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Abstract— In this paper, we study the role of soft actuation
in the reduction of the energy cost for mechanical systems
that perform cyclic tasks. The objective is to determine the
optimal stiffness value and spring pre-load such that a given
cost functional is minimized. For the analysis, we consider both
fully actuated and underactuated mechanical systems using
elastic actuators which, depending on how and where the
springs are placed w.r.t. the actuator and the load, can be Series
Elastic Actuators (SEAs) or Parallel Elastic Actuators (PEAs).
The energy consumption depends not only on the actuation
parameters but also on the trajectories followed to perform
a given cyclic task. We show that the general problem in
which both joint trajectories and actuation parameters are the
optimization variables, can be cast as a simpler problem in
which optimization regards only joint trajectories. Simulations
of fully actuated and underactuted compliant robots are re-
ported to demonstrate the effectiveness of the method. Although
the stiffness optimization method is analytical in nature, it is
directly applicable to existing systems whose model is unknown.
A model–free experimental application on a prototype of a
hopping robot with SEA is presented.

I. INTRODUCTION

A crucial component that dramatically affects performance
of robots is their actuation. Recent developments in this field
have introduced fixed or physically adjustable compliant ele-
ments to enrich the dynamics of conventional motors. These
devices provide advantages w.r.t. rigid actuators, including
higher peak performances, lower energy consumption and
improved safety (see [1], [2], [3], [4]). This new tendency is
the so called soft actuation, used for instance in manipulation
[5], or in humanoid design [6].

Among soft actuators, SEAs [1] have a linear compliant
element between a high impedance actuator and the load. On
the other hand, PEAs have an elastic element in parallel with
the motor (i.e. between two links). Other examples of soft
actuators are the Variable Stiffness Actuators (VSA), and the
Variable Impedance Actuators (VIA). VSAs have an elastic
transmission whose stiffness can be mechanically adjusted,
while VIAs can include mechanisms (e.g. brakes, dampers)
allowing to change the output shaft impedance [7]. Recent
studies explore the role of such devices in performance
enhancement, looking at very dynamic tasks. For instance,
in [8], [9] the objective is to optimally choose the stiffness
to maximize the velocity of a VSA at a given final position
with free final time. In [10], a new constraint is imposed,
solving the same problem but with fixed terminal time.
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Fig. 1. The prototype of the Hopper used for experiments.

In this paper, we study the role of soft actuation in the
reduction of the energy cost for mechanical systems that
perform cyclic tasks. The objective is to determine, for
given desired joint trajectories, the optimal stiffness value
and spring pre-load such that a given cost functional is
minimized.

In the literature, several papers try to solve the same
problem addressed in this work. For instance, a systematic
method to optimally tune the joint stiffness of multi Degrees
of Freedom (DoFs) SEA robots based on resonance analysis
and energy storage maximization criteria is presented in [11].
A modal study was performed on the CoMAN (Compliant
huMANoid) robot model, to derive the natural frequencies
for different leg configurations during the single support
walking phase. The joint stiffness was selected to set the
resonances of the system, maximizing the energy stored in
the joint springs. However, in [11], the design of trajectories
is not based on joint stiffness selection directly and an ap-
proach to find the optimal stiffness and pre-load for the PEA
case has not been addressed yet. Walking gaits generation
for biped robots has also been addressed as a nonlinear
optimization problem in [12]. The trajectories are obtained
through cubic spline interpolation but joint compliance is
not considered. In [13], an optimization is proposed to find
feasible trajectories for a hopping robot. By constraining the
problem, stable hopping of the rigid, underactuated robot is



achieved.
A control method for tracking cyclic trajectories is pre-

sented in [14], taking advantage of resonance of the dynamic
systems and hence obtaining the optimal (constant, linear)
stiffness value. In [15] an energy saving control method
was applied to a simulated biped walking model. The link
trajectories for a 4 DoF PEA robot are obtained via mini-
mization of a performance index based on the squared torque.
However, as in [14], the SEA case is not considered.

