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A real time robust observer for an Agonist-Antagonist Variable Stiffness
Actuator.

T. Ménard, G. Grioli and A. Bicchi

Abstract— We consider the problem of estimating the time-
varying stiffness in real-time of a Variable Stiffness Actuator in
an agonistic-antagonistic configuration. The estimation of the
stiffness is done in two steps. First, we use operational calculus
which provides a relation between the positions/velocities of the
motors and the link, the torques of the motors and the stiffness.
Second, we combine the obtained relation with a polynomial
approximation of the stiffness and a recursive least square
algorithm to fit the data. Simulations and experimental results
are provided and demonstrate the effectiveness of the proposed
approach.

I. INTRODUCTION

The flexibility in robot actuators has long been considered
as a nuisance, because it lowers the accuracy of the
control. In the past decade, an inverse trend started,
due to the expansion of technology in everyday life, the
physical Human Robot Interaction (phHRI) has become of
importance. The idea of taking advantage of the compliance
of the actuators has then been developed. Indeed, a
compliant actuator allows to reduce the risk of injuries
in case of an accidental impact between the robots and a
human [1]. Furthermore, compliant actuators can be useful
to preserve mechanism [2] or to save energy [3]. Such
considerations have lead to the design of Variable Stiffness
Actuator (VSA) [4].
More precisely, VSA are devices for which both the
position and the stiffness of the system can be controlled.
For a detailed study about the existing devices, see
[5]. We consider here VSA which are made up of two
actuators and a flexible transmission which presents
nonlinear characteristics. For this category of VSA, two
main approaches exist. First the motors are placed in an
agonist-antagonist position and connected to the link via
nonlinear springs: for example, this approach has been
developed at the University of Pisa, where an experimental
device has been built [6]. Another architecture for a VSA is
an explicit stiffness variator, where a motor is dedicated to
position control and the other one to stiffness control. The
dynamics of the motors are decoupled. Such a device has
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been developed e.g. at the Istituto Italiano di Tecnologia [7].

The problem of controlling both stiffness and position
has been studied and some control law have been proposed
[8], [9], [10]. While the first is open-loop, the latter are
feedback control, then an accurate estimation of the stiffness
is needed. The main issue is that the stiffness is not directly
observable. It can be seen as a differential operator who
described the variation of physical quantities. A common
way to obtain an estimation of the stiffness is to deduce it
from a mathematical model, but such a method is prone to
error. Indeed, the mathematical model is usually complex
and subject to high imprecision. Furthermore, the stiffness
is intrinsically nonlinear for VSA.
For all these reasons, an on-line estimator for the stiffness
is far preferable. Several stiffness-observer exist in the
literature. A first approach to estimate the stiffness on-line
has been proposed in [11], the proposed observer error
estimation was shown in theory to be Uniformly Ultimately
Bounded. This restriction has been alleviated in [12], where
the observer is derived from a parametric approach coupled
with an analytic differentiation. Both these methods focus
on being the more general and less invasive, and are then
based on the link side. Observers designed specifically
for VSA devices have been proposed in [13] for AwAS
device, combined with control in [14] for the VSA-II device
and in [15] for an approach which only need position and
velocity measurements. A unified framework, and some
extensions, of the observer design for the AwAs and VSA-II
proposed in [13], [14] and [15] can be find in [23]. These
approaches have several points in common. First they are
based on the motor side. Second, they follow the same
scheme: obtain an estimation of the flexibility torque of the
flexible transmission, then, define a parametrization of the
torque and finally perform an analytical differentiation of
the obtained function. The drawback is that it is hard to
ensure the convergence of this type of method because even
if a sequence of functions converges (toward the flexibility
torque), conditions under which the associated sequence of
derivatives (the stiffness) converges are very restrictive and
hard to prove in this case.

