends on hand configura-
tion, contact point location, μ, fmin and fmax, etc.

Furthermore, the weight of each constraint in the cost
function V has been evaluated by analyzing the ψij,k values,
Fig. 11. Figure 11a shows the contribution of each type of
constraint: in order to simplify the representation, the sum of
constraint value for each type is presented. The figure clearly
shows that, in the considered configuration, the most critical
constraints are related to the friction, since the curve rela-
tive to the

∑
i,j ψij,f constraints is near to the limit (zero)
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Fig. 9 (Color online) The cherry. Results of V (y) minimization as a
function of the engaged synergies

value. However, Fig. 11a does not show clearly the effect
of the number of engaged synergies: this effect is evident
in Fig. 11b, where the single ψij,f components are plotted.
By increasing the number of engaged synergy from one to
three, the second component (corresponding to the contact
point on the index) sensibly decreases, and recalling expres-
sion (41), it leads to a significant V decrease.

A sensitivity analysis was performed in order to study
the effect of boundaries μ, fmin and fmax on V for different
numbers of engaged synergies. Figure 12a summarizes the
effect of the friction coefficient μ. We observe that decreas-
ing the value of the friction coefficient, for a given number
of engaged synergies, the overall V values increase, since
the friction constraint is more critical. In all the analyzed
configurations, increasing the number of synergies from one
to three the cost function decreases. Furthermore, increasing
the number of actuated synergies the cost function remains
constant. Figure 12b shows how the curves V vs synergies
change modifying fmin values from 1 to 10 N. We observe
that increasing the fmin values, the overall V increases, since
the minimum normal force constraint becomes more impor-
tant. In Fig. 12c the effect of fmax value is analyzed. In this
case, decreasing fmax values we observe a V increase, for

Fig. 10 (Color online) The cherry. Contact points (red stars), contact
normals (blue arrows) and contact forces (black arrows) when only the
first synergy is activated and the first three synergies are activated

the same reasons previously explained. Further tests were
realized changing ε value from 10−3 N to 10−7 N: the re-
sults are substantially the same for all the performed tests.

Finally the robustness of the observed V trends with re-
spect to contact point displacements are shown in Fig. 13.
Also in this analysis the obtained V vs engaged synergies
trends are quite consistent with respect to small variation of
the contact point positions.

5.4 Power grasp—the ashtray

As second test case we consider the grasp of an ashtray. The
hand configuration, the estimated position of the center of
gravity CG of the object, and the contact points are rep-



Auton Robot (2011) 31:235–252 247

Fig. 11 (Color online) The cherry. ψi,j values as a function of the
number of engaged synergies

resented in Fig. 4b. The contact parameters and the nom-
inal stiffness values are the same employed in the previ-
ous case. This time, rank(G) = 6, c = 18 and, with refer-
ence to (12), (13), and (15), h = 12, e = 12, p = 0. As in-
tuitive, since h = e < n, increasing the number s of syn-
ergies engaged results in a monotone decrease of the cost
function (no matter the values of the grasping stiffness K),
until s = e, after which no improvement can be gained, as
elicited from Fig. 14. All curves present a rapid decrease for
1 ≤ s ≤ 2, then a lighter decrease for 2 < s ≤ 4, after which
no practical improvement is registered. Also interesting is
that synergy S1 represents the only “direction” along which
we can obtain force-closure conditions by employing only a
1-dimensional subspace of R

15, at least for nominal values
of the parameters. No other synergy shows this property.

Moreover, it is worth noting that if the first four syn-
ergies are removed from the (kinematic) synergy manifold
for the reference hand, no other subspace of dimension one,
two, or three defined by arbitrarily combining the remaining
S5, . . . , S15 synergies is force-closure.

In subspaces of dimension four, only 1 combination—
the sequence (S5, S6, S7, S13)—over the 330 possible ex-
hibits force-closure with quality metric (‖fc‖2) 0.98. In sub-
spaces of dimension five, 11 combinations over the 462
possible (2.38%) exhibit force-closure with mean qual-
ity metric of 0.99 and variance 0.21, the best sequence

Fig. 12 (Color online) The cherry. V sensitivities on μ, fmin and fmax
parameters, for different numbers of activated synergies

being (S5, S6, S7, S12, S13) with a score of 0.68. In sub-
spaces of dimensions six, 55 combinations over the 462
possible (11.9%) are force-closure with mean quality met-
ric of 1.02 and variance 0.74, the best sequence being
(S5, S7, S9, S11, S13) with a score of 0.48.

