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Abstract— In this paper, we investigate the role of variable
stiffness in the reduction of the energy cost for mechanical
systems that perform desired tasks. The objective is to assess
the use of Variable Stiffness Actuation (VSA) by determining
an optimal stiffness profile and the associated energy cost of
performing a desired task. For the analysis we consider mechan-
ical systems of n-Degrees of Freedom (DoF), using VSA. We
find an analytical solution that expresses the optimal stiffness
profile during the task as a function of joint trajectories. This
stiffness profile can be either constant or variable in time, and
it minimizes a cost function, when performing a desired task.
We calculate the cost related to the torque of the system and
the additional cost of changing or keeping a stiffness actively
constant. Additionally, we discuss some cases for which it is
worth to change the stiffness during a task and cases for which
a constant stiffness may be better solution. Furthermore, from
simulations and experiments we show cases in which using
a variable stiffness profile allows cost savings w.r.t. constant
stiffness. The use of variable stiffness depends on the task,
i.e. on the joint trajectories and their frequency, as well as on
the mechanical implementation of the actuator used.

I. INTRODUCTION

In the last years, compliant actuation has been introduced
in robotics mainly to provide safe interaction between hu-
mans and machines [1]. Recently, other advantages of soft
actuation have been presented; for instance, to have more
natural motions or to provide energy efficiency [2], which
is relevant in the analysis and design of humanoid robots.
According to [3] and [4], much progress has been made in
developing robots that can operate in human environments
and perform several tasks such as driving a car, opening a
valve, walking or removing debris. However, these humanoid
robots have been designed aiming to performance and not to
efficiency, which limits their functionality [3]. PROXITM[5]
is a new humanoid robot platform developed to achieve high
efficiency and high performance as required by new robot’s
generation. For the design, three approaches are considered,
namely a transmission that reduces friction, electric motors
and batteries and compliance to perform desired gaits.

Based on the importance of energy efficiency for hu-
manoid robotics and given the advantages of soft actuation,
this paper focuses on investigating the role of variable
stiffness actuation for reducing energy consumption. Cyclic
tasks are interesting for our work, because many robotic tasks
are or can be modeled as periodic, like walking and hopping,
hammering, or the pick and place task. Notice that cyclic
may not mean sinusoidal, but a repetitive motion that can be
shaped or designed carefully.

Regarding compliant actuators, these mechanisms can
have fixed or variable stiffness, depending on their construc-
tion. In the first case, the elastic element is constant for all the
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task and can be placed in series between a high impedance
actuator and the load [6], or in parallel to the motor, between
the links [7]. In the second case, the stiffness of the actuator
can be changed mechanically during a task (VSAs) [8], or
either the damping and stiffness can be adjusted (VIAs)
[9]. In a previous work [10] we studied the role of soft
actuation in the reduction of the energy cost for mechanical
systems that perform cyclic motions. We considered the
use of Series Elastic Actuators (SEAs) and Parallel Elastic
Actuators (PEAs). The optimal stiffness value and spring
pre-load were determined such that a given cost functional
was minimized. In the mentioned work, the general problem
in which both trajectories and actuation parameters were
the optimization variables, was cast as a simpler problem
in which optimization regarded only trajectories. Although
stiffness was considered constant, we discussed that changing
it during the task could help to reduce more the energy
consumption. Here Variable Stiffness Actuation (VSA) plays
an important role. In this paper we tackle the problem of
minimizing energy consumption of mechanical systems of n
DoF, performing a desired task. The objective is to assess the
use of VSA by determining the optimal stiffness profile and
the associated energy cost of performing the task. The actual
novelty and utility of this method is that the cost function
takes into account a weighted cost of the change of stiffness,
and the optimization is done during the task.

