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Abstract—To adapt to many different objects and tasks, hands
are very complex systems with many degrees of freedom, sensors
and actuators. In robotics, such complexity comes at the cost
of size and weight of the hardware of devices, but it strongly
affects also the ease of their programming. A possible approach to
simplification consists in coupling some of the degrees of freedom,
thus affording a reduction of the number of effective inputs,
and eventually leading to more efficient, simpler and reliable
designs. Such coupling can be at the software level, to achieve
faster, more intuitive programmability; or at the hardware level,
through either rigid or compliant physical couplings between
joints.

Physical coupling between actuators and simplification of
control through the reduction of independent inputs is also an
often–reported interpretation of human hand movement data,
where studies have demonstrated that few “postural synergies”
explain most of the variance in hand configurations used for
grasping different objects. Together with beneficial simplifica-
tions, the reduction of the number of independent inputs to a
few coupled motions or “synergies” has also an impact on the
ability of the hand to dexterously controlling grasp forces and
in-hand manipulation. In this paper, through the analysis of a
quasi–static model, grasp structural properties related to contact
force controllability and object manipulability are defined. The
controllable internal forces and motions of the grasped object
are related to the actuated inputs: the paper investigates to what
extent a hand with many joints can exploit postural synergies to
control force and motion of the grasped object.

I. INTRODUCTION

Robotic hands have many degrees of freedom distributed
among several kinematic chains, the fingers. The complexity
of the mechanical design is needed to adapt hands to the
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many kinds of tasks required in unstructured environments.
Roboticists over the years have attempted to imitate the human
hand in terms of dexterity and adaption capabilities. Some
remarkable example of robotic hand design are the UTAH/MIT
hand [28], the DLR hand II [11], the Shadow hand [31]. One
of the main issues in designing and controlling robotic hands
is that a large number of motors is needed to fully actuate
the degrees of freedom but this comes at the cost of size,
complexity and weight of the device. This disadvantage could
be overtaken if robotic hands were actuated and controlled
by a reduced number of inputs, thus resulting more efficient,
simpler and reliable than their fully actuated alternatives, as
shown in [4], [6], [9].

A promising direction in the design of robotic hands focuses
on two key principles: underactuation and passive mechanical
adaptation. Underactuation in robotics [8] essentially refers to
systems that have more degrees of freedom than actuators.
More specifically, in this type of system the Degrees of
Freedom DoF are more than the Degrees of Actuation DoA
[7]. In grasping and manipulation tasks the unactuated joints
often have elastic elements [8], [20], [38], however there are
also underactuated hands without elastic elements, e.g. the
solution proposed in [19]). If elastic elements are present
in non–actuated hand joints we should consider these joints
as uncontrollable or passively driven instead of unactuated.
The presence of passively actuated joints allows the hand to
self-adapt to the surface in a simple and robust way [29],
[6]. A quasi-static model of underactuated compliant robotic
hands is described in [15]. Grasp properties with underactuated
hands and in particular grasp stiffness are analysed in [34]. An
anthropomorphic underactuated robotic hand with 15 DoF and
a single actuator is described in [27].

A simplified control seems to inspire also biological systems
and in particular motor control of human hands, which share
with robotic ones the large number of degrees of freedom.
Studies in neuroscience [45], [46] demonstrated that a limited
set of input variables, named postural synergies, are able
to describe most of the variance in hand movements and
configurations in grasping tasks. Recently, these studies on
human hands inspired new researches on design and control
strategies for robotic hands whose main issue is to achieve
a trade-off between simplicity, gained through synergy based
control, and versatility [10], [16]. In [16] and later in [17]
the synergy concept has been applied to control different
hand models: a simple gripper, the Barrett hand, the DLR
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hand, the Robonaut hand and the human hand model. In [10]
authors proposed a robotic hand design able to match postural
synergies mechanically coupling motion of the single joints.
Postural synergies in robotic hands allow to control the whole
device, with nq joints, through a lower dimension set of actions
nz ≤ nq: indicating with q̇ hand joint velocities, the following
relationship can be defined

q̇ = Sż. (1)

where S is the synergy matrix and ż represents synergy
velocities. Columns of the matrix of synergies S ∈ <nq×nz

represent the so-called postural synergies, also referred as
eigengrasps in the literature, e.g. in [16], in other terms the
joint velocities that are obtained acting on each single synergy
żi.

In human hands the synergies can be evaluated analysing
measures of hand postures, for instance performing a Principal
Component Analysis (PCA) of hand postures during grasp-
ing operations in which hand configuration is experimentally
measured, as described in [45]. In robotic hands, where a me-
chanical coupling between joints postural synergies is present,
synergies can be derived from the kinematic analysis of joint
couplings and constraints. In the artificial, hand synergies can
be introduced also at the control level: in this case the coupling
between hand joints is managed by the hand control system.
In [47] an impedance control for multifingered robotic hands
based on the definition of postural synergies was proposed. It
was implemented on the DLR hand II [11], whose postural
synergies were defined performing a PCA analysis on a wide
database of grasp configurations. In [26] a procedure (based
on the task–object space) to map human hand synergies on
robotic hands, even with a kinematic structure very dissimilar
from the anthropomorphic one, is proposed and discussed. In
[22] the postural synergies configuration subspace of the UBH
(University of Bologna Hand) [30] are evaluated: this study is
based on the kinematic structure of the robotic hand and on
the taxonomy of the grasp of common objects.

Intuitively, reducing the number of control inputs, from nq
actuated joints to nz synergies, may reduce the dimension of
the force and motion controllability subspaces thus compro-
mising the dexterity of the given robotic grasp. However, this
is not true in general and strongly depends on the column
space of synergy matrix S. Some of the main questions to
answer when interpreting the motion and force control in the
light of synergies are: how many synergies have to be involved
in a given grasp? which are the contact forces which result
to be controllable when acting on synergies instead of each
single actuator, independently? is a synergy based actuation of
the robotic hand sufficient to guarantee a stable and efficient
grasp? what kind of force feedback information is needed to
implement the feedback controller based on synergy?

In this paper we tried to find some answer to these ques-
tions, extending to synergy controlled hands previous results
described in [2], [3], [42].

Differently from other approaches where the actual joint
variables is a linear combination of synergies [10], [16], in this
paper we define the postural synergies as a joint displacement

aggregation corresponding to a reduced dimension represen-
tation of hand movements according to a compliant model of
joint torques.

Compliance is one of the most important aspects to consider
for characterizing the grasp of a robotic hand on an object or
on a tool, especially when fine manipulation or high precision
is required, e.g. in assembling components. In the analysis
of grasping, in general, different compliance sources have to
be taken into account: contact stiffness, due for example to
fingertip elasticity, actuator stiffness, given by the position
control static gain, structural compliance, due to the mechan-
ical deformation of hand elements (joints, drive cables, links,
etc.) [18].

A preliminary version of the study of hands with postural
synergies was presented in [43]. With respect to that paper, the
present one adds details to the grasp model, including terms
that were not considered in [43], e.g. geometrical stiffness
terms coming from hand Jacobian derivatives [13], [18], [40],
and provides a complete solution to the quasi–static model,
defining the mapping matrices between the input reference
systems and grasp configuration and forces. The evaluation
of rigid body motion subspace has been simplified with
respect to [43], using results coming from the quasi–static
solution. Furthermore, more examples are provided, including
an anthropomorphic hand model.

In cases where phalanges have a contact surface, during
grasp and manipulation operations it is very common that
some of the contacts are rolling [35], [39]. However, since the
attention in this paper is focused on the definition of structural
grasp properties related on the presence of a limited number
of actuators, for the sake of simplicity the study is limited to
precision grasps with point contact and friction [44], and the
rolling in contact is not considered. Rolling contact modeling
is important in the dynamic evolution simulation of grasp as
presented in [25]: however, in a quasi–static contest it has
effect only in the definition of geometrical stiffness terms [12].

The paper is organized as follows: Section II introduces the
main definitions and equations necessary in grasp analysis.
Section III describes the contact forces and object motions
controllable by the input synergies. Section IV discusses the
properties of force and rigid body motion subspaces. Section V
shows the results described in the preceding sections with
some numerical examples, relative to hands with increasing
complexity: a simple gripper, a robotic hand with kinematics
similar to the Barrett hand and an anthropomorphic hand.
Finally, Section VI concludes the paper. In the Appendix the
details of some mathematical steps are provided.

