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Abstract—We present a complete characterization of shortest
paths to a goal position for a vehicle with unicycle kinematics
and a limited range sensor, constantly keeping a given landmark
in sight. Previous work on this subject studied the optimal paths
in case of a frontal, symmetrically limited Field–Of–View (FOV).
In this paper we provide a generalization to the case of arbitrary
FOVs, including the case that the direction of motion is not an
axis of symmetry for the FOV, and even that it is not contained
in the FOV. The provided solution is of particular relevance
to applications using side-scanning, such as e.g. in underwater
sonar-based surveying and navigation.

I. INTRODUCTION

In several mobile robot applications, a vehicle with non-
holonomic kinematics of the unicycle type, equipped with
a limited range sensor systems, has to reach a target while
keeping an environment landmark in sight. For example, in
the Visual–Based control field the vehicle usually has an on-
board monocular camera with limited Field–Of–View (FOV)
and, subject to nonholonomic constraints on its motion, must
move maintaining in sight one or more specified features of
the environment. On the other hand, in the field of underwater
surveying and navigation, a common task for Autonomous
Underwater Vehicles (AUV) equipped with side sonar scanners
is to detect and recognize objects (mines, wrecks or archeo-
logical find, etc.) on the sea bed (see e.g. [1], [2]). Side-scan
sonar is a category of sonar systems that is used to efficiently
create an image of large areas of the sea. Therefore, in order
to recognize objects AUVs must move keeping them inside
the limited range of the sensor.

Motivated by those application, in this paper we propose
the study of optimal paths (shortest ones) for a nonholonomic
vehicle moving in a plane to reach a target position while
making so that a given landmark fixed in the plane is kept
inside a planar cone moving with the robot.

The literature of optimal (shortest) paths stems mainly
from the seminal work on unicycle vehicles with a bounded
turning radius by Dubins [3]. Dubins has characterized the
finite family of optimal paths for the particular vehicle while
a complete optimal control synthesis for this problem has
been reported in [4]. Later on, a similar problem with the
car moving both forward and backward has been solved with
different approaches in [5], [6]. In particular, in [7] the optimal
control synthesis for the Reeds&Shepp car has been provided.
Minimum wheel rotation paths in for differential-drive robots
have been considered in [8]. More recently, also the problem
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of determining minimum time trajectory has been taken into
account in [9], [10] and [11] for particular classes of robots,
e.g. latter is on underwater robots. Finally, previous works on
the same subject of this paper ([12], [13], [14]) have studied
the optimal paths in case of a vehicle with a limited on-
board camera but only with a symmetric FOV with respect
to the forward direction of the robot. In this paper, we present
a more general synthesis of shortest paths in case of side
sensor systems, like side sonar scanners on UAVs, where
the forward direction is not necessarily included inside the
sensor range modeled as a cone centered on the vehicle. The
impracticability of paths that point straight to the feature lead
to a more complex analysis of the reduction to a finite and
sufficient family of optimal paths by excluding particular types
of path.

In the rest of the paper, we provide a complete optimal
synthesis for the problem, i.e. a finite language of optimal
control words, and a global partition of the motion plane
induced by shortest paths, such that a word in the optimal
language is univocally associated to a region and completely
describes the constrained shortest path from any starting point
in that region to the goal point.

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-
handed reference frame ⟨W ⟩ is defined with origin in OW
and axes Xw,Zw. The configuration of the vehicle is described
by ξ (t) = (x(t),z(t),θ(t)), where (x(t),z(t)) is the position
in ⟨W ⟩ of a reference point in the vehicle, and θ(t) is the
vehicle heading with respect to the Xw axis (see fig. 1). We
assume that the dynamics of the vehicle are negligible, and that
the forward and angular velocities, ν(t) and ω(t) respectively,
are the control inputs to the kinematic model. Choosing polar
coordinates for the vehicle η = [ρ ψ β ]T (see fig. 1), the
kinematic model of the unicycle-like robot is⎡⎣ρ̇

ψ̇
β̇

⎤⎦=

⎡⎢⎣−cosβ 0
sinβ

ρ 0
sinβ

ρ −1

⎤⎥⎦[
ν
ω

]
. (1)

We consider vehicles with bounded velocities which can turn
on the spot. In other words, we assume

(ν ,ω) ∈U, (2)

with U a compact and convex subset of IR2, containing the
origin in its interior.