In literature, different works address this issue from differ-
ent points of view. Advantages of soft actuation in terms of
energy efficiency are tackled e.g. in [11], where the natural
dynamics of the mechanism is used to investigate the role
of compliance in locomotion. In [12] the energetic cost of
leg swinging in dynamic robots is reduced by emulating the
use of passive joint stiffness, suggesting as well that simi-
lar efficiency improvements could be obtained in dynamic
walking robots. Moreover, optimization of stiffness and gait
synthesis for biped walking are also addressed e.g. in [13],
where simultaneous optimization of the gait and a fixed leg
spring stiffness is carried out. On the other hand, periodic
tasks are considered e.g. in [14] that proposes an energy
efficient method for carrying out a pick and place task. In this
approach, an adaptive elastic device with PEAs in each joint
is used to reduce the total energy of the task. From a safety
point of view, variable stiffness is addressed for instance in
[15], where a variable stiffness joint (VSJ) was designed for
a robot manipulator. A control scheme of the stiffness and
the position of the VSJ are developed. To save energy, [16]
presents a compliance controller which continuously changes
the stiffness of the actuator to adapt the natural motion
of the system to a desired trajectory. Different from our
choice, in this case, pneumatic artificial muscles are studied,
showing that actuator compliance significantly reduces the
energy consumption. In [17] an energy saving control method
through stiffness adaptation in PEAs and delayed feedback



control are simultaneously carried out to generate passive
periodic motions. Optimal control strategies to exploit the
advantages of VSA have been also studied for example in
[18], which addresses a model-based control method to send
constrained commands to the VSAs.

In this paper we present a methodology to find a stiffness
profile in time, obtaining an analytical solution for optimal
stiffness. We discuss some cases for which it is worth to
change the stiffness during a desired task and other cases
for which a constant stiffness may be a better solution. From
the simulations and experiments, we show particular cases in
which using a variable stiffness profile leads to obtain savings
at least 16.75% w.r.t. constant stiffness in the worst case.

II. PROBLEM FORMULATION

As mentioned, we are interested in studying soft-robotics
actuation, particularly VSA for a n-DoF mechanical system.
The purpose is to find the optimal stiffness that minimizes a
cost function based on energy consumption when performing
a cyclic task. This stiffness can either vary or remain constant
during the task. To determine the optimal stiffness profile,
we quantify the cost related to the torque and the additional
cost of actively changing or keeping the stiffness constant
in a VSA mechanism. In this section we state the model of
the mechanical systems actuated by VSAs; then we derive
the cost related to varying or keeping the stiffness constant.
Afterwards, we write the general cost index that we will
minimize. At the end, we propose a strategy to find the
stiffness profile, considering equal time intervals in order to
state the optimization problem.

A. Dynamics of the mechanical system
Consider a mechanical system of n-DoF actuated by VSA

whose dynamic equations are described as

M(q)q̈ + C(q, q̇)q̇ +G(q) +K(q − θ) = 0 (1)

Jmθ̈ +K(θ − q) = τ , (2)

where M(q) ∈ <n×n, C(q, q̇) ∈ <n×n, Jm ∈ <n×n
and K(t) ∈ <n×n are respectively the matrices of inertia,
Coriolis, motor’s inertia and stiffness; G(q) ∈ <n is the
gravity vector, q ∈ <n, q̇ ∈ <n, q̈ ∈ <n are respectively
the vectors of link positions, velocities and accelerations,
θ ∈ <n and θ̈ ∈ <n are the vectors of motor’s positions and
accelerations, and τ ∈ <n is the vector of joint torques.

1) Assumptions: For the analysis, the stiffness and the
motor’s inertia matrices, K(t) and Jm are diagonal; the link
trajectory is given and it is periodic q(t) = qd(t+T ), where
T is the period. The stiffness can be actively changed from
a minimum value Kmin to a maximum value Kmax. We
consider that the time required to change the stiffness is
negligible w.r.t. other time constants of the systems. Under
this assumption it is reasonable to consider the stiffness
profile piecewise constant. However, if the stiffness settling
time is smaller there may be undesired effects that will be
studied in further works.