II. MODELING HANDS WITH SYNERGIES

Consider a robotic hand grasping an object as in Fig. 1. Let
{N} represent the inertial frame fixed in the workspace and
let frame {B} be fixed to the object. Let u ∈ <nd denote the
vector describing the position and orientation of {B} relative
to {N}, nd = 3 for planar systems, nd = 6 for spatial systems,
ξ ∈ <nd the object twist, and w ∈ <nd the wrench applied to
the object, all expressed with respect to {B}.
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Fig. 1: Hand–object grasp with postural synergies: main quan-
tities.

Let nc be the number of contact points, let {Chi } be the
reference frame on the i-th contact point, connected to the
hand, and {Coi } the corresponding reference frame connected
to the object. Let ĉhi , ĉ

o
i ∈ <nd denote the vector describing

the position and orientation of {Chi } and {Coi }, respectively,
relative to {B}.

Let wc
o
i

chi
∈ <nd be the wrench that the hand exerts on

the object on the i-th contact point, whose components are
expressed with respect to {Coi }.

A suitable contact model is introduced to define contact
constraints and forces [44]: for each contact i, the contact force
vector λi ∈ FCi ⊂ <li , is defined, in which li depends on
the contact type and FCi represents the subspace of allowable
contact forces. For example, for a point contact with friction
model, li = 3 and FCi is the so–called friction cone, defined
as

FCi = λi ∈ <li :
√
λ2i,1 + λ2i,2 ≤ µλi,3

where λi,1 and λi,2 are the contact force components orthog-
onal to the contact point normal direction, λi,3 represents the
normal contact force, and µ is the friction coefficient [37].
The object static equilibrium equation can be expressed with
respect to the object reference frame {B} as

w +Gλ = 0 (2)

in which λ = [λT1 , · · · , λTnc
]T, λ ∈ <nl , where nl =

∑nc

i=1 li,
and G ∈ <nd×nl is the Grasp matrix [37].

The general solution of eq. (2), assuming that w is in the
column space of G, R(G), is λ = −G+w+Aχ, where G+ is
a generic right–inverse of the grasp matrix and A ∈ Rnl×nh

is a matrix whose columns form a basis of the nullspace of G,
N (G), and the vector χ ∈ Rnh parametrizes the homogeneous
part of the solution. The term Aχ represents the solution to
eq. (2) when no external load w is applied, and is usually
referred to as internal forces. For general grasp kinematics,
and in particular in hands with few actuators, controlling
internal forces is not straightforward since the number of
internal forces directions, i.e. the dimension of the subspace
N (G), turns out to be larger than the number of controlled
joint actions [2], [3].

According to the defined contact model, we can highlight
the constrained components of the relative motion in two
vectors vc

o

co , v
co

ch ∈ <
nl . A linear relationship exists between

the contact twist components constrained by the contact model
and the object twist, i.e. vc

o

co = GTξ. Similarly we can
select from the vectors ĉoi and ĉhi the components coi and
chi , constrained by the contact model and collect them in
the vectors co = [co1, · · · , conc

] and ch = [ch1 , · · · , chnc
]. We

can furthermore approximate the contact frame variation as a
function of object configuration variation as

∆co = GT∆u (3)

Let q = [q1 · · · qnq
]T ∈ <nq define the vector of joint

displacements. The components of contact point twists on
the hand, constrained by the contact model, and expressed
with respect to {Coi } reference frames, can be evaluated as
a function of hand joint velocities as vc

o

ch = Jq̇, in which
J ∈ <nl×nq represents the hand Jacobian matrix. The contact
frame displacement can be expressed as a function of joint
variation as

∆ch = J∆q (4)

Considering a generic equilibrium configuration of the hand,
the contact forces are balanced by the joint action τ ∈ <nq ,
i.e.

τ = JTλ (5)

More details on G and J matrices evaluation of can be found
in [37] and are summarized in the Appendix for the reader’s
convenience.

The hand forward kinematic analysis allows to find a
relationship between the synergy value z and the reference
joint value qr, that can be different from the actual one q,
since a compliant actuation model is adopted for the hand
joints. In the most general case, we can suppose the forward
kinematic relationship to be nonlinear

qr = fz(z) (6)

where fz : <nz → <nq represents the kinematic map. More
in general, the hand can be represented as a mechanism with
nz degrees of freedom, in which the variables z ∈ <nz

represent the Lagrangian coordinates adopted as a minimum
representation of hand configuration, while qr represent a
redundant configuration representation, adopted in this case
to simplify the management of the contact with the grasped
object. Standard analysis tools for mechanism kinematics
can be adopted to define the function fz representing the
direct kinematic relationship between redundant configuration
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representation and Lagrangian coordinates z [21], [48]. More
practically, the function fz can be determined by the analysis
of the mechanical structure of the hand, or evaluated by means
of data analysis procedures. For instance, in [45], the synergies
for the human hand were evaluated performing the Principal
Component Analysis on a set of experimental measures of
hand postures, the same technique was adopted in [47] to
evaluate the synergies for the DLR-II robotic hand. The
kinematic relationship defined in eq. (6) can be differentiated
in order to express the joint displacement variation with respect
to a initial reference condition, as a function of the synergy
variation:

∆qr = S∆z (7)

where S = ∂fz
∂z ∈ <

nq×nz is the synergy matrix, that in the
more general case depends on hand configuration and then on
z. Finally, if we consider the hand synergy actuation, in an
equilibrium configuration the following relationship between
joint torques τ and synergy generalized forces σ holds

σ = STτ (8)

Often in robotic hands, and particularly in underactuated
ones, compliance could be significant, furthermore, the intro-
duction of compliance allows to solve the indeterminacy of the
static problem [2]. According to the definition of grasp matrix
and hand Jacobian matrix previously introduced in eq. (3)
and (4), a variation of contact force can be expressed as

∆λ = Ks(∆c
h −∆co) = Ks(J∆q −GT∆u) (9)

where Ks ∈ <nl×nl is the contact compliance matrix, sym-
metric and positive definite.

As outlined in [18], often the structural stiffness of the links
and the controllable servo compliance of the joints have the
same order of magnitude of the contact stiffness. A variation
of joint torques with respect to a reference initial condition
can then be expressed as

∆τ = Kq(∆qr −∆q) (10)

where Kq ∈ <nq×nq is the joint stiffness matrix, symmetric
and positive definite.

Also for the synergies, we assume a compliant model,
defined as compliant postural synergies, or soft synergies
previously introduced in [5], [23], [24]. According to this
compliant model, a variation of the synergy actuation forces
can be evaluated as

∆σ = Kz(∆zr −∆z) (11)

where Kz ∈ <nz×nz is a symmetric and positive definite
matrix that defines the synergy stiffness, and ∆zr represents
the a variation of the synergy reference value.

In the following, we furthermore indicate with Cs, Cq ,
and Cz the compliance matrices, corresponding to stiffness
matrices Ks, Kq , and Kz , respectively, i.e. Cs = K−1s , and
so on.

III. FORCES AND OBJECT DISPLACEMENTS CONTROLLED
BY SYNERGIES

A. Quasi-static linearized system equations

Let us consider an equilibrium configuration where an
object with an external wrench w0 is grasped by a hand whose
synergy reference values are zr,0 and the corresponding joint
displacements are q0. The contact forces in this reference equi-
librium are λ0. Starting from this equilibrium configuration,
we consider a small variation of the input synergy reference
values ∆zr, which leads to an actual variation of the postural
synergies ∆z, to a variation of the joint displacement ∆q
and a variation of contact forces ∆λ for the new equilibrium
configuration of the quasi-static model.

Since this work studies the effect on the grasp due to
changes of the postural synergies, which play the role of
controlled variables, no other actions are considered on the
grasp, and we suppose that the object wrench w0 is kept
constant. If the system is asymptotically stable, after the
superimposition of the input variation, it will tend to a new
equilibrium configuration [37], [42].

If the new equilibrium configuration is sufficiently near to
the reference one, we can assume that the system can be
locally linearised.