In this paper, we consider both fully actuated and un-
deractuated dynamical systems using elastic actuation with
either SEA or PEA providing an analytical methodology to
optimize the actuation parameters for given joint trajectories.
We show that the general problem in which both joint
trajectories and actuation parameters have to be simultane-
ously optimized, can be translated into a problem in which
the optimization would involve just the joint trajectories.
However, in this paper the optimal characterization of the
joint trajectories shape is not considered, showing only that,
in case of sinusoidal trajectories the amplitude and the
frequency play an important role in the reduction of the
energy spent.

To show the effectiveness of the results we apply our
method to a simple one-link robot manipulator tracking a
sinusoidal joint trajectory and to a two-link robot manipulator
performing a pick and place task. By several simulations, in
both cases we show that the use of soft actuation allows
to save energy w.r.t. the stiff actuation case. For the pick
and place task, optimized soft actuation allows to save up
to 53% of energy. Finally, a prototype of a hopping robot
with SEAs is presented (see Fig. 1) and by experimentation
we show that our method is applicable to existing systems
whose model is unknown.

II. PROBLEM DEFINITION

This paper considers novel soft-robotics actuation schemes
which may enhance performance of mechanical systems in
cyclic tasks, i.e. reducing energy consumption, by exploiting
the use of springs suitably placed on the system. For this
reason, we study compliant mechanical systems which can
be both fully actuated or underactuated. In the former case,
there are as many actuators as Degrees of Freedom (DoF),
whereas in the second one there are fewer control inputs than
degrees of freedom [16].

Depending on how and where springs are placed on the
system, the number of DoFs and the number of actuators,
the dynamics of a mechanical system can assume particular
forms as described in next subsections.

A. Fully Actuated Mechanical Systems
Let us first consider a fully actuated compliant mechanical

system actuated by PEAs, e.g. a spring between two links
for a serial manipulator (see Fig. 2(a)). For such a system,
the number of DoFs remains equal to the number of ac-
tuators. Indicating by q ∈ <n the generalized coordinates
representing the configuration of the system and by τ ∈ <n
the generalized torque provided by actuators, the dynamics
can be written as

f(q̈, q̇, q, t) = −K(qe − q) + τ , (1)

where qe ∈ <n is the spring pre-load and K ∈ <n×n is
the stiffness matrix. The term f(q̈, q̇, q, t) includes inertia,
coriolis, and gravity terms.

(a) Example of
robot actuated by
PEA.

(b) Example of robot actuated
by SEA.

Fig. 2. Robot actuated by PEAs or SEAs.

B. Underactuated Mechanical Systems

Consider now the case in which the mechanical system is
actuated by SEAs (see Fig. 2(b)), i.e. the springs between the
actuator and the load (e.g. between the motor and the link
for serial manipulators). Indicating by θ ∈ <n the motor
positions and by Jm the inertia matrix of the motors, the
dynamics can be written as

f(q̈, q̇, q, t) = −K(q − θ) (2)

Jmθ̈ = K(q − θ) + τ , (3)

Notice that the use of SEAs instead of PEAs increases the
number of DoFs which become 2n.

For particular mechanical systems there may be further
DoFs which are not actuated, e.g. the position and orientation
of humanoids w.r.t. a fixed reference frame. Let x ∈ <m be
those DoFs and assume the system is actuated by SEAs, the
dynamics in this case can be written as

fu(ẍ, ẋ, x, q̈, q̇, q, t) = 0 (4)
fa(ẍ, ẋ, x, q̈, q̇, q, t) = −K(q − θ) (5)

Jmθ̈ = K(q − θ) + τ, (6)

where (4) represents the non-actuated dynamics, whereas (5)
and (6) represent the underactuated dynamics.

Of course, if PEAs are used, the dynamics becomes

fu(ẍ, ẋ, x, q̈, q̇, q, t) = 0 (7)
fa(ẍ, ẋ, x, q̈, q̇, q, t) = −K(qe − q) + τ . (8)

C. Optimal Problem Formulation

In order to quantify the performance of the mechanical
system and hence to determine optimal joint stiffness K̂
and/or pre-load q̂e values as well as optimal joint trajectories
q(t), we will consider two different cost functionals:

1) Squared-Power index: Assuming that the motor spends
energy if the mechanical power is positive or negative, the
cost functional of the whole mechanical system is

J1 =
n∑
j=1

∫ T

0

(τj(t)θ̇j(t))
2dt , (9)

where T represents the period of the cyclic task or its
multiple.



