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Abstract— In this work we tackle the problem of planning
grasps for an underactuated gripper which enable it to retrieve
target objects from a cluttered environment. Furthermore,
we investigate how additional manipulation capabilities of the
gripping device, provided by active surfaces on the inside of
the fingers, can lead to performance improvement in the grasp
execution process. To this end, we employ a simple strategy, in
which the target object is ‘pulled-in’ towards the palm during
grasping which results in firm enveloping grasps. We show the
effectiveness of the suggested methods by means of experiments
conducted in a real-world scenario.

I. INTRODUCTION

Prior work in the field of robotic grasping has produced
a multitude of different gripper designs in an attempt to
achieve reliable grasps of various target objects. One line
of research has focused on creating devices mimicking the
mechanical structure of the human hand in order to allow
grasping/manipulation of objects with a wide range of shapes
and sizes [1]. This, however, results in complex designs and
control schemes. An alternative approach is to simplify the
design and/or control and tailor it to preserve some specific
desired grasping or manipulation features [2].

Another recently investigated way to achieve more dexter-
ous grippers is the addition of active surfaces to otherwise
simple mechanical structures. Active surfaces have been used
to regulate the adhesion between fingers and target object [3],
or to augment the mechanical structure with conveyor belts
to control the tangential push exerted on the target object.
Currently, the three most advanced implementations of such
grippers are: the Roll-on gripper [4], the Traction gripper [5]
and the Velvet Fingers gripper [6], [7], the latter of which
was utilized in this work and is depicted in Fig. 1. The Velvet
Fingers gripper combines underactuation and active surfaces
in the form of conveyor belts on the finger phalanges. The
mechanical design (discussed in more detail in Section IV-A)
features one actuated degree of freedom for opening and
closing and two for the belt movements. If, during grasping,
the proximal phalanges are blocked by the object, the grip-
per’s distal phalanges continue to ‘wrap-around’ the object
and envelope it in a firm grasp.

In this work, we investigate two questions which arise
when using such a device in a grasping scenario where a
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Fig. 1. Platform and test objects: The platform utilized in the test runs
in Section IV comprises the Velvet Fingers gripper with three actuated
DoF (one for open/close movement and one per finger for conveyor belt
actuation) and a seven-DoF KUKA lightweight arm. Perception is done
with an ASUS Xtion structured light camera mounted on the gripper. Also
shown are the five test objects used in the experiments - two different boxes,
a beer barrel, a ball and a drum.

cluttered scene containing multiple objects is to be cleared
by a robot:

• How to account for an underactuated gripper structure
in the grasp synthesis?

• How can active surfaces contribute to the grasp execu-
tion process?

Grasp synthesis is the process of determining the gripper’s
joint configuration and wrist pose with respect to the target
object, such that a successful grasp execution is ensured.
In this work, we opt for a data-driven approach to grasp
synthesis, where a knowledge base is populated offline with
target object models which are associated to pre-planned
grasps. During execution, the database is used to retrieve
grasps and rank them according to the expected quality in
the current scene.

The contributions of this work are two-fold: first, we
address the grasp planning problem by adapting the well
known optimization based planning scheme introduced by
Ciocarlie and Allen [8] to the specifics of underactuated grip-
per designs. Second, we investigate a method to improve the
success of the grasp execution process by using the gripper’s
active surfaces. We employ a simple ‘pull-in’ strategy where
the target object is simultaneously manipulated and grasped
by using the belts to pull the object towards the gripper’s
palm while closing the fingers.



This article is organized as follows: below, we briefly
review related work before we introduce our grasp planning-
and execution scheme in Section III. In Section IV we
describe the experimental setup, the target scenarios and the
obtained results before we draw conclusions in Section V.

II. RELATED WORK

One way of categorizing grasp planning methodologies is
to separate them into analytic and data-driven approaches.
Analytic methods commonly construct geometrically stable
force-closure grasps [9], [10] by defining the precise fingertip
locations on the target object. Often, they rely on precise
knowledge of hand kinematics, object geometry and the
relative pose of hand and object (see [11] for a review).
On the other hand, data-driven approaches generate grasp
hypotheses for a given object in a knowledge database and
usually provide a less specific grasp definition (e.g. only
the approach vector [12]) which, combined with appropriate
heuristics for grasp execution, is often more robust to the
uncertainties inherent in a robotic system. To simplify the
grasp synthesis and subsequent retrieval from the database,
it has been suggested to approximate the target object with
primitives or superquadrics [13], [14], [15]. We refer to Bohg
et. al. [16] for a more complete recent review on data-driven
grasp synthesis approaches.