In this work, we propose a different technique for the
estimation of variable stiffness for the Agonist-Antagonist
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VSA device, which tries to overcome some of the limitation
of the previous approaches. Instead of trying to get an
estimation of the torque of the flexible transmission, we
first use operational calculus and differential algebra (see
[16], [17] for theoretical foundations and [18], [19] for
applications to control) in order to obtain a relation between
the stiffness and the measured signals. A parametrization
of the stiffness is further injected in this relation, and a
Recursive Least Square allows to obtain an estimation of
the stiffness.
The main advantage of this approach is that the relation
obtained between the stiffness and the measured signals
is exact and involves only integrals of these signals.
Since we use only integrals of the measured signals, the
proposed approach is very robust to noise. Furthermore,
the convergence of this method is direct, since the relation
obtained is exact, the convergence is only up to the persistent
excitation of the signal.

The paper is organized as follow. Section II states the
problem. In section III, the basics of operational calculus are
recalled and the stiffness observer is derived. We compare the
observer proposed here with existing approach in section IV.
Section V report some results obtained applying the observer
on an experimental data set. Finally, we conclude in section
VI.

II. PROBLEM STATEMENT

In this paper, we consider an Agonist Antagonist Variable
Stiffness Actuator (AA-VSA). Such a device consists of
two motors connected in parallel to the driven link through
nonlinear flexible transmissions (see figure 1). In this section,
we recall briefly the dynamic model of an AA-VSA as in [6].

Let the positions of the two motors and the link be
represented by q1, q2 and qL, respectively. The variables
τ1 and τ2 are the torques of the the motors and τL is the
external torque on the link. The dynamics of the system are
then given by the following equations:

τ1 = J1 q̈1 + b1 q̇1 − f1(qL − q1), (1)
τ2 = J2 q̈2 + b2 q̇2 − f2(qL − q2), (2)
τL = JL q̈L + bL q̇L + g(qL)

+f1(qL − q1) + f2(qL − q2). (3)

The first two equations (1)-(2) depict the dynamics of
the motors, where J1, J2 are the moments of inertia and
b1, b2 the dampings. The third equation (3) represents the
dynamics of the link where JL is the inertia, bL the damping
and f1(qL − q1) and f2(qL − q2) are the elastic torques of
the variable stiffness coupling of each motor and the link.
The remaining term g(qL) = mg l2cos(qL) is the gravity
term acting on the link of mass m and length l. It is zero if

τ2

Motor 2

J2, b2

Link
JL, bL

Motor 1

J1, b1

q1 qL q2

τ1 f1 f2

•

g(qL)

Fig. 1. Description of an Agonist-Antagonist VSA with definition of the
variables.

the link moves in an horizontal plane.

The aim of this paper is to estimate the total device
stiffness σ which is associated to the total flexibility torque
f given by

f(φ) = f1(φ1) + f2(φ2), (4)

and

σ(φ) = σ1(φ1) + σ2(φ2), (5)

where

σi(φi) =
∂fi
∂φi

(φi), i = 1, 2, (6)

and φ = (φ1, φ2) with φi = qL − qi, i = 1, 2, correspond to
the deformation of each motor-transmission.

III. OBSERVER

We work here from the motor side, that is, we use
equations (1)-(2) to get an estimation of the stiffness. We
assume to have access to q1, q2, qL, the positions of the two
motors and the link, and τ1, τ2 the torques of the two motors.

The method is divided into two steps. First, we use
operational calculus framework in order to obtain a relation
between the stiffness and the available signals. Then, we
parametrize the stiffness by taking a Taylor expansion and
inject it in the relation previously obtained. Finally, we apply
a Recursive Least Square (RLS) algorithm to estimate the
coefficients of the parametrization. We give hints for the
application of the observer at the end of the section.

A. Operational calculus framework

We first recall the definitions and properties of operational
calculus. Then, we apply it to our problem.
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Definitions and properties:
Operational calculus is based on the Laplace transform. Its
main interest is that differential equations in the time domain
correspond to algebraic equation in the operational domain.

Definition 1: [20] Let f : R+ → R. If there exists β ∈ R
such that the function t 7→ e−βtf(t) is integrable on R+

then the Laplace transform of f exists and is defined by:

f̂(s) = L{f} (s) =
∫ +∞

0

e−stf(t)dt, (7)

where s ∈ C and <(s) ≥ β.
This transformation has numerous properties. We list here-
after the main properties which will be used here.