B. Cost related to stiffness
To assess whether the use of VSA is worth in terms of

energy consumption, we take into account the cost of actively
varying the stiffness or keeping it constant. We derive the
cost of varying the stiffness given a VSA. This cost depends
on the stiffness and on the motors torque. In general, the
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Fig. 1. Agonist Antagonist VSA scheme. τE is the torque at the output
shaft, θ1 and θ2 are the positions of the mechanism’s motors, q is the link
position

external torque of a VSA can be described by a function l(·)

τE = l(τ1, τ2) , (3)

and the mechanism motors’ torques τ1 and τ2 can be
expressed by general functions t1(·) and t2(·)

τ1 = t1(q, θ1, θ2) , (4)
τ2 = t2(q, θ1, θ2) . (5)

The stiffness is defined as

σ =
∂τE
∂q

. (6)

Replacing both (4) and (5), in (3) and in (6) we obtain the
external torque and the stiffness respectively, as functions
of the link position q and the motors positions θ1 and
θ2. Now, given the link’s reference position q̄, the desired
external torque τ̄E and the stiffness reference σ̄, we solve the
nonlinear system of equations given by (3) and (6), obtaining
θ1 and θ2. Thus, we can calculate τ1 and τ2 from (4) and
(5), respectively. Notice that as we are interested in the effect
that changing stiffness has in the torque, the desired external
torque can be τ̄E = 0. At this point, we are able to define a
function f2(·) related to the stiffness change as

f2(·) = τ21 + τ22 . (7)

Consider that Kj = σ is the stiffness of the j-th joint of a
n-DoF system, and approximate the related cost of varying
the stiffness in the n-DoF mechanical system actuated by
VSA as a linear function of the stiffness, so it holds

JK =

n∑
j=1

∫ T

0

λ(Kj −Kr)dt , (8)

where Kr is the stiffness value when no load is applied;
λ ∈ <+ is a weight that depends on the motor mechanics
relating the required torque to keep a certain value of stiffness
with the stiffness value. The choice of λ depends on the
design of the VSA. We set the minimum σmin and maximum
σmax stiffness values to interpolate a linear function between
these points such that

λ =
f2(σmax)− f2(σmin)

σmax − σmin
. (9)

Notice that in this way it always holds that τ2E < JK ,
because the considered cost JK = λ(Kj − Kr) could
overestimate the real cost (see Fig. 2). Furthermore, the
weight λ can be calculated several times according to the
problem and to the actuators design. Thus, this approach is
accurate enough to determine the cost of actively changing
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Fig. 2. Comparison of the actual quadratic torque curve with the linear
approximation as functions of the stiffness in a VSA model.

or keeping the stiffness constant. This weighted cost is taken
into account in the cost index, as presented in the following
subsection.

Let us consider an agonist-antagonist VSA as in Fig. 1 (for
complete reference on the design, the reader is encouraged to
review [19]). This actuator has two motors in opposition, and
a set of tensioning mechanisms controlled by servomotors.
The motors position are noted as θ1 and θ2 and q is the
desired link position. As is the case for each antagonistic
setup, both actuators are used to influence only one variable,
either the compliance or the equilibrium position. According
to Fig. 1 the torque at the output shaft is given by

τE = τ1 + τ2 , (10)

where τ1, τ2 are the motors torques. Using the definition of
stiffness in (6), σ is given by

σ =
∂τ1(q − θ1)

∂q
+
∂τ2(q − θ2)

∂q
.

Let the motor torques be written as

τ1 = a(q − θ1)3 (11)
τ2 = a(q − θ2)3 , (12)

where a ∈ < is scale factor. Replacing (11) and (12) in (10),
it yields τE = a(q − θ1)3 + a(q − θ2)3. If the torque at the
output shaft is τ̄E = 0 and the desired link position q̄ = 0,
then we have,

a(θ31 + θ32) = 0 , θ1 = −θ2 , σ = 6aθ21 .

It follows that

θ1 =

√
σ

6a
, τ1 = −a

( σ
6a

)3/2
, τ2 = a

( σ
6a

)3/2
.

Then, the function of the motors’ torques is

f2(σ) = 2a2
( σ

6a

)3
. (13)

Fig. 2 plots the relation in equation (13) and the approxi-
mated linear interpolation.