The vehicle is equipped with a rigidly fixed sensor system
with a reference frame ⟨C⟩ = {Oc,Xc,Yc,Zc} such that the
center Oc corresponds to the robot’s center [x(t),z(t)]T and
the forward sensor axis Zc forms an angle Γ w.r.t the robot’s



Fig. 1. Autonomous vehicle and systems coordinates. The vehicle’s task is
to reach P while keeping OW within a limited SR (dashed lines).

forward direction. Moreover, let δ be the characteristic angle
of the cone characterizing the limited SR and let us consider
the most interesting problem in which δ ≤ π/2. Without loss
of generality, we will consider 0 ≤ Γ ≤ π

2 , so that, when Γ = 0
the Zc axis is aligned with the robot’s forward direction (i.e.
the particular case solved in [12]), whereas, when Γ = π

2 ,
is aligned with the axle direction. Consider ϕ1 = Γ− δ

2 and
ϕ2 = Γ+ δ

2 the angles between the robot’s forward direction
and the right or left sensor’s border w.r.t. Zc axis, respectively.
The restriction on 0 ≤ Γ = ϕ1+ϕ2

2 ≤ π
2 will be removed at

the end of this paper, and an easy procedure to obtain the
subdivision for any value of Γ will be given.

Without loss of generality, we consider the position of the
robot target point P to lay on the XW axis, with coordinates
(ρ, ψ) = (ρP, π −Γ). We also assume that the feature to be
kept within the SR is placed on the axis through the origin OW
and perpendicular to the plane of motion. We consider a planar
SR with characteristic angle δ = ∣ϕ2−ϕ1∣, which generates the
constraints

β −ϕ1 ≥ 0 , (3)
β −ϕ2 ≤ 0 . (4)

Noticed that we place no restrictions on the vertical dimen-
sion of the SR. Therefore, the height of the feature on the
motion plane, which corresponds to its Yc coordinate in the
sensor frame ⟨C⟩, is irrelevant to our problem. Hence, for our
purposes, it is necessary to know only the projection of the
feature on the motion plane, i.e. OW .

The goal of this paper is to determine, for any point Q ∈ IR2

in the robot space, the shortest path from Q to P such that the
feature is maintained in the SR. In other words, we want to
minimize the length of the path covered by the center of the
vehicle under the feasibility constraints (1), (2), (3), and (4).

From the theory of optimal control with state and con-
trol constraints (see [15]) it is possible to show that, when
constraints (3) and (4) are not active, extremals curves are
straight lines (denoted by symbol S) and rotation on the spot
(denoted by symbol ∗). On the other hand, when constraints (3)

and (4) are active, the corresponding extremal maneuvers are
two logarithmic spirals with characteristic angles ϕ1 and ϕ2
denoted by T1 and T2, respectively (see [12] for details).

Logarithmic spiral T with characteristic angle ϕ > 0 (ϕ < 0)
rotates counterclockwise (clockwise) around the feature. We
refer to counterclockwise and clockwise spirals as Left and
Right, and by symbols T L and T R, respectively. The adjectives
“left” and “right” indicate the half–plane where the spiral starts
for an on–board observer aiming at the feature.

Notice that, for ϕ2 = π/2 the left SR border is aligned with
the axle direction and the spiral T2 becomes a circumference
centered in OW (denoted by C), whereas for ϕ1 = 0 the right SR
border is aligned with the direction of motion and T1 becomes
an half line through OW (denoted by H).

Extremal arcs can be executed by the vehicle in either
forward or backward direction: we will hence use superscripts
+ and − to make this explicit (e.g., S− stands for a straight
line executed backward).

We will build extremal paths consisting of
sequences of symbols, or words, in the alphabet
A = {∗, S+, S−, E+

1 , E−
1 , E+

2 , E−
2 }, where the actual meaning

of symbols depends on angles Γ and δ as in the following
table.

Frontal
0 ≤ Γ < δ

2 E1 = T L
1 , E2 = T R

2

Borderline Frontal
Γ = δ

2 E1 = H, E2 = T R
2

Side
δ
2 < Γ < π−δ

2 E1 = T R
1 , E2 = T R

2

Borderline Side
Γ = π−δ

2 E1 = T R
1 , E2 =C

Lateral
π−δ

2 < Γ ≤ π
2 E1 = T R

1 , E2 = T L
2

Rotations on the spot (∗) have zero length, but may be used
to properly connect other maneuvers.

Let LΓ be the set of possible words generated by the
aforementioned symbols in A for each value of Γ. The rest of
the paper is dedicated to showing that, due to the physical and
geometrical constraints of the considered problem, a sufficient
optimal finite language LO ⊂ LΓ can be built such that, for
any initial condition, it contains a word describing a path to
the goal which is no longer than any other feasible path.
Correspondingly, a partition of the plane in a finite number
of regions is described, for which the shortest path is one of
the words in LO.

III. SHORTEST PATH SYNTHESIS

In this section, we introduce the basic tools that will allow
us to study the optimal synthesis of the whole state space of
the robot, beginning from points on a particular sub–set of IR2



such that the optimal paths are in a sufficient optimal finite
language.