Let us then consider the equilibrium equations described in
the preceding section in the new equilibrium configuration. In
eq. (2), the grasp matrix is constant if rolling motion is not
considered, and if the object equilibrium equation is expressed
with respect to {B} reference frame. The object equilibrium
in the new configuration, with the same external wrench, can
be described by the following equation

0 = −G∆λ (12)

We observe that ∆λ ∈ N (G), that is the variation of contact
force due to a variation of reference synergy input belongs to
the internal force subspace. As discussed in the introduction,
for the sake of simplicity this study is limited to precision
grasp with point contact and friction [44], and the rolling in
contact is not considered. If it was introduced in the model,
the variation of contact points during surface rolling should
be taken into account by considering also G matrix variation
in the linearization of eq. (2), as presented e.g. in [25].

Let us then consider the hand equilibrium equation, accord-
ing to eq. (5). It is worth to note that the hand Jacobian
matrix depends on both the hand joint configuration q and
on object displacement vector u, i.e. J = J(q, u). The joint
torque variation ∆τ can be then expressed as

∆τ = JT∆λ+KJ,q∆q +KJ,u∆u (13)

where KJ,q ∈ <nq×nq and KJ,u ∈ <nq×nd represent the
derivatives of hand Jacobian matrix with respect to q and u
respectively, evaluated in the reference equilibrium configura-
tion

KJ,q =
∂(JTλ0)

∂q
, KJ,u =

∂(JTλ0)

∂u
(14)

It is worth observing that, even if KJ,q and KJ,u elements
are dimensionally a stiffness, these terms do not represent
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physical stiffness elements, but rather they take account for the
dependency of the hand Jacobian on the grasp configuration.
For this reason, they are usually referred to as geometric
terms. Furthermore, even if KJ,q is square, it is in general non
symmetric [14]. Both matrices depend on the initial contact
force λ0. In [12], it was proved that these terms are necessary
to obtain a conservative congruence transformation from joint
torques to workspace wrench.

Finally, concerning the relationship between synergy actions
and joint torques, from eq. (8), and recalling that in the more
general case the synergy matrix is not constant and depends on
the synergy value, we can express the variation ∆σ as follows:

∆σ = ST∆τ +KS,z∆z (15)

where

KS,z =
∂Sτ0
∂z

(16)

Matrix KS,z ∈ <nz×nz elements are dimensionally a ratio
between a generalized force and a generalized displacement,
and depends on the initial torque value τ0.

We can summarize equilibrium conditions described by
eq. (12). (13), (15), the constitutive conditions described by
eq. (9), (10), (11), and the congruence condition described by
eq. (7), in the following linear system

A∆x = ∆y (17)

where A matrix is square and is defined as follows

A =


0 0 G 0 0 0

KJ,u KJ,q JT −I 0 0
0 0 0 ST −I KS,z

KsG
T KsJ I 0 0 0

0 Kq 0 I 0 −KqS
0 0 0 0 I Kz


while ∆x (unknown terms) and ∆y (input vector) are defined
as

∆x =


∆u
∆q
∆λ
∆τ
∆σ
∆z

 ∆y =


0
0
0
0
0

Kz∆zr


The solution of this linear system allows to find a map-
ping between the input controlled variable, i.e. the synergy
reference variation ∆zr, and the output variables. In this
paper, in particular, we are interested in the study of internal
force variation ∆λ, object motion ∆u and hand configuration
variation ∆q.

Here we summarize the main results and input/output rela-
tionships that will be necessary to discuss the controllability
of internal forces and object motion in the following section.
The solution of the linear system is detailed in the Appendix.

By defining the following matrices

G+
K = KsG

T(GKsG
T)−1

Pq = (I −G+
KG)KsJ

Vq = (GKsG
T)−1GKsJ

Uq = (JTPq +KJ,q +KJ,uVq)

X = (Uq +Kq)
−1Kq

Z = (STUqXS +KS,z)

Y = (Z +Kz)
−1Kz

the solution of the system described in eq. (17) can be
expressed as

∆z = Y∆zr (18)
∆σ = ZY∆zr (19)
∆q = XSY∆zr (20)
∆τ = UqXSY∆zr (21)
∆u = VqXSY∆zr (22)
∆λ = PqXSY∆zr (23)

Eq. (20), (22) and (23) can be simplified as

∆q = XSY∆zr (24)
∆u = V∆zr (25)
∆λ = P∆zr (26)

where Q = XSY , P = PqXS, and V = VqXSY are matri-
ces mapping synergy references values to joint configuration,
contact force and object configuration variations, respectively.

Remark 1: Starting from a reference configuration and act-
ing on synergies ∆zr, the joint displacements depends both
on the synergy matrix S and on the whole system compliance.
When the hand is making contact with an object or with the
environment, ∆q 6= S∆zr.

If the synergy actuation is perfectly stiff, i.e. if Cz = 0, it
is easy to show that Y = I and thus ∆z = ∆zr. Furthermore,
if the links are perfectly stiff and the joint control gains are
infinite, i.e. Cq = 0, it results that X = I and ∆q = S∆z.
Summarizing, in case of Cz = 0 and Cq = 0 one gets a
simplified version of eq. (24)

∆q = S∆z = S∆zr (27)

which is similar to the definition of synergy control given in
[10], [16].

B. Controllable internal forces

In eq. (26), ∆λ corresponds to the contact force variation
obtained by applying a variation on the reference synergy
variables ∆zr, without modifying the external wrench w0.
These contact forces can be referred to as controllable internal
forces: controllable, since they can be modified by acting on
∆zr, internal because they do not involve a variation in the
external wrench applied on the object [2].

The control of internal forces is paramount in robotic
grasping [44]. It allows to steer the contact forces to satisfy
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the constraints imposed by friction at the contacts, thus guar-
anteeing not to loose adhesion with the object which would
compromise the whole grasp.

From eq. (26), we can define a basis matrix Es for the
subspace of controllable internal forces by postural synergies
as

R(Es) = R (P ) (28)

All internal forces controllable by synergy actions can then be
parametrized through a free vector α, i.e.

∆λ = Esα

C. Controllable rigid-body object motions and hand joint
redundant motions

Eq. (25) shows how the object displacements ∆u are
controlled from one equilibrium configuration to another by
small synergy variations ∆zr. Among all the possible motions
of the grasped objects, rigid-body motions are paramount since
they do not involve visco-elastic deformations in the contact
points.

A rigid-body motion is characterized by a null variation of
the contact force ∆λ, and then, from eq. (9), the following
constraint equations hold

J∆q −GT∆u = 0, (29)

which relates joint displacements and object displacement.
We then need to evaluate which object rigid-body motions,

complying with eq. (29), are controllable acting on synergies.
We observe that the synergy reference values that modify
hand and object configuration without modifying the contact
force values, from eq. (26), are a solution of the homogeneous
system

P∆zr = 0 (30)

in other terms rigid body motions are generated by reference
synergy variations ∆zrh that belong to the P matrix nullspace

∆zrh ∈ N (P ) (31)

The corresponding object displacement, ∆uh, according to
eq. (25) is given by

∆uh = V∆zrh (32)

Furthermore, the corresponding hand configuration variation
∆qh, according to eq. (24) is described by the vector

∆qh = Q∆zrh (33)

We observe that the synergy reference values defined in the
subspace

∆zrr ∈ (N (P ) ∩N (V )) (34)

i.e. the solutions of the homogeneous contact force problem
defined in eq. (30) that belongs to the nullspace of V matrix,
do not produce contact force variation, neither object motion:
they then modify hand configuration without modifying object
conditions and can be referred to as hand redundant motions.
The corresponding hand configuration variation is

∆qrr = Q∆zrr (35)

It is clear from eq. (29) that hand and object configurations
variations that do not involve contact force modifications can
be evaluated by computing

N
[
J −GT

]
(36)

as described, for instance, in [41]. A matrix Γ can then be
defined, whose columns form a basis of such subspace. Under
the hypothesis that the object motion is not indeterminate [44],
i.e. N (GT) 6= 0, i.e. the object is completely restrained by
contacts, matrix Γ can be expressed as

Γ = N
([

J −GT
])

=

[
Γqr Γqc
0 Γucq

]
(37)

where Γqr is a basis matrix of the subspace of redundant
motions N (J), and Γqc and Γucq are conformal partitions
of a complementary basis matrix. The image spaces of Γqc
and Γucq consist of coordinated rigid–body motions of the
mechanism, for the hand configuration and the object position
and orientation, respectively.