C. Cost index
To determine the optimal stiffness K̂ that minimizes the

energy consumption of a n-DoF VSA mechanical system,
we assume that its energy consumption is mainly related to
the torque, which is proportional to the current spent by the
motors. Actually, the energy consumption is a contribution
of two terms, one related to the squared current and a

term related to the power. The latter is hard to consider
because it depends on how the mechanism recovers the
power. Minimizing the proposed index is likely to increase
energy efficiency. According to [20] a useful measure of the
energy efficiency is the cost function based on the squared
torque,

J2,j =

∫ T

0

τ2j (t)dt . (14)

where T represents the period of the cyclic task or a multiple;
τj is the torque of the j-th joint. Then, considering the cost
of actively keeping or varying stiffness, the cost function is
expressed as

J =
∑
j

J2,j + JKj . (15)

Define ψτ,j = τ2j + λ(Kj −Kr), then, the cost function to
minimize for the j-th joint is

Jj = J2,j + JKj =

∫ T

0
τ2j (t) + λ(Kj −Kr)dt =

∫ T

0
ψτ,jdt . (16)

With these elements we define a strategy to find the
optimal stiffness profile as we show in the following.

D. Stiffness profile
The energy consumption of a n-DoF mechanical system

that performs a cyclic motion can be minimized by finding
the optimal constant stiffness of each joint, that minimizes
the cost function Jj in (16). Based on this statement and
using a VSA, for certain tasks, the energy consumption can
be further reduced. Given q(t) = qd(t), the cost in (16) for
the j-th joint can be written as

Jj =

∫ T1

0

ψτ,jdt+

∫ T2

T1

ψτ,jdt+ · · ·+
∫ Tm

Tm−1

ψτ,jdt

=

m∑
k=1

∫ Tk

Tk−1

ψτ,jdt . (17)

Notice that T = Tm; each Tk we find the optimal constant
stiffness Kk for the jth joint, minimizing the cost function
in the k-th interval

min
Kk

∫ Tk

Tk−1

ψτ,jdt . (18)

To solve (18) we propose the methodology presented in the
following section.

E. Statement of the Optimization Problem
The optimization problem can now be stated in order

to find the optimal stiffness K̂(t) that minimizes the cost
function J

min
K(t),ψτ (t)

J(q, q̇, q̈)

s.t.

(1), (2)
q(t) = q(t+ T )

ξ1(q, q̇, q̈) ≤ 0

ξ2(q, q̇, q̈) = 0

Km ≤ K ≤ KM

(19)

where KM , and Km are the limits of the stiffness during the
whole period. Moreover, the nonlinear constraints ξ1 and ξ2
define the task. These constraints depend on q, q̇ and q̈.



III. OPTIMAL STIFFNESS SOLUTION

An analytical solution for the stiffness that minimizes
(16) is obtained in this section. In a similar way as in
[10] we exploit the dynamic equations of the mechanical
system actuated by VSAs, considering the additional cost
of actively changing or keeping the stiffness constant, to
write the cost functional as a function of the desired joint
trajectories q(t) = qd(t). Then, we obtain an expression of
the stiffness that depends on the system dynamics and that
solves the problem stated in (19).

From (1), defining f = M(q)q̈+C(q, q̇)q̇+G(q) we have,

θj = K−1
j fj(q̈d, q̇d, qd, t) + qd,j , (20)

θ̇j = K−1
j ḟj(q̈d, q̇d, qd, t) + q̇d,j , (21)

θ̈j = K−1
j f̈j(q̈d, q̇d, qd, t) + q̈d,j . (22)

Replacing (20) and (22) in (2), the j-th motor torque required
to track the desired trajectory qd(t) is

τj = Jmj (K
−1
j f̈j(q̈d, q̇d, qd, t) + q̈d,j) + fj(q̈d, q̇d, qd, t) . (23)

After substituting (8) and (23), in (16) with some algebra,
we obtain the cost for the j-th joint in the k-th interval

Jj,k =
Fj,k
K2
j,k

+
Gj,k
Kj,k

+Hj,k + Tkλ(Kj,k −Kr)

where

Fj,k =

∫ Tk

Tk−1

(Jmj f̈j)
2dt , Hj,k =

∫ Tk

Tk−1

(Jmj q̈d,j + fj)
2dt ,

Gj,k =

∫ Tk

Tk−1

2Jmj f̈j(Jmj q̈d,j + fj)dt ,

and Kj,k is the is stiffness in the k-th interval. To find the
optimal stiffness that minimizes the cost function, we solve
the equation

∂(Jj,k)

∂Kj,k
= 0 ,

which is

∂(Jj,k)

∂Kj,k
= −2Fj,k

K3
j,k

− Gj,k
K2
j,k

+ λTk ,

that can be written as

−2Fj,k −Gj,kKj,k + λTK3
j,k = 0 .

