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Abstract— Two leading qualities of skeletal muscle that pro-
duce good performance in uncertain environments are damage
tolerance and the ability to modulate impedance. For this
reason, robotics researchers are greatly interested in discovering
the key characteristics of muscles that give them these proper-
ties and replicating them in actuators for robotic devices. This
paper describes a method to harness the redundancy present in
muscle-like actuation systems composed of multiple motor units
and shows that they have these same two qualities. By carefully
choosing which motor units are recruited, the impedance viewed
from the environment can be modulated while maintaining
the same overall activation level. The degree to which the
impedance can be controlled varies with total activation level
and actuator length.

Discretizing the actuation effort into multiple parts that work
together, inspired by the way muscle fibers work in the human
body, produces damage-tolerant behavior. This paper shows
that this not only produces reasonably good resolutions without
inordinate numbers of units, but gives the control system the
ability to set the impedance along with the drive effort to the
load.

I. INTRODUCTION

There is evidence that humans are successful at performing
tasks in uncertain environments because they are able to
modulate the physical impedance of their muscles to fit the
task. To this end, several researchers have created actuation
solutions that include functionality to vary the impedance
of the joint in addition to imposing a force. Vanderborght
et al. provides a review [1]. Most examples consist of
dual servomotors that either vary the stiffness through co-
contraction of antgonistic nonlinear springs [2],[3], or use
one motor to impose torque, and the other to vary the
impedance [4], [5]. While these examples and others can
accommodate imprecision in the environment the way that
humans do, they lack the resilience to failure of biological
muscle.

The modular design of muscle systems has tremendous
redundancy, meaning that should a few muscle cells fail, the
actuator does not cease to function. This is because each cell
is only responsible for a portion of the required force. This
was realized by Du et al. [6], who studied the effect of failure
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4Centro E. Piaggio, Università di Pisa, 56112 Pisa, PI, Italy
bicchi@centropiaggio.unipi.it

(a) Concentrating the activa-
tion in one or only a few actua-
tion units leads to high actuator
impedance

(b) Spreading the activation
over all or most actuation
units leads to low actuator
impedance

Fig. 1: Both examples have the same activation level; active
motor units are highlighted in red

(a) A single actuation unit; me-
chanical stops are fiber straps

(b) A bundle of two chains of
actuation units

Fig. 2: Series elastic actuation units, like those pictured here
can be connected in series/parallel combinations to produce
an actuator with desired performance and study recruitment
phenonomena. In this implementation [8], each motor unit
is a micro solenoid with a series elastic element. The series
elastic elements are joined at a common hub, producing an
actuation unit.

quantitatively. Secord and Asada [7] showed that in a chain
of amplified piezoelectric stacks with mechanical stops, the
choice of which “cell” to activate, while irrelevant to force,
affected the resonant frequency of the device. The shift in
resonant frequency is due to a change in mass distribution
rather than a change in stiffness of the chain.

In the actuator of the type studied in this work, modifying
the impedance is produced by exploiting the redundancy in
control inputs. The variable impedance behavior is innate
to the technology and requires no additional hardware. Fig.
1 illustrates how given a total activation level, modifying
exactly which motor units are in the “on” state results in
different impedance properties. To the authors’ knowledge,
this is the first example of modulating actuator impedance
by varying the spatial properties of activation.

The paper is organized as follows: Section II and III
introduce the basic paradigm. Section IV discusses the rela-
tionship between resolution and the number of motor units,
Section V and VI explain hardening behavior (nonlinear
stiffness) and the critical length (where hardening begins).



Section VII-IX complete the formulation and close the paper.

II. DISCRETIZED ACTUATION BASED ON RECRUITMENT

The authors introduce a modular test-bed in a prior work
[8], of a muscle-like basic building block that can be used
to study myogenesis and recruitment concepts in a robotic
context, shown in Fig. 2. It has as its motor units 6 miniature
solenoids whose plungers are connected by individual series
elastic spring lobes to a common hub; each solenoid acts as a
discrete displacement source which produces a discrete force
contribution to the total by virtue of its an integrated series
elastic element. In that work, two terms related to actuation
systems composed of discrete units are introduced:

• actuation unit: the smallest unit that can be added, re-
moved or reconfigured to adjust a muscle-like actuator’s
characteristics (a manufactured part)

• motor unit: a force-producing device that can be inde-
pendently activated or deactivated by a control signal

In robotic applications, it is envisioned that the input to
the actuator will be a scalar feedback control signal u(t),
which provides only the number of motor units that should
be recruited during each sample, not which ones. As these
actuation systems may be large, it would be helpful to have
a quick way to determine what constitutes a “favorable”
vs. “unfavorable” spatial distribution of active motor units.
Activation should be chosen to produce robustness to small
changes in length and desired impedance.