Proposition 1: [20] Let n ∈ N and f : R+ → R be
a function such that its Laplace transform exists. The
following properties hold true:
Derivative formulæ:

L{tnf(t)} (s) = (−1)n d
n

dsn
f̂(s). (8)

L
{
f (n)(t)

}
(s) = snf̂(s)− sn−1f(0)− . . . − f (n−1)(0). (9)

Properties:

L
{
tn−1

}
(s) =

(n− 1)!

sn
. (10)

1

sn
f̂(s) = L

{
1

(n− 1)!

∫ t

0

(t− ν)n−1f(ν)dν

}
(s). (11)

Application to the VSA observer problem:
In order to derive a relation between the stiffness and the
available signals, we start from equations (1)-(2):

Jiq̈i + biq̇i − fi(qL − qi) = τi, (12)

where i = 1 or 2. We first take the derivative with respect to
time of equation (12) in order to make the stiffness appear:

Jiq
(3)
i + biq̈i −

∂fi
∂φi

(φi).
dφi
dt

=
dτi
dt
. (13)

Considering equation (13) in the operational domain and
applying property (9), it becomes:

sτ̂i(s)− τi(0) = Ji
(
s3q̂i(s)− s2qi(0)− sq̇i(0)− q̈i(0)

)
+ bi

(
s2q̂i(s)− sqi(0)− q̇i(0)

)
− L

{
σi(φi)

dφi
dt

}
(s). (14)

In order to supress the dependance on the initial conditions,
we take the third derivative with respect to s of equation

(14):

3
d2

ds2
τ̂i(s) + s

d3

ds3
τ̂i(s) =

Ji

(
6q̂i(s) + 18s

d

ds
q̂i(s) + 9s2

d2

ds2
q̂i(s) + s3

d3

ds3
q̂i(s)

)
+bi

(
6
d

ds
q̂i(s) + 6s

d2

ds2
q̂i(s) + s2

d3

ds3
q̂i(s)

)
+
d3

ds3
L
{
σi(φi)

dφi

dt

}
(s). (15)

Roughly speaking, s corresponds to the derivative in the time
domain. Thus, in order to overcome the need of derivatives of
the measured signals, we divide equation (15) by s4. Going
back into the time domain, we fix t = T > 0 and apply
properties (8) and (11), we then obtain:

∫ T

0

1

6
(T − ν)3ν3σi(φi(ν))

dφi

dt
(ν)dν =∫ T

0
Ji((T − ν)3 − 9(T − ν)2ν + 9(T − ν)ν2 − ν3)qi(ν)dν∫ T

0
bi(−(T − ν)3ν + 3(T − ν)2ν2 − (T − ν)ν3)qi(ν)dν∫ T

0
−
1

2
(T − ν)3ν2 +

1

2
(T − ν)2ν3)τi(ν)dν (16)

In order to obtain a more reactive relation, we take the
integral over a finite time moving window. This is done
by considering the signal Heaviside(%)y(% + t) instead of
t→ y(t) in the previous equations. This simply means that
we move the time origin from 0 to %. We apply this and, in
addition, we take t = %+T > 0 and we apply the change of
coordinates u = Tν to have constant bounds on the integrals.
Finally, we obtain:

T 7

∫ 1

0

1

6
w3,3(u)σi(φi(t+ T (u− 1)))

dφi

dt
(t+ T (u− 1))du =

+T 4

∫ 1

0
Ji.G1(u)qi(t+ T (u− 1))du

+T 5

∫ 1

0
bi.G2(u)qi(t+ T (u− 1))du

+T 6

∫ 1

0
G3(u)τi(t+ T (u− 1))du, (17)

where

G1(u) = w3,0(u)− 9w2,1(u) + 9w1,2(u)− w0,3(u),

G2(u) = −w3,1(u) + 3w2,2(u)− w1,3(u),

G3(u) = −
1

2
w3,2(u) +

1

2
w2,3(u),

and wκ,µ(u) = (1− u)κuµ.
We can notice that we still need the first derivative of the
displacement in the left-hand side of equation (17), it will be
settled after the parametrization is done. The main advantage
of the relation obtained in this section is that it is exact,
indeed, there is no approximation made.
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B. Parametrization and RLS