From the problem it holds that

Fj,k > 0 , Kj,k > 0 , λ > 0 , Tk > 0 .

So we solve the equation

K3
j,k − ajKj,k − bj,k = 0 (24)

with

aj,k =
Gj,k
λTk

, bj,k =
2Fj,k
λTk

.

Analyzing the discriminant of (24), from the problem it
always holds that 27b2j,k > 4a3j,k, which means that for the

k-th interval, (24) has only one real positive solution reported
below.

K̂j,k =
(2/3)1/3aj,k

(9bj,k +
√

3(−4a3j,k + 27b2j,k))1/3
+

(9bj,k +
√

3(−4a3j,k + 27b2j,k))1/3

3
√

18
(25)

To prove that this value minimizes the cost function, we use
the second derivative criteria, it follows that
∂2Jj,k(K̂j,k)

∂K2
j,k

=
6Fj,k

K̂4
j,k

+
2Gj,k

K̂3
j,k

> 0. It holds that Fj,k > 0 and

Kj,k > 0, then K̂j,k is a minimum for (16) if Gj,k ≥ 0.
Otherwise, if Gj,k < 0, K̂j,k <

3Fj,k
Gj,k

is a minimum.
The stiffness profile is

K̂(t) =


K̂1 0 ≤ t < T1
K̂2 T1 ≤ t < T2
...
K̂m Tm−1 ≤ t ≤ Tm

The solution presented is optimal considering a VSA system,
but compared to other actuation systems it may not be the
best solution in terms of energy consumption. This procedure
and the analysis provided aim to give a hint on which
actuation systems may be worth to use for a specific task.

IV. SIMULATION RESULTS

The simulations presented in this section are based on
the characteristics of the MakerPro VSA cube [19], whose
datasheet is available in [21]. Two case studies are used to
analyze the cost of varying stiffness: a One-DoF system and
a Two DoF system both actuated by VSA, are simulated
performing a pre-defined cyclic motion. For these cases we
have considered square trajectories that provide a periodic
fast change of position. In the simulations the square trajec-
tories are implemented as

qd(t) =
4

π
A

∑
n=1,3,5,...

1

n
sinnωt (26)

because the analytic derivatives are required for determining
the optimal stiffness; A is the maximum amplitude of the
link, ω is the frequency of the desired cyclic motion, and
n is the odd number of harmonics considered to approach
the square trajectory; ideally n → ∞, otherwise, a higher
frequency ripple may occur; however, this does not affect
the cost behavior. For the experiments performed, reported
in the next section, we have used an ideal square wave as
desired link trajectory and calculated the joint trajectory by
inverse kinematics. Physically the system does not respond
instantaneously to the change of magnitude in the position,
but this has been taken into account in the joint reference
calculation. This kind of cycles are used to study particular
behavior of the system regarding the cost of energy in cyclic
tasks. The tests aim to provide information to analyze in
further studies on periodic motions as hammering, running or
hopping. By applying the methodology presented we choose
either a variable stiffness profile or a constant stiffness for
performing a periodic motion based on the cost of changing
the stiffness. Here we show that this choice depends strictly
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Fig. 3. Mechanical systems considered for the simulation using VSA. EE
indicates where an end effector may be placed.

0 0.1 0.2 0.3 0.4 0.5 0.6

−3

−2

−1

0

1

2

3

4

Time [s]

q
 (

ra
d

)
K

 (
N

m
/r

a
d

)

 

 

q
1
(t)

K
1
(t)

Fig. 4. Stiffness profile K(t) given the desired link trajectory q(t).

on the trajectory, and therefore on the desired task, and we
provide some examples.