The description of rigid body motion in eq. (37) does not
take into account the synergy actuation system and then the
solution found with this method could be infeasible acting
on synergies. The rigid body motions compatible with object
equilibrium equation and reachable acting on the synergy
reference values are given by

∆urb ∈ R(Γucs) = (R(V ) ∩R(Γucq)) (38)

It is worth to note that rigid-body motions of the object are not
all the possible motions of the object controlled by synergies
as in (25), since the subspace of all synergy controlled object
motion R(V ) also contains motions due to deformations of
elastic elements in the model. Summarizing, all rigid-body
displacements of the object can be parametrized through a
free vector β as

∆uh = Γucsβ

Similarly the description of hand joint redundant motions
obtained from eq. (37) do not take into account the synergy
actuation system and then also in this case the solution found
with this method could be unfeasible acting on the synergies.
The hand joint redundant motions ∆qrr, reachable by acting
on the synergy reference values ∆zr belong to the subspace
Γqrs defined as

∆qrr ∈ R(Γqrs) = (R(Q) ∩R(Γqr)) (39)

Summarizing, all hand redundant motions can be parametrized
through a free vector γ as

∆qrr = Γqrsγ

IV. INTERNAL FORCES AND RIGID-BODY MOTION
CONTROL

In grasps by hands controlled with few synergies it is pos-
sible that not all the object motions and contact forces result
controllable by synergistic actions. According to eq. (38),
desired quasi-static rigid-body object motions ∆udes can
be performed if they remain within subspace R(Γucs) and
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analogously, according to eq. (26) and (28), arbitrary quasi-
static contact force displacements ∆λdes can be performed
if they evolve within subspace R(Es) defined in eq. (28). It
is worth noting that with the results obtained up to here, we
can arbitrarily control motions in R(Γucs) or contact forces
in R(Es) but we are not guaranteed that in coupled motion
and force control, we can jointly but independently control two
vectors lying on these subspaces.

In grasping, however, due to the presence of unilateral,
conic contact constraints, task specifications can not be given
disjointly in terms of either object positions or contact forces.
Therefore conditions ∆udes ∈ R(Γucs) and ∆λdes ∈ R(Es)
are only necessary, but no longer sufficient, for joint control
of object motions and contact forces. Moreover, specifications
of jointly controllable object motions and contact forces may
not exhaust the control capabilities of synergy actions for the
given grasp due to the presence of synergy redundancy.

Our goal is to define a set of controlled outputs for a
grasp with synergies that is guaranteed to be feasible with
synergy actions, that fully exploits the control inputs, and
that is convenient for the specification of the tasks. The
first requirement implies that the output vector of forces
and motions can be controlled by synergies, the second that
controlled output vector has the same dimension nz of the
synergy vector zr and the third that the output vector consider
the typical approach of a grasping task:
• contact forces that can be controlled so as to avoid

violation of contact constraints;
• object trajectories that can be accommodated for by the

grasp with synergies;
• reconfiguration of limbs in the presence of redundancy in

synergies.
The following theorem proposes a set of outputs for grasps
with synergies.

Theorem 1: Under the technical assumption that the grasp
is not indeterminate (N (GT) = 0), consider the quasi–static
model of any grasp with synergies described in (25) and (26).
It is always possible to control, jointly but independently, the
controllable internal forces, the rigid-body object motions and
redundancy with the synergy displacement ∆zr control input.
In the general case, since the system is compliant, a variation
in the contact forces cause a displacement of the grasped
object. Therefore, in general, contact force variation and object
displacement are related. This theorem states that, if we have
a sufficient number of DoF, we can use them to control
independently internal forces and rigid-body object motions.
Thus, in this context, jointly and independently means that
contact forces and object motions are not related each other
and can be independently controlled acting on the available
inputs. Algebraically, this corresponds to state that for any α,
β and γ, there always exists a ∆zr solving the linear system
of equations  Esα

Γucsβ
Γqrsγ

 =

 P
V
Q

∆zr (40)

where Γucs and Γqr have been defined in eq. (37), and Es has
been defined in eq. (28).

Moreover, solution for ∆zr is unique and the number of
synergies nz is equal to the sum of the dimensions of the
controlled output subspaces:

nz = #(Es) + #(Γucs) + #(Γqrs) (41)

Proof :
The theorem and the proof were originally presented in

[43], however it has been summarized here for the readers’
convenience, since several additional considerations on hand
model, discussed in the previous sections, have been proposed
with respect to that work.

Linear system (40) can be rewritten as α
β
γ

 =

 E+
s P

Γ+
ucsV

Γ+
qrsQ

∆zr (42)

where B+ = (BTB)−1BT denotes the pseudoinverse of a
basis matrix B.

The linear system in eq. (42) is square if the number
#(Γucs) + #(Es) + #(Γzr) = nz where #(N) denotes
the number of colums of matrix N . This can be proved by
observing that, since Γzr, Γucs, and Es are full column rank
by definition, observing that #Es = #R(P ), according to
eq. (28), and #R(Γucs) + #R(Γqr) = #N (P ), according to
eq. (38) and (39).

To complete the proof it suffices to show that coefficient
matrix in (42) is full row rank which is equivalent to prove
that

N

 E+
s P

Γ+
ucsV
Γ+
zrQ

T = {0}. (43)

Each block of the matrix in the equation above is full
column rank, in fact:

- Es is a basis for R(P ) (cf. eq. (28));
- R(Γucs) ⊆ R(V ), directly from eq. (38) and is a basis

for object rigid body motions;
- Γzr ⊆ R(Q) from eq. (39) and is a basis for hand

redundant motions.
Hence, to prove eq. (43) it is sufficient to show that the
raw spaces of the three blocks are also mutually linearly
independent and this directly follows from the definitions of
internal forces, rigid body object motions and redundant hand
motions in eq. (28), (38), and (39).
�

Remark 2: The result in eq. (41) deals with dimensions of
subspaces and is numerical in nature. It states a very basic
structural property of grasp analysis with postural synergies: if
nz control inputs are available, one cannot control, jointly and
independently, more than nz variables among internal forces,
object motion directions and kinematic redundancy.

Remark 3: The result in eq. (40) deals with grasp control
with postural synergies. When the mechanical structure is
complex, with many joints, but the control inputs are few, it
is not easy to understand which synergy one needs to activate
to accomplish a given tasks. The solution of linear system in
eq. (40) allows to simply compute the control variables, the
synergy references, according to the task to be performed.
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Fig. 2: A four DoF planar gripper grasping an object with two
contact points.

These results are useful also to find the minimal design
requirements in terms of number of synergies to be used to
accomplish the given task.

It is worth emphasizing that the motions of the object
considered in this paper are those performed with respect to
the palm of the hand. In other terms, we are considering fine
motion control of grasped objects more than large displace-
ments, which can be performed by moving the wrist of the
arm.

Finally, note that results presented in this paper are still
valid for fully actuated robotic hands provided the matrix S
is substituted with the identity matrix.

V. NUMERICAL EXAMPLES

The numerical simulations presented in this section were
performed using Syngrasp [33], a set of Matlab functions
devoted to the simulation and analysis of the main properties
of grasps performed with synergy actuated hands.

A. Simple gripper

As a first example, let us consider a simple gripper like
the one shown in Fig. 2. The gripper is planar and has two
fingers, each of which is composed of two phalanges with the
same lengths: the gripper has then 4 DoF total. Let J1, · · · , J4
be the traces of the joint axes on the gripper plane, and let
θ1, · · · , θ4 be the joint angles. The gripper is grasping an
object with its fingertips. The contact points are C1 and C2,
the origin of the local object reference frame is on the mean
point of C1C2 segment, and the local x axis is parallel to
C1C2 direction. The contact model assumed in this test is the
Point Contact With Friction (PCWF) [37], often indicated also
as Hard Finger (HF) [44]. Then, each contact force has two
components, i.e. λ1 = [λ1x λ1y]T and λ2 = [λ2x λ2y]T,
defined w.r.t. the object fixed reference frame. The object
displacement is defined w.r.t. the base reference system by
the vector u = [ux uy φ]T, where φ represents the
angle between the local and the base x−axes. We consider
a reference configuration in which the external load w0 is
balanced by the contact forces λ01 and λ02, applied at the
points C1 and C2 respectively: the contact vector is then
defined as λ0 = [λ01x λ01y λ02x λ02y]T.