The selective recruitment strategy described in this paper is
equally applicable to any technology (such as the piezoelec-
tric cellular actuator [7] or shape memory alloy implemen-
tations [9]) that fits the paradigm illustrated schematically in
Fig. 3: A motor unit consists of a binary contractile element
with a series elastic element, with all series elastic elements
joined on the opposite end at a common hub.

motor unit

Fig. 3: Schematic of the muscle like actuator

With any series elastic actuator, changes in the load will
produce changes in the length of the series elastic element,
which in turn produces changes in the force. Mechanical
stops (see Fig. 3) limit the contractile element’s outward
travel under load, preventing disengagement. Secord and
Asada [7] place the stop on the mounting hub, meaning
inactive units become rigid. In this paper, the mechanical stop
is on the contractile element, meaning that the actuation unit
conserves its spring-like behavior when the mechanical stop
is engaged. By implementing the mechanical stops this way,
the actuation unit’s stiffness varies with activation, giving
variable impedance behavior.

III. MODEL OF FORCE-LENGTH BEHAVIOR

Schultz and Hawrylak [10] developed a model for series-
elastic units with binary operation configured in a bundle
of chains. If the units are identical (same spring constant,
same contraction difference) and the length of the bundle L
is known, a closed-form expression for the force F produced
as a function of activation is as follows:

F =
k

n

nL−
m∑
j=1

n∑
i=1

ℓsi,j

 , (1)

k is the spring constant of each series elastic element, n is the
number of units in each chain, m is the number of chains
in the bundle. In addition to being summation variables, i
and j represent the row and column indices of a given unit
in the bundle. ℓsi,j is a binary constant that depends on the
activation state: it can be either ℓ0, the inactive resting length,
or ℓa < ℓ0, the active resting length.

Looking at Equation (1), one can see that if all units in
the bundle are of identical characteristic, it is only the total
number active that matters; exactly which units are recruited
(made active) will not affect the force. A similar closed-form
expression exists which allows k, ℓ0, and ℓa to vary for each
node. Equation (1) does not handle the following phenomena
present in the physical implementation:

1) each actuation unit contains multiple motor units
2) the actuation units behave differently in extension vs.

contraction
3) length-based switching condition due to mechanical

stops
These phenomena introduce the notions of hardening and
critical length, discussed in sections Section IV-Section VIII.
Each actuation unit will belong to one of the three classes
below. The following assumptions are made:

1) if active, the external load will not overpower the motor
unit (internal contraction)

2) the mechanical stops never break
3) there is always some preload, however small, placing

the actuator in tension

A. Class I

An actuation unit in Class I has all of its motor units
inactive. For a single chain, this means that the mechanical
stop is engaged. The resting length is then ℓ0, and the
stiffness is that of all of its springs in parallel. A small
modification to treat bundles of chains will be addressed in
Section VII.

B. Class II

An actuation unit in Class II has at least one motor unit
active; the inactive ones “float” – they slide or change length
freely and exert no force. The length of the actuation unit in
question is between ℓa and ℓ0. Conceptually, the actuation
unit becomes a single series elastic element with a stiffness
equal to all the active motor units’ springs in parallel, with a
resting length of ℓa. If an actuation unit has all motor units
active, it is always in Class II, without exception.
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(a) Muscle-like actuator with N=2 and P=2.
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(b) Muscle-like actuator with N=4 and P=4.

Fig. 4: Possible output forces as a function of the output
position for two muscle-like actuators with different number
of motor units per actuation unit (N ) and various numbers of
actuation units in series (P ). Each line represents a different
activation pattern.

C. Class III

An actuation unit has at least one motor unit active, and
has been elongated substantially by the external load. Inac-
tive motor units do not float, but encounter the mechanical
stop, meaning they also impose a spring force. In Class III
the length of the actuation unit is greater than ℓ0.