A commonly used strategy to compute grasp hypotheses
is to sample the target object’s surface or bounding-box
normals [17], [18] and to use them as approach vectors in
a simulation where the fingers are closed once the grip-
per’s palm contacts the object. A wrench-based geometric
quality criterion, such as the one introduced by Ferrari and
Canny [19], is usually used to rank the grasps. Alternatively,
suitable pre-grasps can be created by minimizing an appro-
priate energy function as demonstrated in [8]. Again, the final
grasp quality evaluation is usually done after auto-closure
of the fingers in a static simulation (i.e., using a spatially
fixed object and only performing forward kinematics and
collision checks while ignoring interaction forces) [8], [20].
However, for underactuated simple grippers this strategy is
unsuitable because it fails to accurately predict the final grasp
configuration which depends on the interaction between
gripper and object.

Grasp planning and execution in cluttered scenes is sub-
jected to intrinsic difficulties since many pre-planned grasps
are not reachable in such environments. Berenson et. al. [21]
address this problem by online computation of a grasp
score based on heuristics. In [22], pushing actions are used
to manipulate otherwise ungraspable objects. Saxena et.
al. [23] present a vision-based approach which accounts for
uncertainty in the target object’s location during planning
and grasp selection.

The use of active surfaces regulating adhesion for gripping
devices has so far been only explored on the micro/nano
scale [3]. Some designs of grippers utilizing belts have
been employed in industrial settings but, to the best of our
knowledge, no attempt has been made so far to develop

a programmatic strategy of utilizing active surfaces during
grasp execution.

III. GRASP PLANNING AND EXECUTION

Underactuated grippers can only control their active joints
and rely on physical interaction with the environment for
reconfiguring the passive ones. Thus, accurately accounting
for the interaction between such a gripper and a target
object in the grasp synthesis process would require a detailed
dynamic simulation of the grasp procedure. Even then,
grasps pre-planned in this fashion might fail when applied
in cluttered environments, since a physical simulation of the
current scene would be necessary to guarantee successful
target object retrieval.

Here, we chose a different strategy aimed at exploiting
the underactuated structure and the active surfaces of the
Velvet Fingers gripper to simplify grasp synthesis. Therefore,
for planning purposes, we assume extended distal links
and a fully actuated mechanical structure comprising only
one proximal joint α connecting the fingers to the palm
(see Section IV-A for an overview of the actual kinematic
structure). These assumptions conform to the natural con-
figurations of the gripper during approach (see Fig. 1 for
an exemplary approach configuration) when no mechanical
interaction with the environment occurs. During grasp exe-
cution, we then rely on the specific underactuated kinematic
and transmission design to envelope the object in a stable
grasp or use the belts to pull the object into such an
enveloping grasp as described in Section IV-C. Hence, the
goal of the presented grasp planning methodology is to find
appropriate gripper wrist poses and opening angles α.

Our grasp planning methodology is built upon the work
by Ciocarlie and Allen [8], who generate pre-grasps in low-
dimensional hand joint subspaces by minimizing an energy
function based on distance/alignment between pre-defined
contact locations on the hand and the target object. The
corresponding non-convex optimization problem is solved
via a simulated annealing algorithm which has been shown
to work well for synthesizing enveloping grasps for multi-
fingered hands [24], [20]. The Velvet Gripper’s relatively
large size, and the fact that target objects can only be
approached with extended distal links, makes many grasps
with inappropriate wrist poses infeasible since they would
result in collisions with the environment. Consequently, we
additionally consider the following two observations in our
planning framework:

i) It has been shown, that most successful grasps usually
approach along a surface normal of the object [21], [25].

ii) Preliminary experiments showed that in many success-
ful grasps the gripper’s lateral axis (the x-axis in Fig. 2)
is normal to one of the principal component directions
of the object.