Indicating with a the length of the finger phalanges, the
hand Jacobian matrix is defined as follows

J =

 J1,1 J1,2 0 0
J2,1 J2,2 0 0

0 0 J3,3 J3,4
0 0 J4,3 J4,4


in which the matrix terms can be expressed as:

J1,1 = sφ(ac12 + ac1)− cφ(as12 + as1)
J1,2 = ac12sφ− as12cφ
J2,1 = sφ(as12 + as1) + cφ(ac12 + ac1)
J2,2 = as12sφ+ ac12cφ
J3,3 = sφ(ac34 + ac3)− cφ(as34 + as3)
J3,4 = ac34sφ− as34cφ
J4,3 = sφ(as34 + as3) + cφ(ac34 + ac3)
J4,4 = as34sφ+ ac34cφ

with s1 = sin θ1, c1 = cos θ1, s12 = sin(θ1 + θ2), and so on.
The grasp matrix is given by

G =

 1 0 1 0
0 1 0 1
0 −r 0 r


where r represents object radius, i.e. the distance between each
contact point and the object frame origin.

The geometric terms, that express the variation of J matrix,
with respect to q and u, are considered by defining the matrices
KJ,qand KJ,u as outlined in eq. (14). The matrix KJ,q is given
by

KJ,q =


kJ,q,1,1 kJ,q,1,1 0 0
kJ,q,2,1 kJ,q,2,2 0 0

0 0 kJ,q,3,3 kJ,q,3,4
0 0 kJ,q,4,3 kJ,q,4,4


in which the matrix terms can be expressed as:

kJ,q,1,1 = −λ01,x(cφ(ac12 + ac1) + sφ(as12 + as1))
−λ01,y(ac12cφ+ as12sφ)

kJ,q,1,2 = −λ01,x(cφac12 + sφas12) − λ01,y(ac12cφ+ as12sφ)
kJ,q,2,1 = λ01,x(sφ(ac12 + ac1) − cφ(as12 + as1))

+λ01,y(ac12sφ− as12sφ)
kJ,q,2,2 = λ01,x(ac12sφ− as12cφ) + λ01,y(ac12sφ− as12cφ)
kJ,q,3,3 = −λ02,x(cφ(ac34 + ac3) + sφ(as34 + as3))

−λ02,y(ac34cφ+ as34sφ)
kJ,q,3,4 = −λ02,x(cφac34 + sφas34) − λ02,y(ac34cφ+ as34sφ)
kJ,q,4,3 = λ02,x(sφ(ac34 + ac3) − cφ(as34 + as3))

+λ02,y(ac34sφ− as34sφ)
kJ,q,4,4 = λ02,x(ac34sφ− as34cφ) + λ02,y(ac34sφ− as34cφ)

while the matrix that expresses the hand Jacobian derivatives
with respect to object displacement is given by

KJ,u =


0 0 kJ,u,1,3
0 0 kJ,u,2,3
0 0 kJ,u,3,3
0 0 kJ,u,4,3


in which the matrix terms can be expressed as:

kJ,u,1,3 = λ01,x(cφ(ac12 + ac1) + sφ(as12 + as1))
+λ01,y(ac12cφ+ as12sφ)

kJ,u,2,3 = −λ01,x(sφ(ac12 + ac1) − cφ(as12 + as1))
−λ01,y(ac12sφ− as12cφ)

kJ,u,3,3 = λ02,x(cφ(ac34 + ac3) + sφ(as34 + as3))
+λ02,y(ac34cφ+ as34sφ)

kJ,u,4,3 = λ02,x(cφ(ac34 + ac3) + sφ(as34
+as3)) + λ02,y(ac34cφ+ as34sφ)
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In the numerical simulations that follow, we assume that the
reference configuration is described by these quantities

• θ1 = 3
4π rad, θ2 = −π2 rad, θ3 = π

4 rad, θ4 = π
2 rad,

• w0 = 0 N, λ01 = [1, 0]T N, λ02 = [−1, 0]T N,
• a = 0.3m.

The stiffness matrices are Ks = ksI4,4, Kq = kqI4,4, where
ks = 1000N/m, kq = 1000Nm/rad, and I4,4 represents the
four dimensional diagonal matrix. In this simple example, we
suppose to control each joint independently, which implies
S = I4,4, and we ignore the synergy stiffness.

According to eq. (26), in the above described reference
configuration, we obtain the following matrix P that maps
input joint references to contact forces:

P =

 −67.44 −33.95 67.25 33.58
0.00 0.00 0.00 0.00

67.44 33.95 −67.25 −33.58
0.00 0.00 0.00 0.00


It easy to verify that in this case #(P ) = 1 and a basis of P
image is

E =

 −0.71
0.00
0.71
0.00


that consists of two forces whose direction is along the x
axis of the object reference frame, with the same moduli and
opposite signs. Consequently #N (P ) = 3 and thus the rigid
body object motions compatible with the contact constraints,
that do not involve contact force variations can be described
as a generic translation and rotation of the object on the plane,
as shown in Fig. 3.

A basis of the rigid-body motions compatible with hand
kinematics and actuation system can be calculated also as the
intersection between the object motions that do not produce
contact force variations, i.e. that belong to N

([
J −GT

])
,

and the object motion that do no produce external load varia-
tion, i.e. that belong to N (G); in the reference configuration
previously described, from eq. (37) we have

Γ = N
([
J −GT

])
=


−0.77 0.00 0.00

0.26 0.76 0.00
−0.51 0.44 0.38
−0.26 −0.11 −0.76

0.09 −0.05 0.00
0.02 0.03 0.03
0.00 −0.46 0.53


and then the object body motions that do not modify contact
forces are in the subspace defined by

Γucq =

[
0.09 −0.05 0.00
0.02 0.03 0.03
0.00 −0.46 0.53

]

It is easy to note that this subspace is equivalent to those
evaluated as N (P ) and corresponds to a generic translation
and rotation of the object in the plane.

a) b)

c)

Fig. 3: Four DoF planar gripper example: a basis for object
rigid body motions. The rigid body motion subspace has di-
mension three. The dashed lines represent the initial reference
position, the solid ones represent the modified configuration. a)
translation in the x direction, b) translation in the y direction,
c) object rotation.

B. Barrett hand

Results on the motion and force control of grasps with
synergies have been then applied to a robotic hand whose
kinematics was inspired by the Barrett Hand [1], shown in
Figure 4: it is a three finger, eight-axis mechanical hand,
in which each finger has two joints. One of the fingers,
referred to as 1, is stationary, while the other two can spread
synchronously up to 180 degrees about the palm. Although
there are eight axes, the hand is actuated by four motors: each
finger has an actuated proximal link and a coupled distal link
that moves at a fixed rate with the inner link. An additional
motor control the synchronous spread of the two fingers about
the palm. In the Barrett hand, a clutch mechanism allows the
outer link to continue to move even if the inner link motion
is obstructed, however this feature has not been considered in
the present analysis.

Let us define θi,1 (i = 1, .., 3) the rotation of the in-
ner link with respect to the palm, θi,2 (i = 1, .., 3) the
rotation of the outer link with respect to the inner one
and θi,0 (i = 2, 3) the spread of the two fingers about
the palm. Thus the configuration vector can be defined as:
q = [θ1,1, θ1,2, θ2,0, θ2,1, θ2,2, θ3,0, θ3,1, θ3,2]T . The Denavit
Hartenberg parameters for the Barrett hand are summarized
in Table I a). In the numerical simulations, we assumed
a1 = a2 = 0.05 m.