2) Squared-Torque index: If the consumption is mainly
related to the torque, then we can consider the cost

J2 =
n∑
j=1

∫ T

0

τ2j (t)dt . (10)

The optimal problem we are interested to solve is stated
as follows:

min
τ(t),β

Ji, i = 1, 2

s.t.

Dynamics equations
q(t) = q(t+ T )

ξ1(q, q̇, q̈) ≤ 0

ξ2(q, q̇, q̈) = 0

βm ≤ β ≤ βM

(11)

where the dynamic equations can be those reported in sub-
section II-A in case of a fully actuated system with PEAs or
those reported in subsection II-B for an underactuated system
with SEAs or PEAs. β is a vector containing joint stiffness K
and pre-load qe in case of PEAs and only stiffness K in case
of SEAs. These values have limits βM = [KM , qe,M ] and
βm = [Km, qe,m]. T is the period of the cyclic task which
translates in requiring that q(t) = q(t + T ). Moreover, the
nonlinear constraints ξ1 and ξ2 which depend on variable q,
q̇ and q̈, define the task. For instance, in a pick and place
task for a two-link planar manipulator, we can constrain the
motion of the end-effector to the line between two points.

III. OPTIMIZATION OF STIFFNESS AND PRE-LOAD
PARAMETERS

In this section we will exploit the dynamic equations of
the mechanical system at hand in order to write the cost
functional as a function of joint trajectories q(t) (and their
derivatives) and actuation parameters β. It is important to
note that in the following analysis we assume that K =
diag[K1,K2, ...,Kn] and Jm = diag[Jm1, Jm2, ..., Jmn].

At the end we will be able to determine the optimal
stiffness and pre-load values as functions of given desired
trajectories qd(t) and hence to translate the optimal problem
given in (11) in a simpler problem where the objective is
only to find the optimal joint trajectories.

A. Stiffness optimization for a mechanical system using
SEAs.

Let us assume that joint trajectories q(t) = qd(t) and
its first q̇(t) = q̇d(t) and second q̈(t) = q̈d(t) derivatives
are given, and consider a mechanical system as in (4), (5)
and (6). By integration, from (4) it is possible to find x as
a function of the desired trajectories qd(t) and hence, by
substituting in (5) and (6), to obtain

f(q̈d, q̇d, qd, t) = −K(qd − θ) (12)

Jmθ̈ = K(qd − θ) + τ , (13)

which is in the form represented by (2) and (3). Hence, the
following analysis is valid for every underactuated system
using SEAs.

As matrices K and Jm are assumed to be diagonal, (12)
and (13) can be written for each actuator as

fj(q̈d, q̇d, qd, t) = −Kj [qd,j − θj ] , (14)

Jmj
θ̈j = τj +Ki(qd,j − θj) , (15)

for j = 1, 2, . . . , n, where fj(q̈d, q̇d, qd, t) denotes the j-th
element of the function f(q̈d, q̇d, qd, t). From (14) we have

θj = K−1
j fj(q̈d, q̇d, qd, t) + qd,j , (16)

θ̇j = K−1
j ḟj(q̈d, q̇d, qd, t) + q̇d,j , (17)

θ̈j = K−1
j f̈j(q̈d, q̇d, qd, t) + q̈d,j . (18)

Replacing (16) and (18) in (15), the j-th motor torque
required to track the desired trajectory qd(t) is

τj = Jmj
(K−1

j f̈j(q̈d, q̇d, qd, t) + q̈d,j) + fj(q̈d, q̇d, qd, t) .
(19)

We rewrite cost index J1 in terms of qd(t), q̇d(t) and
stiffness K. The j-th element related to the j-th actuator is

J1,j =

∫ T

0

(τj(t)θ̇j(t))
2dt . (20)

By substituting (17) and (19) in (20), we obtain

J1,j =

∫ T

0

(τj(t)θ̇j(t))
2 dt =

=

∫ T

0

((Jmj
K−1
j f̈j + Jmj

q̈d,j + fj)(K
−1
j ḟj+

+ q̇d,j))
2 dt =

∫ T

0

(
aj(t)

K2
j

+
bj(t)

Kj
+ cj(t)

)2

dt

where aj(t) = Jmj f̈j ḟj , bj(t) = Jmj (f̈j q̇d,j+ ḟj q̈d,j)+fj ḟj
and cj(t) = Jmj

q̈d,j q̇d,j + fj q̇d,j .
Notice that J1,j depends only on the stiffness Kj of the

j-th actuator. Hence,

min
K

J1 =
∑
j

min
Kj

J1,j .