IV. PRECISION OF ACTUATOR FORCE PRODUCED

Although the muscle-like actuator (i.e. a configuration
of actuation units in parallel and series) can only be fired
discretely it still offers numerous possible force-displacement
operating points. The number of unique discrete output
forces that can be produced depends on the number of motor
units per actuation unit (N ) and the number of actuation
units in the configuration (P ). This is shown in Fig. 4
where each point of each line represents a position and force
that can be achieved by the actuator for some activation
pattern M on each actuation unit. This is simulated for an
actuator with N=P=2 and for N=P=4. Even with only a
modest increase in N and P , the density of operating points
produced increases greatly.

A. Increasing the length of the chain

The Force-displacement-activation relationship for an in-
dividual actuation unit was given in [8] and is repeated here:

1 2 3 4
0

20

40

60

80

100

120

140

# Actuation units P in series (for N=2)

# 
U

ni
qu

e 
ou

tp
ut

 fo
rc

es

(a) Unique discrete forces with
increasing chain length
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(b) Unique discrete forces
with increasing motor units

Fig. 5: The number of unique output forces that can be
produced by the actuator increases strongly with increased
chain length P , as well as the number of motor units per
actuation unit M . The output force calculated by the solver
was rounded to 4 digits after the decimal point.

F =


(ℓt − x)

M∑
i=1

ki, x ≥ 0

(ℓt − x)
M∑
i=1

ki − x
N−M∑
j=1

kj , x < 0
(2)

where ki, kj are the spring constants from each motor unit
to the mounting feature, x is the position of the mounting
feature and ℓt is the contraction distance of a motor unit. M
is the number of motor units active within an actuation unit.

Fig. 5a shows the force produced where the number of
motor units N per actuation unit is 2, and the number of
actuation units P in the chain increases from 1 to 4.

B. Increasing number of motor units per actuation unit N

The number of unique discrete output forces that can be
produced by one actuation unit depends on the number of
motor units within an actuation unit. This is shown in Fig.
5a where P is 2, and the number of solenoids in parallel N
increases from 2 to 6.

C. Occupation rate of actuation range

The occupation rate is a metric that characterizes the
variation in force production with activation patterns. We
define it as the number of unique output forces divided by
the maximum number of output forces in a certain range
to within a certain tolerance. An example can be found in
Fig. 6. In this example the output range is indicated by
the red stars and equal to 1.02 N. The accuracy desired is
0.001 N. The number of unique output forces is 340. As
such, the occupation rate is equal to 340

1020=33%. If a motor
unit or entire actuation unit fails, the new occupation rate
can be calculated ommitting the damaged portion, making it
a measure of damage tolerance.

V. VARIABLE IMPEDANCE: DELIBERATELY PLACING
ACTUATION UNITS IN CLASS I, II, OR III

The analysis of this section permits us to quickly and
easily categorize actuation units into class I, II, or III,
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Fig. 6: The occupation rate is studied for N=4 and M=4
and output position 0.02 m. Between the two red stars the
occupation rate is 33% for an accuracy of 0.1% of the
maximum output range.

based on only the activation state (easily stored), and the
overall actuator length (easily measured). Using this method,
calculation of the individual lengths of each actuation unit
is not necessary, which is useful when considering large
configurations.

Since there are many different activation patterns that can
produce the same force, activations can be distributed over
actuation units in Class II in different ways so as to vary
the impedance. Increases in the load will cause the elastic
elements to extend. As the length increases, individual units
will move from Class II into Class III, and the actuator
will exhibit hardening behavior. Hardening of a series elastic
actuator has been found to be useful in robotic locomotion
[11].

In most practical implementations, the physical character-
istics of the actuation unit, its activation state, and the length
of the actuator L will be readily available. Determination of
which actuation units are in Class I is trivial. Dividing units
into classes II and III is more difficult.

There is a strong motive to avoid Class III: if all the units
are Class I or Class II, the force can readily be calculated
in closed form [8] with knowledge of L and the activation
state. This is done by treating each actuation unit as a node
with the equivalent resting length and stiffness as described
in Section III.

It is also prudent to consider what happens with small
changes in length of the actuator. If a large number of
units are near the Class II/Class III boundary, there may
be “chatter” as units rapidly move between the two classes,
meaning large changes in force and impedance come from
only small changes in displacement.

VI. DISTINGUISHING BETWEEN CLASS II AND CLASS III

The number of units in Class II and in Class III can be
calculated if the activation state of each and every unit is
known. However, the critical length, Lcrit, the length of the
bundle L at which the first actuation unit transitions from
Class II to Class III, can be estimated with less information.

We will begin by analyzing a single chain and extend the
analysis to a bundle of chains.