In accordance with the first observation, we constrain
the approach direction (the y-axis in Fig. 2) to be along
a surface normal n of the object and plan wrist poses
P = P (d, φ, ψ) ∈ R3 over the approach distance d and wrist
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Fig. 2. Preset contacts: Shown are the preset contact locations and
corresponding surface normals n̂ on the Velvet Fingers gripper. Contacts
depicted in blue result in enveloping grasps, for the synthesis of fingertip
grasps the set of contacts shown in red were used.

roll and pitch angles φ and ψ. To this end, we minimize the
following energy function which was introduced in [8]

E(P , α) =

nC∑
c=1

(
1− n̂Tc oc
‖oc‖2

+
‖oc‖2
s

)
, (1)

where nC indicates the number of preset target contact
locations on the phalanges of the gripping device (see Fig. 2),
n̂c denotes the outward-pointing surface unit normal at a
preset contact, oc is the vector from contact c on the hand to
the closest point p on the object and s is a scaling parameter
(for clarity, the implicit dependence of oc and n̂c on P and
α was omitted in the notation). The first term in Eq. (1)
captures the alignments between the object and target contact
locations on the hand, the second term indicates the distances
of the target contacts to the object. As in [8], the grasp
energy in (1) is minimized using the simulated annealing
algorithm which is able to escape local minima through
possible “uphill moves” during optimization via generating
random neighbors.

Given a vertex p with associated vertex normal n on the
target object’s discretized surface, we account for the second
observation by providing the solver with appropriate initial
conditions. To this end, the gripper is positioned at a fixed
offset distance from p along the negative approach direction
which coincides with the normal n. The initial wrist rotation
is determined such that the gripper’s lateral axis is normal
to the object’s principal component direction with the largest
eigenvalue which is not parallel to the approach vector. This
rotation is then offset by an initial roll angle φ0. During
optimization, box constraints are enforced to ensure that the
variables do not diverge too far from the initial condition.
The proposed method allows to put bounds on the resulting
grasp poses while, opposed to approaches solely relying on
heuristic sampling [21], [18], still retains the flexibility to
adjust them to the specific object geometry.

Our grasp planning methodology is summarized in Algo-
rithm 1 and was integrated in the GraspIt! [24] simulator,
using GraspIt!’s simulated annealing solver. We iteratively
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Fig. 3. Planning example: Shown is a set of fingertip grasps as computed
by the planner. Wrist poses are indicated by the approach direction (y-axis)
in red and the x-axis in blue. As intended, the resulting wrist orientations
are roughly normal to principal component directions of the target object.

Algorithm 1: Grasp planning

Input: Discretized object represented as a set of
vertex/vertex normal tuples {(p,n)}, Initial
wrist rotation discretization nJ , Desired number
of grasps nG, Maximum grasp energy Emax

Output: Grasp poses {P }, opening angles {α}

g = 0
while g < nG do

/* Sample a vertex and associated vertex normal
without replacement */

(p,n) = randomSample({(p,n)})
/* Initialize the solver from nJ initial states */
for j = 1 , . . . , nJ do

/* Compute the initial roll angle φ0 */
φ0 = (j − 1)2π/nJ

orientGripper(p,n, φ0)

minimize
P , α

E in (1)

subject to box constraints on all variables

/* Add the solution to the output set if it
satisfies the energy threshold */

if E ≤ Emax then
add P to {P } and α to {α} g = g + 1

sample vertex/vertex normal tuples from a discretized target
object representation. Subsequently, the solver is restarted
with initial states as described above each time a grasp is
found. In Algorithm 1, nJ grasp hypotheses are computed
for each approach direction. To obtain grasps conforming to
other principal directions and to obtain symmetrical grasp
hypotheses, nJ = 4 is typically chosen since this advances
the initial roll angle φ0 in steps of size π/2. Our optimization
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Fig. 4. Grasping pipeline: The pipeline uses an offline created database storing object models together with grasps provided by the grasp planner. The
perception module creates object hypotheses from the observed scene and matches them to the models in the database. Found models are forwarded to
the grasp selection module which ranks the associated grasps according to their score in the current scene. Subsequently, inverse kinematics and goal pose
collision checks are performed on a chosen grasp before a motion plan is generated which is executed by the controller.