The optimal solution for each Kj is such that ∂J1,j
∂Kj

= 0,
which, after some algebra, becomes

4AS,j + 3KjBS,j + 2CS,jK
2
j +DS,jK

3
j = 0 , (21)

where

AS,j =

∫ T

0

a2j (t)dt , BS,j =

∫ T

0

2aj(t)bj(t)dt

CS,j =

∫ T

0

(2aj(t)cj(t) + b2j (t))dt

DS,j =

∫ T

0

2bj(t)cj(t)dt , ES,j =

∫ T

0

c2j (t)dt .

Notice that AS,j , BS,j , CS,j , DS,j and ES,j depends only
on qd,j , q̇d,j and q̈d,j which are assumed known.

For the cost functional J2, the j-th element related to the
j-th actuator is

J2,j =

∫ T

0

τ2j (t)dt .



and after substituting (19), wit some algebra, we obtain

J2,j =
FS,j
K2
j

+
GS,j
Kj

+HS,j ,

where

FS,j =

∫ T

0

(Jmj f̈j)
2dt , HS,j =

∫ T

0

(Jmj q̈d,j + fj)
2dt ,

GS,j =

∫ T

0

2Jmj f̈j(Jmj q̈d,j + fj)dt .

Also in this case J2,j depends only on the stiffness Kj of
the j-th actuator. Hence,

min
K

J2 =
∑
j

min
Kj

J2,j .

The optimal solution for each Kj is such that ∂J2,j
∂Kj

= 0,
obtaining

K̂j = −2
FS,j
GS,j

. (22)

B. Stiffness and pre-load optimization for a mechanical
system using PEAs

Let us assume also in this case given desired trajectories
q(t) = qd(t) for the joints and its derivatives, and consider a
mechanical system as in (7) and (8). By integration, from (7)
it is possible to find x as a function of the desired trajectories
qd(t) and hence, by substituting in (8) to obtain

f(q̈d, q̇d, qd, t) = −K(qe − qd) + τ , (23)

which is equivalent to the mechanical system represented
by (1). Hence, the following analysis is valid for every
underactuated or fully actuated system using PEAs.

Because of the assumption on stiffness matrix K, (23) can
be written for each actuator as

fj(q̈d, q̇d, qd, t) = −Kj(qe,j − qd,j) + τj , (24)

for j = 1, 2, . . . , n, where fj(q̈d, q̇d, qd, t) denotes the j-th
element of the function f(q̈d, q̇d, qd, t).

From (24), we have

τj = fj +Kj(qe,j − qd,j) . (25)

Recalling index J1 using PEA, for the j-th actuator, we
have

J1,j =

∫ T

0

(τj(t)q̇d,j(t))
2 dt .

By substituting (25) in previous expression of J1,j we obtain

J1,j = AP,j −Kjqe,jBP,j+

+KjCP,j +K2
j q

2
e,jDP,j+

−K2
j qe,jEP,j +K2

jFP,j .

where

AP,j =

∫ T

0

f2j q̇
2
d,jdt , BP,j =

∫ T

0

2fj q̇
2
d,jdt ,

CP,j =

∫ T

0

2fj q̇
2
d,jqd,jdt , DP,j =

∫ T

0

q̇2d,jdt ,

EP,j =

∫ T

0

2q̇2d,jqd,jdt , FP,j =

∫ T

0

q̇2d,jq
2
d,jdt .

For given desired trajectories qd,j , J1,j depends only on
Kj and qe,j . Hence,

min
K,qe

J1 =
∑
j

min
Kj ,qe,j

J1,j .