We start by noticing that the action of the alphabet A is
invariant w.r.t. rotation and scaling. However, it is not invariant
w.r.t. axial symmetry, as it happened in the related problem
considered in [12].

Hence, we consider the following map fQ:

Definition 1. Given the target point P = (ρP, 0) in polar
coordinates, and Q ∈ IR2 ∖OW , Q = (ρQ,ψQ) with ρQ ∕= 0,
let fQ : IR2 → IR2 denotes the map

fQ (ρG,ψG) =

⎧⎨⎩
(

ρGρP

ρQ
,ψG −ψQ

)
for ρG ∕= 0

(0,0) otherwise.
(5)

The map fQ is the combination of a clockwise rotation by
angle ψG −ψQ, and a scaling by a factor sρP/ρQ that maps
Q in P.

Let γ be a path parameterized by t ∈ [0,1] in the plane of
motion γ(t) = (ρ(t), ψ(t)). Denote with PQ the set of all
feasible extremal paths from γ(0) = Q to γ(1) = P.

Definition 2. Given the target point P = (ρP, 0) and Q =
(ρQ,ψQ) with ρQ ∕= 0, let the path transform function FQ be
defined as

FQ : PQ → P fQ(P)

γ(t) 7→ fQ(γ(1− t)), ∀t ∈ I.
(6)

Notice that γ̃(t) = FQ (γ(1− t)) corresponds to γ(t) trans-
formed by fQ and followed in opposite direction. Indeed, γ̃ is

a path from γ̃(0) = fQ(P) =
(

ρ2
P

ρQ
,−ψQ

)
to γ̃(1) = fQ(Q)≡ P.

The F map has some properties that make it very useful to
the study of our problem in a way which is to some extent
similar to what described (for a different F map) in [12]. In
particular, the locus of points Q such that fQ(P) = Q, is the
circumference with center in OW and radius ρP. We will denote
this circumference by C(P) and the closed disk within C(P)
by D(P).

C(P) has an important role in the proposed approach since
properties of FQ will allow us to solve the synthesis problem
from points on C(P), and hence to extend the synthesis to
D(P) and to the whole motion plane. Indeed, ∀Q ∈C(P) and
∀γ ∈PQ, FQ(γ)∈P fQ(P) with fQ(P)∈C(P), i.e. a path from
a point on C(P) to P is mapped in a path from C(P) to P.

Furthermore, FQ transforms an extremal in A in itself but
followed in opposite direction. Hence, FQ maps extremal paths
in LΓ in extremal paths in LΓ. For example, let w= S−∗H−∗
S+ ∗T R+

2 be the word that characterize a path from Q to P,
the transformed path is of type z = T R−

2 ∗S− ∗H+ ∗S+. With
a slight abuse of notation, we will write z = FQ(w).

Proposition 1. Given Q ∈ IR2 and a path γ ∈ PQ of length
l, the length of the transformed path γ̃ = FQ(γ) is l̃ = ρP

ρQ
l.

The proof is easily obtained from a similar result in [12].
Based on the properties of FQ, optimal paths from points on

C(P) completely evolve inside C(P). To prove this statement
we first show the following

Fig. 2. Construction used in the proof of Theorem 1.

Theorem 1. Given two points A= (ρA, ψA) and B= (ρB, ψB),
with ψA > ψB and ρ = ρA = ρB, and an extremal path γ from
A to B such that for each point G of γ , ρG > ρ , there exists
an extremal path γ̃ from A to B such that for each point G̃ of
γ̃ , ρG̃ < ρ and ℓ(γ̃)< ℓ(γ).

Proof: Consider a point Z = (ρZ , ψZ) such that ρZ =
maxG∈γ ρG > ρ . Let γ1 and γ2 the sub–paths of γ from Z to B
and from Z to A.

The sub–path γ1, is rotated and scaled (contracted of factor
ρ
ρZ

< 1) such that Z is transformed in A obtaining a path γ̃1

from A to Z̃ =(ρ2

ρZ
, ψA+ψB−ψZ). Similarly, γ2, can be rotated

and scaled with the same scale factor but different rotation
angle w.r.t. γ1 such that Z is transformed in B, see fig. 2.
After geometrical considerations, it is easy to notice that the
obtained path γ̃2 starts in B and ends in Z̃.

The obtained paths are a contraction of γ1 and γ2 respec-
tively and hence shorter. Moreover, any point G of γ1 or γ2 has
ρG > ρ hence is scaled in G̃ of γ̃1 or γ̃2 with ρG̃ = ρρG

ρZ
< ρ .

Concluding, we have obtained a shorter path from A to B
that evolves completely in the disk of radius ρ .