Fig. 5. Pull-in grasping strategy: Depicted is a sequence of intermediate
grasp states where the gripper’s belts are used to pull the object towards the
palm which results in a transition from a fingertip to an enveloping grasp.

scheme only operates on four decision variables which
results in fast planning times. As a grasp quality metric for
ranking, we use the value of the energy function in (1).
The use of wrench-based metrics is avoided, since they
have shown to be rather fragile in practice [18] especially
when planning on imperfect object models reconstructed
from sensor data as the ones we use in this work as detailed
in Section III-B.

In Section IV we evaluate our planner with two different
sets of contact references as illustrated in Fig. 2. The choice
of reference locations on the gripper provides an easy way
to control the resulting grasp configurations. Locations on
the proximal phalanges result in enveloping grasps, which
are potentially robust. However, in cluttered scenes many
enveloping grasps are not achievable without collisions and
fingertip grasps are preferable, especially when active sur-
faces are available to aid the grasp execution process as
discussed below. An example for the planners output is
depicted in Fig. 3.

A. Simultaneous Manipulation and Grasping

An interesting possibility offered by the active surfaces
of the considered gripper is to manipulate the object while
grasping. One idea to improve the grasp execution success in
the presence of object pose and gripper positioning uncertain-
ties is to employ a ‘pull-in’ strategy. Here, the belts move
the object towards the gripper’s palm while the phalanges
squeeze the object as illustrated in Fig. 5. In section IV-C,
we provide a proof-of-concept verification of this strategy
in combination with fingertip grasps in cluttered scenes.
Here, enveloping grasps are often infeasible and the ‘pull-

in’ strategy aids in obtaining firm grasps which would not
be achievable without the active surfaces.

B. Grasping Pipeline

To carry out the experiments in Section IV we employ the
grasping pipeline illustrated in Fig. 4. Our approach employs
an offline and an online stage. In the offline stage, we acquire
3D models of the target objects, train a perception module
and compute grasps. The first step in the offline stage is
to acquire accurate models of the objects of interest. The
model acquisition approach follows the work of Mihalyi et
al. [26]. First, a number of augmented reality markers are
placed in the scene and a set of training RGB-D images
is collected. The training set is used to estimate a graph
of marker positions and orientations. Next, we successively
place each target object in the scene and acquire a set
of RGB-D images, which are subsequently registered in a
common reference frame using the marker graph. We use the
registered depth images to reconstruct a Truncated Signed
Distance Field (TSDF) representation of the object from
which triangular meshes are extracted using the marching
tetrahedrons algorithm. The TSDF tracker algorithm in [27]
is employed to correct for local inaccuracies in the RGB-D
data registration. By fusing consecutive views of the object
in the TSDF representation we effectively eliminate a large
portion of the sensor noise, leveraging on the changing
sensor viewpoints. The smoothed triangle meshes are then
stored in the database and used by the previously described
grasp planner to generate grasps. Thus, contrary to prior
approaches that use ground truth geometric models, we
train grasps on models reconstructed from noisy sensor
observations. The final component of the offline stage uses
the RGB-D images of each object to train the recognition
modules of the perception system. The Perception module
in the pipeline is based on previous work by Vaskevicius et.
al. [28]. During the offline stage, this system extracts local
visual features from the RGB data component, references
them based on the depth component and stores the resulting
feature graph in the database.



Fig. 6. Grasp retrieval: Shown is a scene as observed by the robot with
two detected objects (ball and box). Also depicted are the feasible grasps
G∗ for the ball which are indicated by their approach vectors in green, the
purple vector signifies the grasp chosen by the grasp selection module.