The optimal actuation parameters are such that

∂J1,j
∂Kj

= 0,
∂J1,j
∂qe,j

= 0 , (26)

which become

−BP,jqe,j + CP,j + 2DP,jKjq
2
e,j+

−2EP,jKjqe,j + 2FP,jKj = 0 (27)
−BP,jKj + 2DP,jK

2
j qe,j − EP,jK2

j = 0 . (28)

Solving previous equations for K and qe,j , we obtain

K̂j =
BP,jEP,j − 2CP,jDP,j

4DP,jFP,j − E2
P,j

(29)

q̂e,j =
CP,jEP,j − 2BP,jFP,j
2CP,jDP,j −BP,jEP,j

(30)

For the cost functional J2, after substituting (25), we can
obtain

J2,j = GP,j −Kjqe,jHP,j +KjIP,j+

+ T K2
j q

2
e,j +K2

jLP,j −K2
j qe,jMP,j , (31)

where

GP,j =

∫ T

0

f2j (t)dt , HP,j =

∫ T

0

2fj(t)dt ,

IP,j =

∫ T

0

2fj(t)qd,j(t)dt , LP,j =

∫ T

0

q2d,j(t)dt ,

MP,j =

∫ T

0

2qd,j(t)dt

Notice that, J2,j depends only on Kj and qe,j , hence

min
K,qe

J2 =
∑
j

min
Kj ,qe,j

J2,j .

The optimal actuation variables for a given desired trajectory
qd,j can be obtained by solving ∂J2,j

∂qe,j
= 0 and ∂J2,j

∂Kj
= 0,

which become

−qe,jHP,j + IP,j + 2Kjq
2
e,jT+

+2KjLP,j − 2Kqe,jMP,j = 0

−KjHP,j + 2K2
j qe,jT −K2

jMP,j = 0 .

Finally, solving for K and qe,j , we obtain

K̂j =
q̂e,jHP,j − IP,j

2(q̂2e,jT + LP,j − q̂e,jMP,j)
(32)

q̂e,j =
HP,j + K̂jMP,j

2K̂jT
. (33)

Table I summarizes the expressions for the optimal actu-
ation parameters.

The optimal value for stiffness K and pre-load qe obtained
before are not necessarily inside the admissible range of
values. In this case, the optimal values are on the boundary
of the admissible set for the actuation parameters.



J1 J2

SEA A solution of (21) K̂j = −2
FS,j
GS,j

PEA

K̂j =
BP,jEP,j − 2CP,jDP,j

4DP,jFP,j − E2
P,j

q̂e,j =
CP,jEP,j − 2BP,jFP,j

2CP,jDP,j − BP,jEP,j

K̂j =
q̂e,jHP,j − IP,j

2(q̂2
e,j

T + LP,j − q̂e,jMP,j)

q̂e,j =
HP,j + K̂jMP,j

2K̂jT

TABLE I
OPTIMAL PARAMETERS K̂ AND q̂e .

For the SEA, cost functional J2 has a unique global
minimum and hence, if such value is not admissible, then

K̂ =

{
Km if Ji(Km) < Ji(KM )

KM if Ji(KM ) < Ji(Km) .
(34)

On the other hand, for cost functional J1, the optimal
stiffness value can be obtained solving (21) which has three
solutions. Hence, the optimal stiffness can be one of these
solutions or it can lie on the border of the admissible range
of values.

For PEA, the performance index depends on the two opti-
mization variables K and qe. However, both cost functionals
have a unique global minimum. Hence, if the optimal values
are such that K̂ /∈ [Km KM ] and/or q̂e /∈ [qe,m qe,M ], then
the optimal parameters are in the border of the admissible
range of values. Consider the following cases:

1) if K̂ /∈ [Km KM ] and q̂e ∈ [qe,m qe,M ]. In this case,
if the first of (26) is satisfied by q̂e,

K̂ =

{
Km if J(Km, q̂e(Km)) < J(KM , q̂e(KM )) ,

KM if J(KM , q̂e(KM )) < J(Km, q̂e(Km)) ;

2) K̂ ∈ [Km KM ] and q̂e /∈ [qe,mqe,M ]. In this case, if
the second of (26) is satisfied by K̂,

q̂e =

{
qe,m if J(K̂(qe,m), qe,m) < J(K̂(qe,M ), qe,M )

qe,M if J(K̂(qe,M ), qe,M ) < J(K̂(qe,m), qe,m) ;

3) K̂ /∈ [Km KM ] and q̂e /∈ [qe,m qe,M ], then the optimal
pair K̂, q̂e is related to the minimum value among the
following: J(Km, qe,M ), J(KM , qe,M ), J(Km, qe,m)
and J(KM , qe,m).