As intuitive, by engaging more synergies in the grasp
force-closure is obtained more easily also without the first
four synergies. However, with the first fundamental syner-
gies engaged in an ordered fashion (see Figs. 14a–14b), the
quality of the grasp is always by far better (the cost is much
lower) than that registered with all the remaining higher-
order synergies in arbitrary sequences.
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Fig. 13 (Color online) The cherry. V sensitivities on object CG dis-
placement

Fig. 14 (Color online) The ashtray. Norm of the optimal contact force
f w.r.t. the cost function ‖f ‖2, with increasing number of synergies

Figure 14 shows the results obtained moving the center
of gravity CG in the x, y and z (and consequently contact
point positions and normal directions) as described for the
cherry. Also in this case curve trends are robust with respect
to variations of contact point location. We furthermore ob-
serve that in some configurations (for example, moving the

Fig. 15 (Color online) The ashtray. Norm of the optimal contact force
f w.r.t. the cost function ‖f ‖2, with increasing number of synergies,
sensitivity on object CG displacement

object in the z direction with a positive displacement), the
grasp is not force closure if the number of engaged syner-
gies is lower than 3.

Figure 16 shows the optimal contact force distribution
found with respect to y minimizing ψf∞(y) = ‖f (y)‖∞
for the ashtray. The results show trends similar to those of
Fig. 14.

In Figs. 14, 15 and 16 some of the curves are not de-
fined when only one synergy S1 is engaged (kss = 25,50
and kstru = 5,10), since in these cases force closure is not
obtained. However, adding just one or two columns, e.g. S2

and S3, solves already the problem.
If we select Ψη(y) = ‖η‖2 as cost function, we obtain the

trends depicted in Figs. 17a–17b.
V cost function was evaluated, for different number of

engaged synergies and for different values of the boundary
parameters μ, fmin and fmax. Figure 18a summarizes the
effect of the friction coefficient μ, given fmin = 5 N and
fmax = 30 N. For μ = 1.0 and μ = 0.8 the friction con-
straints are satisfied for all the considered synergies, how-
ever, decreasing the friction coefficient from μ = 1.0 to
μ = 0.8 the cost function sensibly increases, especially
when a small number of synergies are activated. Further-
more, decreasing the value of the friction coefficient, the
minimum number of synergies necessary to satisfy the fric-
tion constraints in all the contact points increases: when
μ = 0.6 we need at least four synergies (the V and curves
are not defined for lower values), while when μ = 0.4 we
need at least five synergies. Figures 18b and 18c summarize
the fmin and fmax influence on V , with μ = 0.1. The results
are qualitatively similar to those observed for the precision
grasp: relaxing the constraints, i.e. increasing fmax and de-
creasing fmin, V decreases.

Finally, also for the ashtray the robustness of the observed
V trends with respect to contact point displacements was
analyzed: the results of the analysis are reported in Fig. 19.
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Fig. 16 (Color online) The ashtray. Infinity norm of the optimal con-
tact force f w.r.t. the cost function ‖f ‖∞, with increasing number of
synergies

Also in this case the obtained V vs engaged synergies trends
are robust with respect to small variation of the contact point
positions.

6 Conclusion

The force decomposition and optimization problems in mul-
tiple whole-limb manipulation of hands with embodied syn-
ergies require an extension of existing analytical methods,
and the consideration of compliance in the hand-object sys-
tem.

We have presented two numerical case studies to charac-
terize the role of different postural synergies in the ability of
the hand to obtain force-closure grasps. The two case stud-
ies addressed a precision grasp and a power grasp, respec-
tively, and are to be considered representative of a number of
similar experiments, which could not be reported for space
limitations.

The main results obtained from our investigations can be
summarized as follows.

Fig. 17 (Color online) The ashtray. Norm of the optimal synergistic
force η = ST τ w.r.t. the cost function ‖η‖2, with increasing number of
synergies

The force-closure property of grasps strongly depend on
which synergies are used to control the hand. The first few
synergies (the first one for the two case studies reported) are
sufficient to establish force-closure. If the first few syner-
gies are not actively controlled, force closure can only be
obtained if many more DoFs (corresponding to higher-order
synergies) are actuated.

A measure of the quality of the grasp (given in terms of
the norm of contact forces needed to avoid slippage) is en-
hanced by increasing the number of actuated synergies, but
only to a limited extent. No improvement is observed be-
yond the first three synergies in the precision grasp case,
while continuous but small improvements are obtained in
the whole-hand grasp case, until the dimension of the con-
trollable force space is reached.

All the above results are consistently robust with respect
to different values of stiffness parameters and contact point
positions, which may reflect the uncertainty by which these
parameters are known in human or robotic hand models,
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Fig. 18 (Color online) The ashtray. V sensitivities on μ, fmin and
fmax parameters, for different numbers of activated synergies

and/or the fact that grasp stiffness may be changed either
voluntarily or not.

These results are consistent with the hypothesis that
the first few postural synergies observed in grasp pre-
shaping (Santello et al. 1998) are also crucial in grasping
force optimization, when suitably translated from the kine-
matic configuraton space where they have been observed, to
the force domain through the procedures illustrated in this
paper.