The online stage of the proposed pipeline starts with
the acquisition of an RGB-D image of the target scene.
Following the work in [28], the image is then over-segmented
in patches. Local visual features from each patch are then
extracted and compared against the feature graphs stored in
the database. If a candidate match to an object is detected,
additional checks for consistency are performed by back-
projecting the database object to the scene. Once the per-
ception system obtains a list of detected objects, the grasp
selection module is used to associate a set of grasps to each
of the pose-transformed object candidates. For evaluation
purposes, as described in Section IV-B, this module tests
all grasps from the database for feasibility, using a fast RRT
planner. An example is shown in Fig. 6. Given a high number
of objects and possible grasps, this strategy may not be
feasible for online operation. To this end, we employ a grasp
ranking procedure and a first-feasible execution strategy. We
follow an approach similar to the one outlined by Berenson
et. al. [21] and compute, for the given environment, a
composite score for each grasp by summing the following
two parts:

• grasp energy score
• gripper-relative position score

Here, the grasp energy score is the value of the grasp energy
in (1) for the current grasp configuration, normalized by
the largest energy value over all grasps for an object. The
gripper-relative position score captures the similarity of the
grasp pose to the current gripper pose and is expressed as one
minus the cosine of the angle between the current and target
wrist orientation. All grasps are ranked by increasing scores
and successively tested for feasibility as described above.
Once a valid candidate is found, joint motion trajectories are
generated and passed on to the controllers to execute the
movement. In all experiments, inverse kinematics, collision
checking and motion planning were carried out with the
MoveIt! framework [29].

Fig. 7. Kinematics and Control architecture of the Velvet Fingers gripper:
One electronic board controls the motor M for the opening and closing,
reads the angular position of the second joints q2 and q4 and limits the
current absorption of the actuator. The second board controls the motors
Mr and Ml driving the belts.

IV. EVALUATION AND RESULTS

In this section, we outline the hardware setup and target
scenarios, before proceeding with a discussion of the ob-
tained results.

A. System configuration and Target Scenarios

In order to evaluate the suggested grasping pipeline,
two sets of experimental evaluations were performed. All
experiments were carried out on the platform depicted in
Fig. 1, consisting of a Velvet Fingers gripper mounted on
a joint impedance controlled KUKA lightweight robot arm.
Each of the gripper’s two fingers has a planar manipulator
structure with two joints plus two coupled conveyor belts
which implement the active surfaces. The kinematics and
control scheme of the Velvet Fingers gripper is depicted
in Fig. 7. All the actuators are controlled with simple PID
control loops which are closed on the angle rotation of the
motor shafts through magnetic encoders. A current sensor on
the electronic board controlling the opening/closing actuator
allows to set a threshold on the current absorption. This
ensures a robust grasping behavior and, at the same time,
enables safeguarding the entirety of the gripper (see [7]
for more details). For all object recognition and collision
detection tasks an ASUS Xtion structured light camera,
which is mounted on the gripper, is used.

In the experiments, we used a database containing the five
target objects shown in Fig. 1. We opted for a two-staged
evaluation. In the first set of experiments we investigate
the quality of the proposed grasp planning approach under
different environment configurations. We then proceed to
analyze the performance of the system in a tabletop grasping
scenario including a preliminary performance analysis of the
proposed ‘pull-in’ strategy.



Fig. 8. Planning results - isolated objects: Boxplot showing the number of
feasible grasps |G∗| per object (out of a total number of 400 pre-planned
grasps) as a function of the chosen planning flavor (pinch, envelope or
mixed grasps). The grasps were extracted from data set SI which contains
observations of isolated target objects only.

B. Grasp Planning Evaluation

To evaluate the planning, we computed three sets of
400 grasps for each object, containing pinch grasps GP ,
enveloping grasps GE and an equal mixture of both GM
respectively. Next, the experimental platform was used to
collect two data sets of depth and color images. The first
scene data set SI contains three observations of each target
object in isolation (i.e., only one object in the scene).
The second data set SC contains observations of scenes
with various amount of clutter (i.e., multiple objects in
the scene). Here, a total of fifteen different scenes with all
five objects, which are incrementally cleared by a human
removing one object at a time, were recorded resulting in
a total of sixty observed scenes containing at least two
objects each. For each observed scene we executed our
grasping pipeline using the differently planned grasp sets.
In these sets of experiments we evaluate all grasps up to the
motion planning module, but do not select or execute a grasp
since we aim to evaluate how many of the planned grasps
are feasible (i.e., reachable by a collision free path) under
different conditions. The predefined parameters for the box
constraints, wrist rotation discretization and energy threshold
used in Algorithm 1 are summarized in Table I.