We assume that both stiffness functions σi, i = 1, 2 can
be written as a Taylor series expansion and we consider the
truncature at order k:

σi(φi) ≈
k∑
j=0

aij
(φi)

j

j!
, (18)

where aij are constant parameters. We inject (18) into (17)
which gives:

Ci(t) =

k∑
j=0

aij .b
i
j(t), (19)

where

Ci(t) =

∫ 1

0
(Ji.G1(u) + Tbi.G2(u)) qi(t+ T (u− 1))du

+

∫ 1

0

(
T 2G3(u)

)
τi(t+ T (u− 1))du, (20)

and

bij(t)

=
T 3

6

∫ 1

0

w3,3

u
(t+ T (1− u)).

(
dφi
dt
×

(φi)
j

j!

)
(t+ T (1− u))du,

= −T 2

[
w3,3(u).

(φi)
j+1

(j + 1)!
(t+ T (1− u))

]1
0

+
T 2

6

∫ 1

0

dw3,3

du
(t+ T (1− u)).

(φi)
j+1

(j + 1)!
(t+ T (1− u))du,

=
T 2

6

∫ 1

0

dw3,3

du
(t+ T (1− u)).

(φi)
j+1

(j + 1)!
(t+ T (1− u))du. (21)

The second equality is obtained by applying an Integration
by part. The first term in the right-hand side of the second
equality is equal to zero because the function w3,3 vanishes
in 0 and 1, which give the third equality.
In more compact form, we have:

Ci(t) = ATi Bi(t), (22)

where Ai and Bi are column vectors such that the j-th
coordinate is aij and bij , respectively.
Finally, we apply the following RLS algorithm in order to
get an estimate Âi of Ai:

˙̂
Ai(t) = −P (t)Bi(t)(ÂTi Bi(t)− Ci(t)), (23)
Ṗ (t) = −P (t)Bi(t)BTi (t)P (t), (24)
P (0) = P (0)T > 0, (25)
Âji (0) = 0, j = 1, . . . , k + 1.

C. Implementation of the algorithm

We follow here the same lines as in [21]. Indeed, the
coefficients of equation (19) are in the form∫ 1

0

g(u)y(t+ T (1− u))du, (26)

where g is known and fixed before the experiment, while
y is measured during the experiment. We consider regu-
larly spaced samples with a sampling period Ts. Let ym
denote y(mTs). For an estimation time T = MTs, we
set tm = mTs/T and gm = g(mTs/T ) = g(m/M) for
m = 0, . . . ,M .
Let now Wm be the weights corresponding to the trapezoidal
method, that is, W0 = WM = Ts/2 and Wm = Ts,
m = 1, . . . ,M − 1.
The integral is given numerically by:∫ 1

0

f(t)dt ≈
M∑
m=0

Wmf(tm), (27)

which gives:∫ 1

0

g(u)y(t+ T (1− u))dν ≈
M∑
m=0

Wmgmyl−m. (28)

Finally, the coefficients are obtained from the output of a
classical Finite Impulse Response (FIR) digital filter with
impulse response cm = Wmgm, m = 0, . . . ,M (for more
details about FIR filter, see [22]).

IV. SIMULATION RESULTS

In this section, the performance of the proposed observer
is illustrated and compared with existing approach on simu-
lations.