With the procedure followed so far, we have obtained a
simpler problem in which only the joint trajectories are the
optimization variables which can not be achieved analyti-
cally. Hence, in next sections we provide numerical solution
applying our method to some mechanical systems.

IV. SIMULATION RESULTS

Consider some cases of fully actuated and underactuated
systems by simulations.

A. One-link Robot manipulator
First, consider a one-link manipulator, actuated by a SEA

or a PEA, which performs a cyclic task. The dynamic of this
mechanical system can be written as

Mq̈ + cq̇ +mgL cos q +K(q − θ) = 0

Jmθ̈ +K(θ − q) = τ
(35)

in case of SEA, and

Mq̈ + cq̇ +mgL cos q +K(q − qe) = τ (36)

in case of PEA. M = mL2 + I , L is the length of the link,
m is the load at the end of the link, I the inertia of the
link and c is the damping. Assume that in both cases, the
joint trajectory is given as qd(t) = B + A sin(ωt), where
the amplitude A, the frequency ω, and the angle B around
which the link oscillates, depend on the task.

a) PEAs: The problem of finding optimal stiffness
and pre-load can be solved analytically. Indeed, substituting
qd(t), q̇d(t) and q̈d(t) in (36), we can obtain τ and substitute
it in J1. The minimum of J1 is achieved with

K̂ = ω2M +
8mgLBJ(2, A) sinB

A2

q̂e = B +
2gmLABJ(1, A) cosB

A2ω2M + 8mgLBJ(2, A) sinB
,

where BJ(n, x) is the Bessel function. Notice that for small

amplitudes, i.e. A → 0,
8BJ(2, A)

A2
→ 1, the optimal stiff-

ness becomes K̂ = ω2M + mgL sinB which corresponds
to the resonant condition for the linearized system in q = B.

For the cost functional J2, the minimum is obtained with

K̂ = ω2M +
2mgLBJ(1, A) sinB

A

q̂e = B +
AmgLBJ(0, A) cosB

A2ω2M + 2mgLBJ(1, A) sinB
.

Also in this case, for small amplitudes, the optimal stiffness
becomes K̂ = ω2M +mgL sinB which corresponds to the
resonant condition for the linearized system in q = B. Of
course, for the nonlinear system, the cost function obtained
by using the optimal parameters assumes a bigger value
but |τ | achieves the minimum value. This is similar to the
resonance concept of linear systems.

Finally, for a given B, the optimal values for K̂ obtained
by using J1 and J2 are quite similar. In particular, if B = 0
and for any amplitude A, K̂ = ω2M , i.e. the value of
stiffness corresponding to the resonant condition for the
linearized system in q = 0. The pre-load are different but
from a quantitative point of view are quite similar, depending
mainly on B.

b) SEAs: The problem of finding optimal stiffness
can be solved analytically only in case of J2 as cost
functional. Indeed, solving the first equation of (35) for θ
and substituting it, with its second derivative in the second
equation of (35), we obtain τ and substituting it in J2, with
θ̇(t) = K−1(Mq̈d(t) + c q̇d(t) +mgL cos qd(t)) + qd(t), the
minimum can be achieved in closed form. The expression is
complicated and can not be reported here. However, in case
of B = 0, d = 0 and for small amplitudes, the optimal value
is

K̂ =
MJmω

2

(M + Jm)
,

which corresponds to resonant condition for the linearized
system around q = 0, without losses (d = 0).

In case of J1, the optimal stiffness and the corresponding
value of the cost functional can be only obtained numerically.
For a comparison between PEA and SEA in terms of
efficiency, and to underline the advantage of soft w.r.t. stiff
actuation, in Fig. 3 we report the cost saving in terms of
J1 and J2 in case of PEAs or SEAs w.r.t. the stiff case. In
particular, Fig. 3(a) and 3(b) show the energy saving using
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(d) Energy saving in terms of J2 for
SEAs.

Fig. 3. Energy saving (in % w.r.t. the stiff case) for a one-link robot manipulator, varying the amplitude A and the frequency ω of the desired joint
trajectory qd(t) = A sin(ωt) +B, with B = 0.