An important but straightforward consequence of the theo-
rem is the following:

Corollary 1. For any path in PQ with Q ∈C(P) there exists
a shorter or equal-length path in PQ that completely evolves
in D(P).

IV. OPTIMAL PATHS FOR POINTS ON C(P)

Our study of the optimal synthesis begins in this section
addressing optimal paths from points on C(P). We first need
to establish an existence result of optimal paths.

Proposition 2. For any Q ∈ C(P) there exists a feasible
shortest path to P.

Proof: Because of state constraints (3), and (4), and the
restriction of optimal paths in D(P) (Corollary 1) the state set
is compact. Furthermore, it is possible to give an upper-bound
on the optimal path length for all Γ ∈ [0, π

2 ]. Indeed, given a
point Q at distance ρ from OW the optimal path to P is shorter
or equal to the following paths based on the value of Γ and
δ :

∙ Frontal (0≤Γ≤ δ
2 ): S+∗S− or H+∗H− of length ρ+ρP;

∙ Side ( δ
2 < Γ < π−δ

2 ): T R+
1Q ∗ T R−

2P , of length(
ρ−ρN
cosϕ1

+ ρP−ρN
cosϕ2

)
, where N is the intersection point



Fig. 3. Forward and backward straight path Regions from G for 0 ≤ Γ ≤ δ
2

on the left and π−δ
2 ≤ Γ ≤ π

2 on the right.

between spirals T R
1Q and T R

2P through Q and P respectively;
∙ Borderline Side (Γ = π−δ

2 : T R+
1 ∗ C−

P ) of length(
ρ−ρP
cosϕ1

+(ψN −ψP)ρP

)
, where N is the intersection point

between spirals T R
1 and CP;

∙ Lateral ( π−δ
2 < Γ ≤ π

2 ): T L−
2Q ∗ T R−

1P , of length(
ρ−ρN
cosϕ2

+ ρP−ρN
cosϕ1

)
, where N is the intersection point

between spirals T L
2Q and T R

1P.

The system is also controllable because there always exists
an intersection point between two spirals (even if degenerated
in half–lines or circumferences) with different characteristic
angle even if both clockwise or counterclockwise around
the feature. Hence, Filippov existence theorem for Lagrange
problems can be invoked [16].

In the following we provide a set of propositions that
completely describe a sufficient optimal finite language for all
values of Γ. However, for space limitations, proofs for some
of the propositions are reported for the Side case only, i.e.
δ
2 < Γ < π−δ

2 . Proofs for other cases can be easily obtained
with analogous procedures.

Definition 3. For any starting point G = (ρG, ψG), let SF(G)
(resp. SB(G)) be the set of all points reachable from G with
a forward (resp. backward) straight line without violating the
SR constraints.

We denote with ∂SF1(G) and ∂SF2(G) (resp. ∂SB1(G) and
∂SB2(G)) the borders of SF(G) (resp. SB(G)). Also, let Ci(G)
denote the circular arcs from G to OW such that, ∀V ∈Ci(G),
ĜVOW = π −∣ϕi∣ in the half-plane on the left of GOW if i = 1,
on the right if i = 2.

Remark 1. For any starting point G = (ρG, ψG), and for δ
2 <

Γ≤ π−δ
2 (Side case), let SGF be the chord between G and GF =

(ρG
sinϕ1
sinϕ2

, ψG +(ϕ2 − ϕ1)) ∈ C2(G), i.e. such that ÔW GGF =
ϕ1 (cf. fig. 4). Naming with CGF the arc between G and GF ,
SF(G) is the region between arc ∂SF2(G) = CGF and chord
∂SF1(G) = SGF . Consider the rotation and scale that maps
GF in G and G in GB: we have ∂SB1(G) = ∂SF1(GB), i.e.
∂SB2(G) = ∂SF2(GB). Notice that, also in this case, SF(G)
lays completely in the circle with center in OW and radius ρG.

As a consequence of Remark 1, SF(G) is tangent in G to

Fig. 4. Forward and backward straight path Regions from G for δ
2 <Γ≤ π−δ

2 .

T R
1 and T R

2 (or C when Γ = π−δ
2 , i.e. ϕ2 = π/2). Moreover,

SF(G) is tangent in GF to T R
1 and T R

2 , see fig. 4.

Remark 2. Forward and backward straight path Regions from
G, for the other values of Γ, are represented in fig. 3 for space
limitations.

Remark 3. Optimal forward (resp. backward) straight arcs
from any G ends on ∂SF(G) (resp. ∂SB(G)) (see [12] for
details).

Based on all the above properties, we are now able to obtain
a sufficient family of optimal paths by excluding particular
sequences of extremals.

Theorem 2. Any path consisting in a sequence of a backward
extremal arc followed by a forward extremal arc is not optimal.