The outcome of the first experiment is visualized in
Fig. 8. It is clear that pinch grasps are much more likely
to be feasible, even if only a single target object is in
the robot’s workspace. Many enveloping grasps are rejected
because they necessitate large opening angles resulting in
bulky gripper silhouettes for which no collision free approach
trajectories can be found.

Table II shows the feasible grasps per object depending
on the number of objects in the cluttered scene and the
chosen planning flavor (pinch, envelope or mixed grasps).
We note that two out of the 15 scenes containing all five
objects yielded an exceptionally high number of feasible
pinch grasps, which biased the according entry in Table II.

TABLE I
PLANNING PARAMETERS: Predefined parameters for Algorithm 1

∆φ [rad] ∆ψ [rad] ∆d [m] nJ Emax

± π/10 ± π/10 ± 0.4 4 20

TABLE II
PLANNING RESULTS - CLUTTERED SCENES: Mean and 1-STD values of

the number of feasible grasps |G∗| per object depending on the planning

flavor (pinch, envelope or mixed) and the number of objects in the scene.

|G∗P |/Obj |G∗E |/Obj |G∗M |/Obj

5 Obj 7.5 ± 12.3 1.3 ± 3.4 3.3 ± 8.0

4 Obj 4.7 ± 6.2 1.4 ± 3.2 2.1 ± 3.5

3 Obj 5.1 ± 8.9 1.5 ± 2.5 2.1 ± 4.2

2 Obj 8.4 ± 9.3 4.0 ± 5.7 4.6 ± 8.0

This is due to the fact, that the number of feasible grasps
found also significantly depends on the location of the objects
in the robot’s workspace which favored pinch grasps in
these cases. Nevertheless, it is evident that the difficulty of
finding feasible enveloping grasps increases with the amount
of clutter, whereas it still possible to obtain pinch grasps with
multiple objects in the scene. Also, the set of mixed grasps
does not perform significantly better than enveloping grasps.
These results provide a strong motivation to exclusively use
dexterous initial pinch grasps, coupled with a strategy for
subsequent robustness improvement such as using active
surfaces to pull the object into a firm enveloping grasp.

C. Grasp Execution and Active Surfaces

For a proof of concept evaluation of the suggested meth-
ods, we used the platform in Fig. 1 to incrementally clear one
of the cluttered scenes using the described grasping pipeline
utilizing the set of planned pinch grasps GP . Initial grasps
were performed by thresholding the current absorption of
the gripper’s closing actuator. Currently, no current feedback
is available for the belts on the fingers. Therefore, after
an initial pinch grasp was acquired, the belt movements
responsible for pulling the object into an enveloping grasp
were triggered by an operator. In this fashion, the robot was
able to retrieve all five objects needing six attempts, one
object was dropped during the lift phase. An example of the
robot using the ‘pull-in’ strategy is depicted in Fig. 9.

V. CONCLUSION

The main concept in this work is to simplify grasp
planning for an underactuated grasping device and to entrust
the specific kinematic/transmission structure of such a device
with robust grasp execution. To this end, we adapt a well-
established optimization based planning scheme [8] to the
specifics of underactuated grippers. Furthermore, we inves-
tigate how active surfaces in form of belts on the fingers
can aid in the grasp execution process, by manipulating an
object in order to pull it into a robust enveloping grasp
starting from an initial dexterous pinch grasp. We provide
a numerical evaluation of the proposed grasp planner in a



Fig. 9. Grasp execution with the ‘pull-in’ strategy: Shown is an example
of the gripper using the active surfaces to retrieve an object via pulling it
towards it’s palm.

real-world scenario and conduct proof-of-concept test runs
on a robotic platform featuring an underactuated gripper.

Future work will be directed at an extensive experimental
evaluation of the proposed grasp planning- and execution
methodology. Therefore, the belt actuators will be augmented
with current sensors to allow autonomous conduction of the
pull in strategy by thresholding the corresponding motor
currents. Furthermore, we will explore new possibilities of
utilizing active surfaces in grasping such as using them to
flip objects in order to ease grasp acquisition.
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