J1 as measure. On the other hand, Fig. 3(c) and 3(d) show
the energy saving using J2 as measure.

In particular, considering Fig. 3(a) and 3(c), the use of
PEAs permit to get as much more saving as the amplitude
and the frequency of the desired trajectory decrease, indepen-
dently from the cost functional used, i.e. J1 or J2. However,
we have a consistent saving also in case of large values of
frequency, independently from the amplitude.

Differently, in case of SEA, savings depend on the cost
functional we consider. In terms of J1, consistent savings
can be obtained increasing the frequency. The amplitude
significantly influence only for small values. In terms of J2,
consistent savings can be obtained for small values of the
amplitude and large values of frequency or for large values
of the amplitude and small values of frequency.

From another point of view, we can conclude that, in terms
of J2, PEA is more convenient for small amplitudes at low
frequency or large amplitudes at high frequency, while SEA
is more convenient for small amplitudes at high frequency
or for large amplitudes at low frequency. In terms of J1,
we can observe differences w.r.t. J2 only in case of SEA.
Indeed, SEA becomes convenient only for high frequencies,
independently from the amplitude.

B. Two–link robot manipulator
Let us consider now a two-link robot manipulator which

performs a pick and place task. The robot moves on a
horizontal plane. In case of PEAs, we have a fully actuated
mechanical system (2 motors and 2 DoFs), whereas in case
of SEAs an under-actuated one (2 motors and 4 DoF).
q1,d = A1 sin(ωt) + B1 and q2,d = A2 sin(ωt) + B2

are the desired joint trajectories. The robot moves from
a given initial position Q1 to a given final position Q2.
The values of the amplitudes A1 and A2, as well as the
angle B1 and B2 around which each link moves, depend on
these positions. Of course, for any couple of point Q1 and
Q2, these parameters are univocally determined by inverse
kinematics. For this problem, we have performed several
simulations applying our methodology. Some of them are
reported in Fig. 4, which shows the values of cost functionals
J1 and J2 in case of PEAs and SEAs, as well as the optimal
parameters (stiffness and/or pre-load) for different values of
frequency ω. Moreover, cost functionals J1 and J2 for the
same tasks for the stiff case are also reported. Notice that for
all cases reported in Figure 4, the cost functionals assume
the minimum values.

For all cases, it is shown in Fig. 4 that the stiff actuation
is the most expensive in terms of energy spent. Furthermore,

in the first two cases (a. and b.), when using J1, PEA gives
the lowest cost, while for the other two cases (c. and d.) the
best performance is achieved when using SEA. The same
happens for J2. The optimal joint stiffness is higher as ω
increases. Moreover, for the SEA case, the spring in the first
joint should be stiffer than the second joint, while for the
PEA case, the spring for the first joint should be softer than
the second one. Results evidence that elastic actuators allow
to save energy. Indeed, at the highest frequency used in these
simulations, the energy savings in terms of cost functional J1
is up to 90% w.r.t. the rigid case in the SEA and PEA cases.
In terms of J2, at the same frequency, the energy savings
is up to 62% in case of SEAs and 23% in case of PEAs,
w.r.t. the rigid case. In Fig. 4 is also reported values of the
optimal pre-load values qe for the PEA case. Notice that this
value is constant for all cases except for the cases a. and b.
where the optimal pre-load value of the second joint changes
with frequency.

V. MODEL–FREE APPLICATION

In this section we present an experimental application on
a prototype of the hopping robot represented in Fig. 1. The
objective is to show that, even though the proposed method is
analytical, it is directly applicable to existing systems whose
model is not accurate or not available at all. Indeed, the
optimization of the actuation parameters need to evaluate
the function fa(ẍ, ẋ, x, q̈, q̇, q, t) and in (5) in case of SEA,
or in (8) in case of PEA, in terms of the desired joint
trajectories. However, in an experimental setup, as fa(·) can
also be directly measured from the real system by means of
suitable sensors. To correctly the optimization procedure, it
is sufficient to obtain the derivatives of the measured signal
fa(t), which can be obtained by applying techniques such as
e.g. in [17]. Through the following experiment we are hence
able to show that our method can be applied to systems
whose model is unknown, i.e. in a model–free fashion.