The mechanical couplings between the joints are expressed
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Fig. 4: The Barrett Hand a) the robotic hand, b) the mathe-
matical model representation, including the hand links, joints,
base, grasped object and contact points

link αi ai θi di

finger 1
1 0 a1 θ1,1 0
2 0 a2 θ1,2 0

finger 2
1 0 0 θ2,0 0
2 π/2 a1 θ2,1 0
3 0 a2 θ2,2 0

finger 3
1 0 0 θ3,0 0
2 π/2 a1 θ3,1 0
3 0 a2 θ3,2 0

θi value (rad)
θ1,1 π/3
θ1,2 π/3
θ2,0 2/3π
θ2,1 π/3
θ2,2 π/3
θ3,0 −2/3π
θ3,1 π/3
θ3,2 π/3

a) b)

TABLE I: Parameters for the Barrett hand example: a) De-
navit Hartenberg parameters, b) joint angles in the reference
configuration.
.

by the following relationships:

θ2,0 = −θ3,0 = z1

θi,2 = αiθi,1 = zi+1 i = 1, .., 3

where αi represents the ratio between the outer and the
inner angle for the i-th link. In the numerical simulation
described above, we assumed αi = 1.The joint angles are
controlled acting on four parameters, collected in the vector
z = [z1, ..., z4]T . Accordingly, the synergy matrix can be
defined as

S =



0 1 0 0
0 α1 0 0
1 0 0 0
0 0 1 0
0 0 α2 0
−1 0 0 0
0 0 0 1
0 0 0 α3


. (44)

In this example, the contact stiffness matrix has been chosen
as Ks = ksI9, where ks = 1000 N/m and I9 is the 9 × 9
identity matrix. The joint stiffness matrix has been chosen
as Kq = kqI8, where kq = 1000 Nm/rad and I8 is the
8-dimensional identity matrix. Finally, the synergy stiffness
matrix has been chosen as Kz = kzI8, where kz = 1000
Nm/rad and I8 is the 8× 8 identity matrix. The initial contact

E Γucs Γzr

synergies (4 inputs) 3 1 0
fully actuated (8 joints) 3 2 3

TABLE II: Barrett Hand: controllable internal forces and
allowable movements for the synergy actuated (4 degrees of
freedom) and fully actuated (8 degrees of freedom) hand.

force λ0 has been considered zero, so that, the components of
the geometric terms KJ,q and KJ,u vanish.

Reference values for the hand joints are summarized in
Table I b). The contact points between the hand and the
grasped object were located on the three finger–tips and the
normal directions at the contact points have been thought as
oriented towards the center of the object. Hard Finger (HF)
contact model has been considered in this example.

Hand Jacobian matrix J dimensions are 9 × 8, matrix G
dimensions are 6 × 9, and N (G) dimension is 3. According
to the previously described analysis, the dimension of the
controllable internal forces and object motions have been
evaluated with both the hypothesis that the hand is controlled
with the four actuators, and considering the case when all
the eight joints are actuated. Table II summarizes the obtained
results, in particular the dimensions of the controllable internal
forces, rigid-body motions and hand redundancy subspaces.
We can observe that, in all the cases, the sum between the
dimensions of Es, Γucs and Γzr is equal to the number of
synergies that is to the number of actuated joints.

In particular, for the synergy actuated case, the following
values were obtained for matrices P and V :

P =



0.17 0.42 0.04 0.04
0 0 0.28 -0.28
0 0 0 0

-0.09 -0.21 -0.26 0.22
0.15 0.08 -0.39 -0.12

0 0 0 0
-0.09 -0.21 0.22 -0.26
-0.15 .08 0.12 0.39

0 0 0 0



V =


-0.44 0.19 -0.10 -0.10

0 0 -0.02 0.02
0 0.01 0.01 0.01
0 0 -0.05 0.05

0.15 -0.11 0.06 0.06
0 0 0.05 -0.05


It is possible to verify that in this case #(P ) = 3 and a basis
of the controllable internal forces is given by:

Es =



0.06 0.08 0.81
-0.46 0.35 0

0 0 0
0.37 -0.34 -0.41

-0.19 -0.73 0.09
0 0 0

-0.43 0.26 -0.40
0.65 0.39 -0.09

0 0 0


Figure 5 shows, for the first three synergies, the hand motion

(first row) and the set of internal contact forces generated
acting through each single synergy, evaluated by means of
equation (26) (second row). Only three synergies have been
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Fig. 5: Synergies in the Barrett hand. First row: hand configuration obtained acting on each synergy; second row: contact points
(red dots), object center (red square), contact normal unit vectors (blue arrows) and internal forces (red arrows) generated
activating each synergy.

represented since the activation of the fourth synergy is
symmetric with respect to the third one.

C. Application to a human like robotic hand

The analysis of controllable internal forces and object
movements has been applied to a robotic hand with an
anthropomorphic kinematic structure, actuated with synergies.
The details of the kinematic model are described in [36]. The
kinematic model of the anthropomorphic hand considered has
globally 20 DoF, four degrees of freedom for each finger. In
this paper, a tripod grasp has been considered: the object (a
cherry) is grasped with the thumb, index and middle. Each
of the three fingers touches the object only in its tip. A Hard
Finger (HF) contact model has been considered (single point
contact with friction). The layout of the hand and the object
is shown in Fig. 6.

The contact force and joint vector dimensions are then nl =
9 and nq = 20 respectively. Thus for the fully actuated hand,
grasp matrix and hand Jacobian dimensions are, respectively,
G ∈ <6×9 and J ∈ <9×20. The dimension of internal force
subspace is e = #(P ) = 3, the rank of rigid body motion
subspace is #(Γuc) = 4, and the redundancy is #(Γqr) = 13.

In order to reduce the number of controlled joint inputs a
synergy based actuation system has been considered. The
synergy matrix S is computed such that its columns are
the Principal Components (PCs) extracted from the data set
presented in [45]. In this work the authors collected a large
set of data containing grasping poses from subjects that were
asked to shape their hands in order to mime grasps for a
large set (N = 57) of common objects. Principal Components
Analysis (PCA) of this data revealed that the first two principal
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Fig. 6: The human-like hand and the grasped object models
in the reference configuration.

components account for more than the 80% of the variance,
suggesting that a satisfying characterization of the recorded
data can be obtained using a much lower-dimensional subspace
of the hand DoF space. These and similar results seem to
suggest that, out of the 20 or more DoFs of a human hand,
only a few combinations can be used to shape the hand for
basic grasps used in everyday life. The data were obtained
using an instrumented glove that measured the configuration
of 15 hand joints. From the available experimental data, the
PCA returned a 15 × 15 matrix whose columns represented
the principal components of the data set, ordered in such
a way that the first one accounts for the largest possible
variance (that is, accounts for as much of the variability in
the data as possible), and each succeeding component, in
turn, has the highest variance possible under the constraint
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to be orthogonal to (i.e., uncorrelated with) the preceding
components. Since the anthropomorphic model we adopted has
20 DoFs, while the measured joints were 15, we extended with
some heuristic considerations, based on human hand anatomy,
the PCA results and obtained a complete synergy matrix
Stot ∈ <20×15. From this matrix we selected the synergy
matrix S ∈ <20×nz , with nz varying from 1 to 15, selecting
from Stot the first nz columns. In the preceding section
the synergies were modelled through a compliant structure.
Also in this case the contact stiffness matrix has been chosen
as Ks = ksI9, where ks = 100 N/m and I9 is the 9 × 9
identity matrix. The joint stiffness matrix has been chosen as
Kq = kqI20, where kq = 1000 Nm/rad and I20 is the 20× 20
identity matrix. Finally, the synergy stiffness matrix has been
chosen as Kz = kzInz

, where kz = 10000 Nm/rad and Inz

is the nz × nz identity matrix. For the sake of simplicity, the
initial contact force λ0 has been considered null, so that, the
components of the geometric terms KJ,q and KJ,u are null.

The number of engaged synergies has been progressively
increased from 1 to 9, in the order obtained from PCA
decomposition of experimental measures [43], [45].