A. Simulation

We consider an Agonist-Antagonist VSA mechanism real-
ized with two identical cubic springs whose force displace-
ment characteristic is described by:

fi = 10.(qi − qL)3. (29)

The parameters of the motors in the equations (1)-(2)-(3) are
given by, J1 = J2 = 10−4 kg.m−2, JL = 0.0179 kg.m−2,
b1 = b2 = 1.27N.m.s/Rad and bL = 0.0127N.m.s/Rad.
We consider the case without gravity, that is g = 0.
Two sinusoidal signal for τ1 and τ2 are given to the VSA
device as input and shown on figure 2b). We present a
simulation with a white noise on the measured data on
figure 2.
We compare here the approach proposed in this paper with
the approach proposed in [23] which is based on a residual
estimation of the flexibility torque.

set-up for the algorithm proposed in this paper
Since the force displacement is cubic, it is sufficient in
equation (18) to take k = 2. The parameters of the observer
are set as follow, the length of the time window for the
integral is T = 1 s and the covariance matrix for the RLS is
initialized at P (0) = 1010Id3. The sampling time is taken
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as Ts = 1/1000.

set-up for the approach proposed by Flacco et al. in [23]
We just recall here the values of the different parameters
needed. For more details, the interested reader is refered to
[23]. The gain KI for the residual based flexibility torque
estimation is set as KI = 103. The sampling time is the
same for both approaches: Ts = 1/1000. The order of
the basis for the least square estimation is k = 3. The
Recursive least square is started with P (0) = 106Id4 and
the parameters to be estimated are initialized at zero. The
derivative of the displacement angle is obtained with a
Kinematic Kalman filter (see [24]) and set as in [23].

Comparison of the two approaches
We can notice on figure 2 that both approaches provide
satisfying results. For a more precise comparison, we have
computed the Mean Square Error (MSE) and the Mean
Square Relative Error Percentage (MSREP):

MSE =

∑p
k=0[σ(k)− σ̂(k)]2

p
(30)

MSREP =

∑p
k=0

[(
σ(k)−σ̂(k)

σ(k)

)]2
p

(31)

after the convergence of the methods, that is between 2s and
10s. The results is given in the following table:

Operational calculus Flacco et al.
MSE 4.2 51.8

MSREP 0.7 22.26

We see that the approach proposed here show much better
performance. Another advantage of the approach proposed
here is that it relies on an exact expression which does not
involve any time derivative of the measured signals, then
we don’t need to compute numerical time derivative and the
convergence of this method only depends on the persistent
excitation of the regression vector given by equation (21)
while the approach of Flacco et al. can hardly be proved
since it relies on the fact that the derivatives sequence cor-
responding to a convergent sequence of functions converge
as well.

V. EXPERIMENTAL RESULTS

A. Set-up description

The algorithm has been tested on an experimental VSA
device with exponential springs. We do not recall here the
characteristics of this device and the model based estimate,
which are fully described in [11].
Due to uncertainties in the model of the actuator and in the
identification of the model parameters, the knowledge of the
true stiffness is reliable up to an error about 25% represented
by the horizontal line in figure 3d).

a) positions of the motors and the link
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c) total stiffness and its approximation given by
the approach proposed in this paper
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Fig. 2. Results of simulation: performance of the observer tracking the
stiffness of an Agonist-Antagonist VSA system with white noise on the
measured data.

The order of the series expansion has been set to 10 for both
sides of the VSA device. The covariance matrix for the RLS
(25) has been initialized with P (0) = 107I10.

B. Results

The data received from the device is reported on figures
3a) and 3b). The stiffness is reconstructed in real-time as
shown on figure 3c) and the relative error between the model-
based and observer-based estimate is presented on figure 3d).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an observer which
reconstruct the stiffness of a Variable Stiffness Actuator in
real-time using the positions of the motors and the link and
the torques of the motors. Two points have been improved
compared to the existing observer. First, no derivative of
the measured signal is needed. Second, the convergence
is ensured, provided that the signal given to the RLS is
persistently excited. Comparison with the existing observer
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a) positions of the motors and the link
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b) torques of the motors
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c) total stiffness and its approximation
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d) relative error
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Fig. 3. Experimental results: data obtained from the AA-VSA and results
obtained using the observer presented in this paper.

on simulation show that we obtain better performance.
Furthermore, it is applicable in practice, as demonstrated by
the experimental part.

The tunning of the observer and particularly the length
of the time window for the integral has to follow a tradeoff
between reactivity and robustness. A more detailed study for
the set up of the observer will be adressed in future work.
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