Proof: Observe that the distance from OW is strictly
increasing along backward extremal arcs (i.e. S−, E−

1 , E−
2 with

E2 ∕= C) and strictly decreasing along forward extremal arcs
(i.e. S+, E+

1 , E+
2 with E2 ∕=C). For continuity of paths, for any

sequence of a backward extremal followed by a forward one,
there exist points A and B that verify hypothesis of Theorem 1,
hence it is not optimal.

Any sequence consisting in an extremal S (or E1) of length
ℓ and an extremal E2 = C (in any order and direction) is
inscribed in two circumferences centered in OW . Hence, the
shortest sequence is the one with E2 = C along the circum-
ference of smaller radius necessarily preceded by a forward S
(or E1) of same length ℓ.

Concluding, in an optimal path a forward arc cannot follow
a backward arc.

Theorem 3. Any path consisting in a sequence of an extremal
arc Ei and an extremal arc E j followed in the same direction
is not optimal for any i, j = 1,2 with i ∕= j.

Proof: for the Side case ( δ
2 < Γ < π−δ

2 ).
By proving the non–optimality of E+

i ∗E+
j the non–optimality

of E−
j ∗E−

i follows straightforward. Without loss of generality,
we suppose i= 1 and j = 2. Let A and B be the initial and final



Fig. 5. Construction of a path shorter than E+
1 ∗E+

2 for δ
2 < Γ ≤ π−δ

2 .

points of the path γ of type E+
1 ∗E+

2 and N the intersection
points between E+

1 and E+
2 . We now show for any value of Γ

and δ that exists an sub–path of γ that can be shortened with
a segment arc.

Referring to fig. 5, there exist G ∈ E1 such that SF(G) is
tangent to E1 in G and to E2 in GF . Positions of A ∈ E1 and
B ∈ E2 with respect to G and GF respectively generate three
cases:

∙ A = A1 and B = B1, i.e. ρB ≤ ρGF ≤ ρN ≤ ρG ≤ ρA.
Obviously, γ can be shortened by GGF ;

∙ A = A2 and B = B1, i.e. ρB ≤ ρGF ≤ ρN ≤ ρA ≤ ρG.
Consider SF(A) and the point V of intersection between
∂SF2(A) and E2, γ can be shortened by AV . A similar
procedure is used for A = A1 and B = B2, i.e. ρGF ≤
ρB ≤ ρN ≤ ρG ≤ ρA;

∙ A= A2 and B= B2, i.e. ρGF ≤ ρB ≤ ρN ≤ ρA ≤ ρG. In this
case, SF(A) and SB(B) intersect E2 and E1 respectively.

Notice that the feasible sequences consisting of two ex-
tremals that we still need to discuss are those starting or ending
with S followed in any direction. Indeed, it is obvious that
E+E− and E−E+ are not optimal.

Proposition 3. For any two points G, H, consider a spiral arc
Ei (i = 1,2) from G to H, and denote by rG, rH the tangent
lines to Ei in G and H, respectively. Let A = rG ∩ rH . Then,
the length of Ei is less than the sum of lengths of the segments
GA and AH.

The proof of this proposition does not depend on Γ and can
be found in [12].

Proposition 4. Consider any two points G and H on a spiral
arc Ei (i = 1,2). Let Ẽ be the set of points between Ei and its
symmetric w.r.t. GH. A shortest path between G and H that
evolves completely outside region Ẽ is the arc of Ei between
G and H.

Proof: Let R be the quadrilateral circumscribed to Ẽ
tangent to Ei in G and H. Furthermore, let rG and rH the
straight lines tangent to Ei in G and H, let N their point
of intersection. Any path γ connecting G to H that evolves
outside R is longer than the polygonal path from G to H
through N. Indeed, there exists V ∈ γ ∩ rG, hence γ between
G and V can be shortened be GV . Moreover, NH shortens the
sub-path consisting in GV and in the sub-path of γ between V

and H. In general, for any path γ there always exists a shorter
polygonal path ∆, between Ẽ and γ , tangent to Ẽ in several
points other than G and H. Applying Proposition 3, the thesis
holds.

Proposition 5. From any starting point A, any path γ of type
S+ ∗E+

2 and S+ ∗E−
1 to B can be shortened by a path of type

S+E+
2 or E+

2 ∗E−
1 .

Proof: Let N ∈ SF(A) be the intersection point between
extremal arc S+ and extremal arc E+

2 . If arc E+
2 intersects

∂SF2(A) in V , γ can be shortened between A and V by segment
AV that is tangent to E+

2 in V . Hence, path S+∗E+
2 is shortened

by S+E+
2 .