Fig. 7 shows the internal force variation ∆λ and the
corresponding object displacement ∆u obtained activating one
synergy once, i. e. ∆λi = P∆zri,

∆ui = P∆zri

where ∆zri = [0, 0, ..., 1, ..., 0]T.
In order to verify the results presented in the preceding sec-

tions, we analysed, for different numbers of engaged synergies,
the dimensions of controllable internal forces e = #(P ), rigid
body motions #(Γuc), and redundant hand motion #(Γr).
Results in terms of dimensions of controllable forces and
movements subspaces, are shown in Tab. III. We observe that,
by increasing the number of engaged synergies from 1 to
3, the number of controllable internal forces increases from
1 to 3, while no rigid motions are possible. Increasing the
number of engaged synergies from 4 to 7, the dimension
of controllable rigid body motions increases from 1 to 4,
while the controllable internal force subspace do not increase
any more, since it dimension reached the size of N (G).
Finally, further increasing the number of synergies, either the
controllable rigid body motion dimensions fulfill and hand
redundant motions appear. From the results summarized in
Tab. III it is evident that the maximum dimension of the sub-
space of controllable object rigid motion, in this application, is
#Γucs = 4, therefore it is not possible to fully control the six–
dimensional motion of the object without modifying contact
forces. In particular, if for instance, only nz = 6 synergies are
activated, #Γucs = 3, and the following basis for object rigid
body motions can be found:

Γucs =


−4.11 2.76 4.48
−10.3 3.08 10.6
−3.91 −5.45 −8.74
−0.11 −0.12 −0.39
−0.06 0.12 −0.28
−0.20 0.09 0.39
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Fig. 7: Forces and movements produced by activating one syn-
ergy once. Internal forces (red arrows), contact point unitary
vectors (blue arrows), and object displacement (black arrow)
induced by the application of one synergy once, projected on
the xy plane. The red round dots represent the contact points,
the red square dot is the object center.
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nz #E #Γucs Γr

1 1 0 0
2 2 0 0
3 3 0 0
4 3 1 0
5 3 2 0
6 3 3 0
7 3 4 0
8 3 4 1
9 3 4 2

TABLE III: Human-like hand: dimension of controllable in-
ternal forces Es, rigid body motions Γuc, redundant motions
Γr, as a function of the number of activated synergies.

that can be obtained by choosing the reference synergy values
from the following base:

Γzr =


−0.61 0 0
−0.27 −0.93 0
−0.57 0.18 0.12
−0.36 0.27 0.38

0.31 −0.15 0.70
0.03 0.03 −0.59


If, for instance, we were interested only in the translational
part of the motion, without care about rotations, we could
evaluate the synergy variation necessary to produce the desired
displacement of the object center, ∆pdes, as follows:

∆zr = ΓzrΓ
−1
ucs,t∆pdes

where Γucs,t is obtained from the first three rows of matrix
Γucs. For example, to obtain a displacement of 1 mm in the x,
y, and z directions, respectively, without changing the contact
forces, the following synergy reference variations have to be
commanded

∆zrx = [0.10,−0.63, 0.18, 0.12,−0.43, 0.24, ]
T

∆zry = [0, 0.27,−0.03,−0.01, 0.17,−0.12, ]
T

∆zrz = [0.05, 0.01, 0.04, 0.02,−0.09, 0.05, ]
T

These examples show how the proposed model can be used
to define the synergy input variations necessary to perform a
desired task, that could consist of a variation in the contact
forces and/or on a displacement of the grasped object with
respect to the hand reference frame. Furthermore, the examples
show how the model could be used in the design phase of
the hand and of its control system, to define the structural
properties of the hand synergy system necessary to realize
pre-defined tasks.

VI. CONCLUSIONS

In grasping hands with nz postural synergies, a structural
relationship exists between the dimension of controllable in-
ternal forces and object motion subspaces, and the number of
synergy control inputs. In particular, if the hand is actuated
controlling the reference values of the synergy vector zr ∈
<nz , it is not possible to control, jointly and independently,
more than nz variables among internal forces, object motion

directions and kinematic redundancy. This paper provides
geometric and structural properties of hands actuated by a
postural synergy system, that are the fundamentals for the
design of control strategies to perform complex manipulation
tasks, involving both control of motion and forces, through
very few control inputs.

Furthermore, tools for design requirements of complex
robotic hands in terms of number of synergies to accomplish
manipulation tasks are provided. We believe that providing
structural and basic results like the controllability of forces
and motions in hand grasps with postural synergies will allow
to better understand and exploit the synergies in both robotics
and human studies. Some numerical examples, relative to a
simple gripper, a three fingered robotic hand with a kinematic
structure similar to the the Barrett Hand, and an anthropomor-
phic hand are shown putting the theory on a test.

APPENDIX

A: Grasp matrix and hand Jacobian matrix evaluation

In the following, we describe the evaluation of grasp matrix
and hand Jacobian matrix in the three-dimensional case, i.e.
for nd = 6. The simplification for the bi-dimensional case
(i.e. nd = 2) is straightforward. Further details and examples
can be found, for instance in [37] and in [44]. A detailed
explanation of the representation can be found in [32].

Let gbcoi be the vector describing the configuration of frame
{Coi } with respect to {B}, let furthermore gnchi be the vector
describing the configuration of frame {Chi } with respect to
{N}, we use the Product of Exponential (PoE) formula for its
parametrization, i.e.

gnchi =

(
mi∏
k=1

eψ̂kq
i
k

)
gnchi (0)

where ψk ∈ <6 is an element of se(3) and ψ̂k ∈ <4 is its
homogeneous form, qki are the exponential coordinates for
a local representation of SE(3) and gnchi (0) is the initial
configuration.

Grasp matrix: Let wc
o
i

chi
∈ <nd be the wrench that the

hand exerts on the object on the i-th contact point, whose
components are expressed with respect to {Coi } reference
frame. The object equilibrium, with respect to {B} reference
system, can be expressed as

w +

nc∑
i=1

Ad−Tgbco
i

w
coi
chi

= 0

For each contact point i, we can introduce the vector λi ∈
FCi, where FCi is a subspace of dimension li whose value
depends on the type of contact. For each contact point we can
define a matrix Hi ∈ <nd×li that maps the local vector λi
onto the contact wrench wc

o
i

chi

w
coi
chi

= Hiλi

The equilibrium equation can be written as

w +

nc∑
i=1

Ad−Tgbco
i

Hiλi = 0
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The contact vectors can be organized in the vector λ =
[λT1 , · · · , λTnc

]T ∈ <nl , the equilibrium equation can be
furthermore simplified as

w +Gλ = 0

where the Grasp matrix G ∈ <nd×nl is defined as

G =
[
Ad−Tgbco1

H1, · · · ,Ad−Tgbconc

Hnc

]
Let ξ be the twist that describes the {B} frame motion

with respect to {N}, expressed with respect to {B} reference
frame, and let ξc

o
i
co1

be the twists of frames {Coi }, expressed
with respect to {Coi }. These twists are related by the following
relationship

ξ
coi
ab = Adgco

i
b
ξ

Since a contact model has been defined, that constraints some
of the relative motion components, we can highlight these
components in a vector vc

o
i
coi
∈ <li , by means of the transpose

of the selection matrix previously defined

v
coi
coi

= HT
i ξ

coi
co1

= HT
i Adgco

i
b
ξ,

All these components can be collected in the vector

vc
o

co = [v
co1 T
co1

, · · · , vc
o
nc

T

conc
]T ∈ <nl

It is easy to observe that

vc
o

co =
[
(HT

1 Adgco1b
)T, · · · , (HT

nc
Adgconc

b
)T
]T
ξ

= GTξ

For the sake of simplicity, in the text, we did not consider
the relationship between angular speed and time derivative of
angular displacements. When we multiply the above equation
by the time ∆t, in the rotational part, ξbab∆t does not represent
a coordinate variation. However, we can define a matrix
T (u) ∈ <nd×nd that allows to express the frame twist as
a function of u time derivative, i.e.

ξ = T (u)u̇

by defining the contact frame variation as ∆coi = v
coi
coi

∆t we
can write ∆co = G̃T∆u, where G̃T = GTT (u). It is worth
to note that G matrix elements do not depends on object
displacement u, while G̃ does, since T depends on u.