The prototype of the planar elastic hopping robot repre-
sented in Fig. 1. Referring to Fig. 5, it has one leg which
is composed of two links (1 and 2), three DoFs and it is
linked to the frame through two non actuated DoFs (3 and
4). All joints are provided with a contactless magnetic rotary
position sensor (AS50451, colored in red). The two joints of
the leg are actuated by DC geared motors (maxon DCX 22S2

with graphite brushes 24 V, and planetary gearhead GPX22
with reduction ratio 83 : 1, 5 and 6). The hopper is actuated

1http://www.ams.com
2http://dcx.maxonmotor.com
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Fig. 4. The dynamics parameters used are: link masses m1 = m2 = 0.84 kg; link lengths l1 = 0.14 m, l2 = 0.165 m; motor inertias Jm1 = Jm2 =
10−5 kgm2, link inertias motor inertias J1 = 3.96 10−4 kgm2 J2 = 5.29 10−4 kgm2 w.r.t. centroid. The red, blue, green and black curves on the center
of the figure show the desired end-effector trajectories. The corresponding results of cost functionals and optimal stiffness are shown in the boxes of the
same color (a. to d. from left to right). The figure legends are indicated below the boxes. For cases a. and b. (red and blue), K̂(1,1)SEA = 500 Nm/rad
so it is not shown; for cases c. and d. (green and black) it is indicated with blue continuous line. The pre-load optimization results for the PEA case are
shown at bottom right.

by a SEA in the knee, while the other joint is stiff (see Fig. 5).
The series elastic transmission 10 between the actuator 11
and the knee joint is composed of two rubber bands.

Wheel 7 is placed at the extremity of the leg in order
to reduce the effect of the friction component perpendicular
to the direction of motion. To guarantee a vertical hopping,
the leg has been constrained through a vertical linear guide
8. An electronic board3 9 has been used to acquire the
measurements from the encoders and to implement a closed
loop position control scheme tracking the desired trajectories
(the controller furnishes input values at a frequency of 1
kHz).

The stiffness of the equivalent torsional spring between
the knee link and the actuator has been experimentally
determined by applying different value of torques and the
corresponding deformations (see Fig. 5, Stiffness identifica-
tion). Once the stiffness value is known (∼ 0.58 Nm/rad),
sinusoidal reference signals that guarantee a stable hopping
have been imposed to the motors (black lines in Fig. 5).
During the experiment (see the attached video), we have
recorded data provided by encoders (red and blue lines in
Fig. 5), and hence the signal fa(t) in (5) in case of SEA, or
(8) in case of PEA. Having the signal fa(t), it is possible
to apply our method to determine, for those link trajectories,
the values of cost functional J1 and J2 for different values
of K and, for PEA, the corresponding best value of qe, as
reported in Fig. 6.

For both indices the best result in terms of energy saving
can be obtained for SEAs by setting K ≈ 0.6 Nm/rad as

3http://www.naturalmotioninitiative.com/

stiffness value. Notice that, this value is quite similar to that
obtained by the stiffness identification procedure. Hence, if
the controller is able to guarantee the same joint trajectories
used in the optimization phase, with any other value of
stiffness, the energy spent would increase.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the role of soft actuation in
the reduction of the energy cost for mechanical systems that
perform cyclic tasks. We have considered both SEAs and
PEAs and determined the optimal stiffness value and spring
pre-load such that a given cost functional is minimized. We
have shown that the energy consumption also depends on the
shape of the joint trajectories used to perform a given cyclic
task. In this paper the desired joint trajectories are sinusoids
which may not guarantee the best behavior in terms of energy
saving. Future works will be dedicated to explore the role
of the shape of the joint trajectories in the reduction of the
energy cost as well as how to design them.

Moreover, results obtained in this paper can be applied
directly to more complex systems such as hopping or hu-
manoid robots for which soft actuation can be exploited to
achieve a reduction of the the so called “Cost of Transport”
which is an important aspect of these robots. Future works
will be dedicated to show by experimentation the reduction
of the energy consumption.
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Fig. 5. Exploded 3D view of the hopping robot. The figure also shows the graphical values of torque and corresponding deformation used for stiffness
identification. Moreover, in the center of the picture are reported reference signals and measured link trajectories.
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