Let now consider a path of type S+ ∗E−
1 and, without loss

of generality, consider the intersection point between S+ and
E−

1 be N ∈ ∂SF2(A). Indeed, if arc E−
1 intersects ∂SF2(A) in

V , γ can be shortened between A and V by segment AV .
Considering now an arc E2 passing through B, two cases occur:

∙ if arc E2 intersects the first extremal arc S+ in V1, its
also intersects ∂SF2(A). By using Proposition 4, arc
E2 shortens path S+ ∗ E−

1 between V1 and B. A path
from A to B of type S+ ∗ E+

2 has been obtained. By
the considerations above, this path can be shortened by
S+E+

2 ;
∙ otherwise, let us consider an arc E2 through A. Let V its

intersection point with E−
1 . By Proposition 4, the sub–

path of γ between A and V can be shortened by E2. Hence,
a shorter path of type E+

2 ∗E−
1 is has been obtained.

Proposition 6. From any starting point A, any path γ of type
S+ ∗E+

1 or S+ ∗E−
2 to B can be shortened by a path of type

E+
1 S+ or E+

1 ∗E−
2 .

Proof: Let us consider first a path γ of type S+ ∗ E+
1 ,

and consider extremal arc E1 for A where it is tangent to S+.
There always exists a point V1 ∈ ∂SB2(B)∩E1. Let V2 be the
intersection point between first arc S+ of γ and straight line
from V and B. The unfeasible straight line path from B to
V2 shortens path γ . By applying Proposition 3 to unfeasible
polygonal path with vertices in V1, V2 and A, path E+

1 S+ is
shorter than a path S+ ∗E+

1 .
For a path γ of type S+ ∗E−

2 from A to B with intersection
point in V , without loss of generality V ∈ ∂SF1(A). Let us
consider an extremal arc E1 through B. Two cases can occur:

∙ if E1 intersects first arc S+ in V1, by Proposition 4, S+ ∗
E−

2 is longer than S+ ∗E+
1 through V1 which, in turn, is

longer than E+
1 S+;

∙ otherwise the extremal arc E1 from A to V2 ∈ E1 ∩E−
2

shortens S+ ∗E−
2 from A to V2. Hence, a path of type

E+
1 ∗E−

2 shorter than S+ ∗E−
2 has been found.

Propositions 5 and 6 imply that paths of type S− ∗E−
1 and

S− ∗E−
2 are not optimal. Indeed, they can be shortened by

S−E−
1 and E−

2 S−, respectively.
By using all previous results, a sufficient family of optimal

paths is obtained in the following important theorem.



a) b)
Fig. 6. Feasible extremals and sequence of extremals from point in D(P): a)
in Side and Lateral cases ( δ

2 < Γ ≤ π
2 ). b) in Frontal case (0 ≤ Γ ≤ δ

2 ).

Theorem 4. For δ
2 < Γ ≤ π

2 , i.e. Side and Lateral cases, and
for any Q ∈ D(P) to P there exists a shortest path of type
E+

1 ∗E−
2 S−E−

1 or of type E+
1 S+E+

2 ∗E−
1 . For 0 ≤ Γ ≤ δ

2 , i.e.
Frontal case, and for any Q∈D(P) to P there exists a shortest
path of type S+E+

1 ∗E−
2 S− or of type S+E+

2 ∗E−
1 S−.

Proof: According to all propositions above several con-
catenations of extremal have been proved to be non optimal.
Considering extremals as node and, possibly optimal, concate-
nations of extremal as edges of a graph, the sufficient optimal
languages LO from Q in D(P), for different values of Γ and δ ,
are described in fig. 6. Indeed, it is straightforward to observe
that the number of switches between extremals is finite and
less or equal to 3, for any value of Γ and δ . Hence, the thesis.

We now study the length of extremal paths from C(P) to
P in the sufficient family above. For space limitations, we
proceed with the study of optimal path with δ

2 < Γ ≤ π−δ
2 .

However, the same analytical procedure can be used to solve
the problem for any value of Γ.

Without loss of generality, it is sufficient to study the length
of extremal paths of type E+

1 ∗ E−
2 S−E−

1 only from points
Q on the semicircumference of C(P) in the upper-half plane
(denoted by CS). Indeed, up to a rotation, optimal paths of type
E+

1 S+E+
2 ∗E−

1 from the rest of C(P) can be easily obtained.
Referring to fig. 7, let the switching points of the optimal
path be denoted by N, M1 and M2 or N̄, M̄1 and M̄2 ≡ P,
respectively, depending on the angular values αM1 or αM̄1

.
Moreover, in order to do the analysis is useful to parameterize
the family by the angular value αM̄1

of the switching point
M̄1 along the arc C2(P) between P and Z or the angular value
αM1 of the switching point M1 along the extremal E1 between
PF and OW .