Fig. 19 (Color online) The cherry. V sensitivities on object CG dis-
placement
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Appendix

According to standard conventions, we consider a fixed
(palm) frame P = (Op;xp, yp, zp) and, for each finger in
the hand, we attach a D.-H. frame Sij = (Oij ;xij , yij , zij )

to its j th link, a local frame Lij = (Olij ;xlij , ylij , zlij ) to
the center of the limb and a normalized Gauss frame Cij =
(Cij ;xcij

, ycij
, zcij

) local to the surface of the fingertip, with
its z-axis aligned with the outward normal. The frame at-
tached to the object is E = (E;xe, ye, ze), with origin coin-
cident with the center of gravity CG, i.e., E ≡ CG.

Since only some of the fingers and/or some of the limbs
in each finger may be in contact with the object at point
cfij

∈ R
3, we define k sets of indices ν(i), (i = 1, . . . , k),

each one describing the connectivity of the ith finger with
the object. In view of further analysis, we distinguish be-
tween corresponding points cfij

and coij
on the finger and

on the object, respectively. On the contrary, under the hy-
pothesis of small relative elastic rotations, we confuse local
frames at the contact point on the object and the limbs with
the unique Cij . In this analysis, the location of the contact
points in space is assumed to be known, by either planning
or sensing.

Let fij ∈ R
cij be the components in the contact frame Cij

of force/torque that can be transmitted through the contact at
point cfij

. Its dimension depends on the contact type, e.g.,
cij = 3 for Point Contact With Friction (PCWF), cij = 4 for
Soft Finger (SF), and its contribution to the actual wrench is
characterized by the wrench basis HT

ij (Featherstone 2008).
With reference to Fig. 1, and by employing the definition

of the adjoint operator Ad(R,d) given in Murray et al. (1994),
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the contribution of the ith finger, j th limb to the components
in P of the wrench we ∈ R

6 exerted on the object is given by

pweij
= Gijfij , Gij := AdT

(
cij Rp,de

cij
)
HT

ij ∈ R
6×cij , (43)

where cij Rp is the rotation that aligns P onto Cij , and de
cij

is
the vector from Cij to E. Let εij be defined as follows

εij =
{

1, if j ∈ ν(i),

0, otherwise.
(44)

Put fi = [εi1f
T
i1

· · · εini
f T

ini
]T ∈ R

ci , where ci =
∑

j∈ν(i) cij , and consider the contribution of the ith finger
as

pwei
= Gifi, Gi := [

εi1Gi1 · · · εini
Gini

] ∈ R
6×ci . (45)

Stacking (45) for each finger, we can write the global grasp
matrix as

pwe = Gf, G := [
G1 · · ·Gk

] ∈ R
6×c, (46)

with c = ∑k
i=1 ci .

Similarly, let ξcoij
∈ R

cij be the local components in
the constrained directions at point coij

due to a twist of
the object pξe, with components in P. By setting ξoi

=
[εi1ξ

T
coi1

· · · εini
ξT
coini

]T ∈ R
ci , for the ith finger, and ξo =

[ξT
o1

· · · ξT
ok

]T ∈ R
c, for the whole hand, we can write by du-

ality

ξo = GT pξe, GT ∈ R
c×6. (47)

We now consider the relationships for the statics and
kinematics of the fingers. By employing the D.-H. conven-
tion, the local components in the constrained directions of
the contact point cfij

on the ith finger, j th limb, can be writ-
ten as

ξcfij
= Jij q̇i , Jij := Hij Ad

(
cij Rp,d

oij
cij

)
Joij

(qi), (48)

where Joij
= [

ji1 · · · jij 0 · · · 0
] ∈ R

6×ni , with blocks de-
fined as (1 ≤ l ≤ j)

jil =
⎧
⎨

⎩

[zT
l−1 0T ]T , for prismatic lth joint;

[(dofi,l−1
ofij

)T ẑl−1 zT
l−1]T , for revolute lth joint.

(49)

By stacking (48) for all the limbs on the ith finger that
are actually in contact, and setting

ξfi
= [εi1ξ

T
cfi1

· · · εini
ξT
cfini

]T ∈ R
ci ,

we obtain

ξfi
= Ji q̇i , Ji :=

[
εi1J

T
i1 · · · εini

J T
ini

]T ∈ R
ci×ni . (50)

Then, collecting the complete set velocities in twist ξf =
[ξT

f1
· · · ξT

fk
]T ∈ R

c , yields

ξf = J q̇, J := Blockdiag(J1, . . . , Jk) ∈ R
c×n. (51)

Finally, again by duality arguments, the map from the
hand contact forces f to hand joint torques τ is given by

τ = J T f, J = Blockdiag(J T
1 , . . . , J T

k ) ∈ R
n×c. (52)
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