1) Hand Jacobian matrix: Let ξc
o
i
n represent the twist of a

frame instantaneously superimposed to the frame {N} that is
fixed with {Chi } with components expressed with respect to
{N}. This twist depends on the joint velocities q̇i as follows

ξ
coi
n =n Ji(q

i)q̇i

where nJi(qi) is the spatial Jacobian relative to the i-th contact
point, defined as

nJi(q
i) =

[
ξi1, ξ

′i
2 , · · · , ξ′imi

]
with

ξ′ij = Adg1(j−1)
ξij

and

g1(j−1) =

j−1∏
k=1

eξ̂
i
kq

i
k

Let then ξc
o
i

chi
the twists of frames {Chi }, expressed with respect

to {Coi }. To find the twist ξc
o
i

chi
we can use adjoint matrix

obtaining
ξ
coi
chi

= Adgco
i
n(u)

nJi(q
i)q̇i = J̃iq̇

i

with J̃i(q
i, u) = Adngco

i
n(u)

Ji(q
i). We can then highlight the

velocity components constrained by the contact model in a
vector vc

o
i

chi
∈ <li , by means of the transpose of the selection

matrix previously defined

v
coi
chi

= HT
i ξ

coi
ch1

= HT
i J̃iq̇

i,

All these components can be collected in the vector

vc
o

ch = [v
co1 T

ch1
, · · · , vc

o
nc

T

chnc

]T ∈ <nl

Similarly we can collect all the joint variables in a vector

q = [qT1 , ..., q
T
F ]T ∈ <nq

The components of the contact point velocities vc
o

ch are related
to the hand joint velocities q̇ by the following relationship

vc
o

ch = J(q, u)q̇

where

J(q, u) =

 HT
1 J̃1 · · · 0
· · · · · · · · ·
· · · 0 HT

ncJ̃nc


is the Hand Jacobian matrix. It is worth to note that, since we
expressed the contact twists with respect to the object fixed
{Coi } reference frames, J depends both on hand configuration
q and on object displacement u.

Let the components of the components of contact point
twists on the hand, constrained by the contact model, and
expressed with respect to {Coi } reference frames, can be
evaluated as a function of hand joint velocities as follows

vc
o

ch = Jq̇ (45)

in which J ∈ <nl×nq represents the hand Jacobian matrix.
It is worth to note that the hand Jacobian matrix depends on
both the hand joint configuration q and on object displacement
vector u, i.e. J = J(q, u).

B: System solution

Let us consider the system composed of the equilibrium
conditions described by eq. (12). (13), (15), the constitutive
conditions described by eq. (9), (10), (11), and the congruence
condition described by eq. (7), and summarized in eq. (17).

By substituting eq. (9) in eq. (12), we can express ∆u as a
function of ∆q

GKs

(
J∆q −GT∆u

)
= 0

GKsJ∆q = GKsG
T∆u = 0

∆u =
(
GKsG

T
)−1

GKsJ∆q = Vq∆q (46)

where Vq =
(
GKsG

T
)−1

GKsJ .Let us substitute eq. (46) in
eq. (9), we can then express ∆λ as a function of ∆q

∆λ = Ks

(
J∆q −GT

(
GKsG

T
)−1

GKsJ∆q
)
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∆λ =
(
I −G+

KG
)
KsJ∆q = Pq∆q (47)

where G+
K = KsG

T
(
GKsG

T
)−1

is the G matrix pseudo-
inverse, weighted with Ks matrix and Pq =

(
I −G+

KG
)
KsJ .

Let us then consider eq. (13) and substitute ∆λ and ∆u with
eq. (47) and (46), respectively

∆τ =
(
JTPq +KJ,q +KJ,uVq

)
∆q = Uq∆q (48)

with Uq =
(
JTPq +KJ,q +KJ,uVq

)
. By substituting eq. (48)

in eq. (10) we can express ∆q as a function of ∆qr

∆τ = Kq (∆qr −∆q)
Uq∆q = Kq (∆qr −∆q)
(Uq +Kq) ∆q = Kq∆qr

∆q = (Uq +Kq)
−1
Kq∆qr = X∆qr (49)

where X = (Uq +Kq)
−1
Kq . Taking into account eq. (7) we

can express ∆q as a function of ∆z

∆q = XS∆z (50)

and consequently, by substituting in eq. (48) we obtain

∆τ = UqXS∆z (51)

By substituting eq. (51) in eq. (15) we can express ∆σ as a
function of ∆z

∆σ = ST∆τ +KS,z∆z
=
(
STUqXS +KS,z

)
∆z

∆σ =
(
STUqXS +KS,z

)
∆z = Z∆z (52)

where Z =
(
STUqXS +KS,z

)
. Finally, by substituting

eq. (52) in eq. (11) we can express ∆z as a function of ∆zr

∆σ = Kz (∆zr −∆z)
Z∆z = Kz (∆zr −∆z)
(Z +Kz) ∆z = Kz∆zr

∆z = (Z +Kz)
−1
Kz∆zr = Y∆zr (53)

with Y = (Z +Kz)
−1
Kz . By backward substituting eq. (53)

and (50) in eq. (47), (46), etc. we find the system solution
shown in eq. (18), ..., (26).
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[9] L. Birglen, T Lalibertè, and C. Gosselin. Underactuated Robotic Hands,
volume 40 of Springer Tracts in Advanced Robotics. Springer, 2008.

[10] C. Y. Brown and H. H. Asada. Inter-Finger Coordination and Postural
Synergies in Robot Hands via Mechanical Implementation of Principal
Components Analysis. In 2007 IEEE/RSJ International Conference on
Intelligent Robots and System, pages 2877–2882, 2007.

[11] J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger. DLR-hand II:
next generation of a dextrous robot hand. In Proc. IEEE Int. Conf.
Robotics and Automation, volume 1, pages 109–114, 2001.

[12] S.F. Chen and I. Kao. Conservative congruence transformation for
joint and cartesian stiffness matrices of robotic hands and fingers. The
international Journal of Robotics Research, 19(9):835–847, sep 2000.

[13] S.F. Chen, Y. Li, and I. Kao. A new theory in stiffness for dextrous
manipulation. In Proc. IEEE Int. Conf. on Robotics and Automation,
Seoul, Korea, 2001.

[14] N. Ciblak and H. Lipkin. Asymmetric cartesian stiffness for the
modeling of compliant robotic systems. In Proc. 23rd Biennial ASME
Mechanisms Conference, Minneapolis, MN, 1994.

[15] M. Ciocarlie and P. Allen. A design and analysis tool for underactuated
compliant hands. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 5234 –5239, oct. 2009.

[16] M. Ciocarlie, C. Goldfeder, and P. Allen. Dimensionality reduction for
hand-independent dexterous robotic grasping. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pages 3270–3275, 2007.

[17] M. T. Ciocarlie and P. K. Allen. Hand posture subspaces for dexterous
robotic grasping. The International Journal of Robotics Research,
28(7):851–867, July 2009.

[18] M.R. Cutkosky and I. Kao. Computing and controlling the compliance
of a robotic hand. IEEE Transaction on Robotics and Automation,
5(2):151–165, 1989.

[19] H. de Visser and J. L. Herder. Force-directed design of a voluntary clos-
ing hand prosthesis. Journal of Rehabilitation Research & Development,
37(3):261–271, 2000.

[20] A. Dollar and R. Howe. The sdm hand: A highly adaptive compliant
grasper for unstructured environments. In Experimental Robotics, pages
3–11. Springer, 2009.

[21] F urer C. Eich-Soellner E. Numerical methods in multibody dynamics.
B.G. Teubner, 1998.

[22] F. Ficuciello, G. Palli, C. Melchiorri, and B. Siciliano. Experimental
evaluation of postural synergies during reach to grasp with the ub hand
iv. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1775–1780. IEEE, 2011.

[23] M. Gabiccini and A. Bicchi. On the role of hand synergies in the
optimal choice of grasping forces. In Proceedings of Robotics: Science
and Systems, Zaragoza, Spain, June 2010.

[24] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi. On the role
of hand synergies in the optimal choice of grasping forces. Autonomous
Robots, pages 1–18.

[25] M. Gabiccini, M. Branchetti, and A. Bicchi. Dynamic optimization
of tendon tensions in biomorphically designed hands with rolling con-
straints. In IEEE Int. Conf. on Robotics and Automation, pages 2698–
2704. IEEE, 2011.

[26] G. Gioioso, G. Salvietti, M. Malvezzi, and D. Prattichizzo. An object-
based approach to map human hand synergies onto robotic hands with
dissimilar kinematics. Proceedings of Robotics: Science and Systems,
Sydney, Australia, 2012.

[27] C. Gosselin, F. Pelletier, and T. Laliberte. An anthropomorphic under-
actuated robotic hand with 15 dofs and a single actuator. In Proc. IEEE
Int. Conf. Robotics and Automation, pages 749 –754, may 2008.

[28] S.C. Jacobsen, J.E. Wood, D.F. Knutti, and K.B. Biggers. The Utah/MIT
dextrous hand: work in progress. The International Journal of Robotics
Research, 3(4):21, 1984.
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