Theorem 5. For any point Q ∈CS, the length of a path γ ∈
PQ of type E+

1 ∗E−
2 S−E−

1 is:
∙ for 0 ≤ αM̄1

≤ ϕ2 −ϕ1, i.e. from P to Z (notice that the
last arc has zero length):

L = ρP

{
cosαM1

cosϕ2
+

1
cosϕ1

+

− cosϕ1 + cosϕ2

cosϕ1 cosϕ2
e(ψQ−αM1)

t1t2
t2−t1

(
sin(ϕ2 −αM1)

sinϕ2

)− t1
t2−t1

}
,

(7)

∙ for αM1 ≥ ϕ2 −ϕ1, i.e. from Z to OW :

Fig. 7. Path of type E+
1 ∗E−

2 S−E−
1 or the degenerate case of type E+

1 ∗E−
2 S−

from Q ∈CS.

L = ρP

{
2

cosϕ1
+ e−αM1 t1

[
cos(ϕ2 −ϕ1)

cosϕ2
− 1

cosϕ1
+

−cosϕ1 + cosϕ2

cosϕ1 cosϕ2
e[ψQ−(ϕ2−ϕ1)]

t1t2
t2−t1

(
sinϕ1

sinϕ2

)− t1
t2−t1

]}
,

(8)

with t1 = 1/ tanϕ1 and t2 = 1/ tanϕ2.

The analytical expression for the length L is based on a
direct computation. Having the path’s length as a function of
two parameters αM1 or αM̄1

and ψQ, we are now in a position
to minimize the length within the sufficient family.

Theorem 6. Given a point Q ∈CS,

∙ for 0 ≤ ψQ ≤ ψR1 := sin(ϕ2−ϕ1)
cosϕ1 cosϕ2

ln
(

cosϕ1+cosϕ2
sinϕ2 sin(ϕ2−ϕ1)

)
, opti-

mal path is of type E+
1 ∗E−

2 ;
∙ for ψR1 ≤ ψQ ≤ ψR2 with ψR2 := (ϕ2 − ϕ1) + ψR1 +

tanϕ2 ln
(

sinϕ1
sinϕ2

)
, optimal path is of type E+

1 ∗E−
2 S−;

∙ for ψR2 ≤ ψQ ≤ π the optimal path is E+
1 ∗E−

1 through
OW .

Moreover, for ψQ = ψR2 , any optimal path of type E+
1 ∗

E−
2 S−E−

1 turns out to have the same length ℓ of optimal path
E+

1 ∗E−
1 . Hence, for ψQ = ψR2 also E+

1 ∗E−
2 S−E−

1 is optimal.

Previous results have been obtained computing first and
second derivatives of L and nonlinear minimization techniques.

We are now interested in determining the locus of switching
points between extremals in optimal paths.

Proposition 7. For Q ∈CS with 0 < ψQ ≤ ψR1 , the switching
locus is the arc of E2 between P M = (ρP

sinϕ2 sin(ϕ2−ϕ1)
cosϕ1+cosϕ2

, ψM)

(included), where ψM = tanϕ2 ln
(

ρP
ρM

)
.

Proof: From Theorem 6, the optimal path from Q∈CS to
P is of type E+

1 ∗E−
2 . For ψQ = ψR1 the intersection between

E+
1 and E−

2 is M.

Proposition 8. For Q ∈CS with ψR1 < ψQ < ψR2 , the loci of
switching points M2 and N are the ∂SF2(P) and ∂SF2(M).

Proof: For Q ∈CS with ψR1 < ψQ < ψR2 , considering the
values of αM2 obtained in the computations of Theorem 6 we
obtain M2 ∈ ∂SF2(P). Furthermore, substituting those values
in the equation of the intersection point N between E1 through
Q and E2 through M2 we obtain N ∈ ∂SF2(M).



Region Optimal Path
I S−

II E+
1 ∗E−

2
II′ E+

2 ∗E−
1

III E+
1 ∗E−

1
IV E−

2 S−E−
1

V E+
1 ∗E−

2 S−

V′ S+E+
2 ∗E−

1
VI S−E−

1

Fig. 8. Optimal synthesis inside D(P).

Finally, for Q ∈CS with ψR2 ≤ ψ < π , the switching locus
reduces to the origin OW since two extremal Ei intersect only
in the origin for i = 1,2.

V. SHORTEST PATHS FROM ANY POINT IN THE MOTION
PLANE

The synthesis on C(P) induce a partition in regions of D(P).
Indeed, for any Q ∈ D(P), there exists a point V ∈C(P) such
that the optimal path γ from V to P goes through Q. The
Bellmann’s optimality principle ensure the optimality of the
sub–path from Q to P. Based on this construction the partition
of C(P) for δ

2 < Γ ≤ π−δ
2 (where E1 = T R

1 and E2 = T R
2 ) is

reported in fig. 8.