A. Concept of active and inactive actuation units

Consider a chain under load of n actuation units with the
activation state of all motor units known. p denotes units
of that chain that have at least one motor unit active. The
length of each individual actuation unit does not depend on
the order in which they are placed, so the chain is equivalent
to two chains in series; one p units long of “active” units and
the other n−p units long of “inactive” units. Any unit in the
same chain with the same stiffness will be in the same class.
If all units are identical, this means that all units in the chain
with the same activation state will be in the same class. This
is why calculating each individual actuation unit’s length is
unnecessary.

The goal of this analysis is to quickly estimate Lcrit. In
order to contact the mechanical stops and enter Class III, at
least one active actuation unit will need to elongate from a
length of ℓa to a length of ℓ0. The stiffness of active actuation
units, while below that of inactive units, is not drastically so,
meaning it is reasonable to assume that the inactive chain
undergoes some deformation when the chain is stretched to
length L.

The stiffness of an active actuation unit equals the stiffness
of all springs of its active motor units in parallel; If it is in
Class II, those from inactive motor units do not contribute.
Therefore, for L < Lcrit, the actuation unit with the lowest
activation state has the minimum stiffness. It is tempting to
estimate Lcrit by setting the stiffness of the active chain to
be the minimum possible stiffness, say, assuming that every
unit in the inactive chain has only one unit active. After
all, this means that the inactive chain would deform by the
least amount, forcing the active chain to its longest possible
length. This has a tendency to overestimate Lcrit, particularly
for higher activation levels. The reason is thus: if all the
active units are at minimum stiffness, the deformation is
borne equally by each unit in the active chain, decreasing the
likelihood that any of them will go into Class III. It turns out
that heterogeneous activation patterns, where some units are
stiffer than others, will force the more compliant actuation
units into Class III at shorter overall actuator lengths, because
these “weak links” undergo most of the total deformation.
This will be demonstrated below.

B. The 3-spring model

With a modest increase in complexity, the critical length
can be calculated accurately in closed form without calcu-
lating the individual lengths of each unit in the chain. This
model assumes several things:

1) actuation units with the same activation level in a given
chain will have the same stiffness

2) actuation units with the same activation level in a given
chain will consequently deform by the same amount

3) actuation units with the lowest activation level in a
given chain will have the lowest stiffness, and therefore
deform by the largest amount
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Fig. 7: Since the geometric distribution of activation in a
chain of actuation units has no bearing on what class they
will fall into they can be reordered as shown. A given chain
in an actuator can be divided into 3 sub-chains. Stiffnesses,
number of units in the chain, and the lengths of each are
shown.

4) as such, these will be the first units to reach Class III
with increases in length, and all are equally likely to
enter Class III for a given length

To determine whether a chain is in danger of entering
Class III, it is sufficient to consider only those actuation
units that are at the minimum activation state for the chain.
Suppose that the chain contains r of these units. This
divides the active chain into two “subchains”, or the 3-spring
configuration shown in Fig. 7. Again we can assume that all
r units are on the end of the chain. Each of these r units
will have a stiffness Kmin. The stiffness of the subchain
is then Kmin/r. There will be p − r actuation units that
have a greater number of motor units active. Collectively,
this subchain will have a stiffness K, resulting from the
remaining actuation units with non-uniform activation levels.

Applying equilibrium at the two nodes where the sub-
chains join and noting that the total length must sum to L
results in the following system of equations:

 −Kmax

n−p K 0

0 −K Kmin

r
1 1 1

 ℓ1
ℓ2
ℓ3


=

 ℓaKmin − ℓ0Kmax

ℓa (Kmin +K(r − p))
L

 (3)

If ℓ3 reaches a length of rℓ0, all r of these units will be in
Class III. The expression for ℓ3 can be found using Cramer’s
rule. Setting this equal to rℓ0 and solving it for L gives the
critical length.

Lcrit = (ℓ0 − ℓa)

(
Kmin(n− p)

Kmax
+

Kmin

K
+ r

)
+ pℓa + ℓ0(n− p) (4)

K can be calculated directly from the activation state of all
actuation units in the chain, and r from a simple search. It
is worth noting that the last two terms in Equation (4) are
equal to the resting length of the actuator for that activation
pattern.

If one is unwilling to query the entire activation state of
the chain, substituting K = Kmax and the lowest possible
value rlb that r could be gives a lower bound for Lcrit. This
only requires knowledge of p and Kmin.