A. Optimal paths for points outside C(P)

Function FQ has been defined in 6 in order to transform
paths starting from Q inside C(P) in paths starting from
fQ(P) =

(
ρ2

P
ρQ

,−ψQ

)
outside C(P).

From other properties of FQ, such as Proposition 1, we have
also that an optimal path is mapped into an optimal path.
Hence, the optimal synthesis from points outside C(P) can
be easily obtained mapping through map FQ all borders of
regions inside C(P).

Proposition 9. Given a border B and Q ∈ B map FQ trans-
forms:

1) B =C(P) into itself;
2) B = ∂SF2(Q) in ∂SB1( fQ(P))
3) B = ∂SF1(Q) in ∂SB2( fQ(P))
4) B = Ei in arcs of the same type (i = 1,2)

Proof: The proof of this proposition can be found in [12].

Based on Proposition 9, the optimal synthesis of the entire
motion plane in case of δ

2 < Γ < π−δ
2 is reported in fig. 9.

Fig. 9. Partition of the motion plane for δ
2 < Γ < π−δ

2 .

Fig. 10. Partition of the motion plane for Γ= δ/2 (i.e. a SR border is aligned
with the robot motion direction, Borderline Frontal).

B. Optimal synthesis in the Frontal case

We first obtain the synthesis of the Borderline Frontal case,
i.e. Γ = δ

2 , reported in fig. 10 from the one obtained in the
previous section.

Notice that, E1 = T R
1 of the Side case degenerates in a

straight line H through OW for Γ = δ
2 . Indeed, referring to

fig. 8, points MF and PF degenerate on OW . As a conseguenze,
Region IV, IV and V I′ while coordinates ΨR1 and ΨR2 of
points R1 and R2 can be obtained from values in 6 replacing
ϕ1 = 0.

In the Frontal case, E1 = H becomes a spiral T L
1 , straight

lines from P and R2 split in straight line and a spiral arc
generating the partition reported in fig. 11. In this case, ϕ1 < 0
and points R1 and R2 do not lay on C(P) but on a circum-
ference through P with center (0,−ρP

sin2 ϕ1−sin2 ϕ2
2sinξ sinϕ1 sinϕ2

), where

ξ = t1+t2
t1 t2

ln
(

cosϕ1+cosϕ2
sin(ϕ2−ϕ1)

)
+ 1

t1
ln(−sinϕ1)− 1

t2
ln(sinϕ2). No-

tice that for ϕ2 =−ϕ1, this circumference coincide with C(P)
and the synthesis proposed in [12] is obtained.

Referring again to fig. 8, in the Borderline Side case (Γ =
π−δ

2 , i.e. the SR border is aligned with the axle direction and
ϕ2 =

π
2 ), E2 = T R

2 degenerates in E2 =C. Points R1 ≡ M and



Fig. 11. Partition of the motion plane for 0 ≤ Γ < δ
2 , i.e. Frontal case.

Fig. 12. Partition of the motion plane for Γ = π−δ
2 (i.e. a SR border is

aligned with the axle direction).

Fig. 13. Partition of the motion plane for π−δ
2 ≤ Γ < π

2 (i.e. axle direction
is included inside the SR).

R2 lays on C(P) with ΨR1 =
1+sinϕ1

cosϕ1
and ΨR2 =

π
2 −ϕ1+ΨR1 +

tanϕ1 ln(sinϕ1). The obtained synthesis is reported in fig. 12.
For the Lateral case E2 =C becomes E2 = T L

2 and the synthesis
of the Lateral case, reported in fig. 13, can be obtained from
the one in fig. 12.

The subdivision of the motion plane in case of π
2 < Γ ≤ π

can be easy obtained by using that one for 0 ≤ Γ ≤ π
2

considering optimal path followed in reverse order, i.e. forward
arc in backward arc and viceversa. Finally, a symmetry w.r.t.
XW axis of each subdivision of the motion plane for each
Γ ∈ [0, π] allows to obtain the correspond subdivision for
Γ ∈ [−π, 0].

VI. CONCLUSIONS AND FUTURE WORK

A complete characterization of shortest paths for unicycle
nonholonomic mobile robots equipped with a limited range
side sensor systems has been proposed. A finite sufficient
family of optimal paths has been determined based on ge-
ometrical properties of the considered problem. Finally, a
complete shortest path synthesis to reach a point keeping
a feature in sight has been provided. A possible extension
of this work is to consider a bounded 3D SR pointing to
any direction with respect to the direction of motion. A
more challenging extension would be considering a different
minimization problem such as the minimum time.
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