Fig. 8 shows the critical lengths by evaluating Equation (4)
for a chain of 36 actuation units of 12 motor units each with
a series of 10000 random activation states, plotted against the
total activation level for the chain. It is clear that even with
the same total number of motor units active very different
values of Lcrit can be produced. Thus if one wants to remain
in Class II at all costs, it is advantageous to choose the
activation pattern that results in the highest possible Lcrit.
Conversely, if hardening behavior associated with reaching
the safety stops is desirable, a pattern could be chosen with
a lower Lcrit.

Fig. 8 shows that the lower bound is reasonably tight,
making it an acceptable conservative estimate of the critical
length. Note that the critical lengths decrease with increased
activation. This stems from the decreased resting length of
the actuator with increased activation. The critical lengths
are separated into a few parallel bands (naturally with some
scatter), the upper bands likely being cases where the activa-
tion happens to be distributed more evenly. The majority of
activation patterns’ critical lengths end up in the lower bands.
These upper bands tend to disappear at higher activation
levels, suggesting that there are fewer options which yield
the longer critical length. For higher activation levels, it is
more likely that there will be stiffer actuation units in the
active chain, forcing the more compliant ones to absorb the
majority of the deformation and they hit Class III at shorter
lengths.

VII. BUNDLES OF CHAINS

A single chain will seldom produce enough force for a
given application, so multiple chains will be collected into
parallel bundles in order to move a load. The force produced
by each chain is additive. In addition, the stiffness of each
chain is additive.

Since the actuator is a bundle of chains joined at the ends,
each chain has the same length, L. To determine whether the
actuator has any units in Class III, one simply checks each
chain one by one. The critical length is therefore:

Ltotal
crit = min

j
Lj
crit (5)

where Lj
crit is the critical length of chain j.
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Fig. 8: Critical lengths vs. number of motor units active for
a randomly-generated set of activation patterns

Unlike the single chain case, there is also a critical length
on the lower side. Imagine that chain j has a particularly high
activation state, and chain k has a particularly low activation
state (p << n). In this case, chain j could pull L below
pkℓ

a+(nk−pk)ℓ
0, where the subscript k refers to the values

for chain k. In this case the length of chain k could be
below its resting length. This chain will behave like a slider.
Further activation of this chain will not contribute to the
force until chain k “catches up” with the more active chain
or the load increases, which will cause L to go up. The user
may want to avoid this situation by distributing the activation
more equally across the chains in the bundle. Conversely,
this behavior may rather be exploited to control the stiffness
during operation.

VIII. CONTROLLING THE IMPEDANCE AND COMPUTING
ACTUATOR FORCE

In order to determine the force-length behavior of a
muscle-like discretized actuator, the first step is to determine
whether there are units in Class III or not. This can be
estimated reasonably accurately using only the total number
of actuation units in each chain p that have at least one motor
unit active, and the minimum activation state in the chain.
If every actuation unit in the entire actuator is in Class II,
the Schultz-Hawrylak formulation can be used to determine
the actuator force. Once Lcrit is exceeded, the actuator
will continue to harden at discrete intervals with increasing
length as more units enter Class III. The calculation of force
is less elegant, involving a matrix multiplication. It is the
nonlinearity of the mechanical stops and movement from
one class to another that gives variable impedance behavior.
Activation patterns can be modified while still preserving
the same overall activation level for the actuator to vary the
actuator’s stiffness by trading off between Class I and Class
II Class II or forcing actuation units into or out of Class III
to exploit the hardening behavior.

IX. CONCLUSION

Discretized muscle-like actuation has obvious benefits
with regard to resiliency, but also posesses innate length-

dependent variable impedance behavior. By modulating ex-
actly which units are activated for a scalar control input, the
impedance of the actuator can be specified while conserving
the same overall number of units active. This gives the
controller the ability to invoke or revoke hardening behavior
(nonlinear stiffness) along with specifying a general control
input. This paper has presented a closed-form expression
based on system constants and activation state to accurately
predict the critical length where hardening begins. Even
when only a few actuation units are present, the force-
displacement operating points quickly become dense despite
the binary nature of individual motor units.

Future work will conduct force-length-activation experi-
ments on the hardware shown in Fig. 2 to see how accurately
the models perform in the presence of manufacturing uncer-
tainty and friction. Models of more complex configurations
will be evaluated and models produced as well. Methods will
be sought for more efficient calculation of the actuator force
beyond the critical length.
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