A. One DoF
Consider a one-DoF system as in Fig. 3(a) actuated by a

VSA. The dynamic equations of the system are as written
in (1) and (2), and the desired link trajectories for each trial
are given by (26). Several simulations have been performed
using a set of desired squared trajectories for which we have
varied the amplitude and the frequency. For each case we
calculate the optimal joint stiffness either constant or variable
and we compare the costs. The results suggest that for certain
cases it is worth to change the stiffness, i.e. a lower cost
can be achieved depending on the reference trajectory, and
specifically on the amplitude and the frequency, while in
other cases (mainly low amplitudes and low frequencies) it
is better to keep the optimal stiffness constant. In Fig. 4
a reference link trajectory and its corresponding stiffness
profile are shown. Notice that the change of stiffness is
suggested mainly for high frequency changes. Fig. 5 shows
the results of the energy cost for a set of desired trajectories
whose amplitude is fixed (A = 3 rad) and the frequency
varies. Four curves are plotted: one that belongs to the
system with a variable stiffness profile and the other three
that show the cost of the system using a constant stiffness,
chosen as the maximum value considered for the simulations
(Kmax = 13 Nm/rad), the minimum value considered for
the simulations (Kmin = 0.5Nm/rad) and the constant
optimal stiffness. The dynamics of the motor and the stiffness
parameters are chosen according to the datasheet of the
actuator that will be used for the experiment (for complete
reference see [8], [21]). In this case, we can see that the
cost when using a variable stiffness profile is the lowest.
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Fig. 6. Optimal stiffness profiles given the desired link trajectories for a
Two-DoF system actuated by VSA.

Even though the cost for a constant optimized stiffness is
still low and comparable to the cost of the system using
variable stiffness, the saving of the latter is at least of 9%.

B. Two DoF
Consider now a two DoF system actuated by VSAs as

in Fig. 3(b) whose dynamic equations are (1) and (2). In
this case, also a cyclic motion using square trajectories is
studied to obtain a linear motion of point EE (refer to
Fig. 3(b)). In Figs. 6(a) and 6(b) the desired trajectories to
obtain such motion are presented; following the optimization
methodology proposed, for each joint we have obtained the
shown optimal stiffness. For the Two-DoF case we also
present the comparative cost for a set of trajectories of fixed
amplitude for which we change the frequency. Figs. 7(a),
7(b) and 7(c) show the cost for Joint 1, Joint 2 and the total
cost for the system. For Joint 1 the simulation results show
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Fig. 7. Cost comparison for a Two-DoF system with constant stiffness
(minimum, maximum and optimal) and with a variable stiffness profile

that there is a 0.6% of cost saving when varying the stiffness
actively, while for Joint 2 there is a cost saving of 7.4%.

V. EXPERIMENTAL RESULTS

A one DoF system based on the qbmove MakerPro VSA1

[21], as shown in Fig. 8 has been used to carry out a set
of experiments that demonstrate the validity of the method
proposed. The dynamics of the system is given by (1) and
(2), where M = mL2 + I , m = 0.275 kg, L = 0.098 m
C = 0.001 Ns/m.

We perform a set of 390 trials, given a desired joint
trajectory θ(t) that is univocally calculated by inverse dy-
namics from the link position qd(t), and after finding the
optimal stiffness profile Kj obtained from simulations. The
total torque τc needed to generate the motion is proportional
to the current Is consumed by the system. It means that
τc = KtIs, where τc indicates the total torque needed by the
actuators and Is is the current measured that corresponds
to the current consumed by the whole system, including the
change of stiffness, and Kt is the electric constant of the

1Natural Machine Motion Initiative

Fig. 8. One DoF platform setup

Case Cost J [N2m2/s]
Variable stiffness profile 19.16

Maximum stiffness 24.42
Minimum stiffness 22.37

TABLE I
COST CALCULATION FOR EACH CASE STUDY

motor. The measurements of the current are sampled each
5ms and are filtered using a butterworth lowpass filter with
cutoff frequency wc = 15 rad/s. The cost index is calculated
as
∫ T
0
τ2c dt. Notice that the cost of changing the stiffness

or keeping it (actively) constant is already considered. We
analyze three cases: first, we evaluate the behavior of the
system in terms of the energy cost in the case of using
the optimal variable stiffness profile obtained from the sim-
ulations; second, we obtain the energy cost of the system
using the maximum stiffness available (13 Nm/rad); last, we
obtain the cost of the system using the minimum constant
stiffness available (0.5 Nm/rad). One case of each is plotted
in Figs. 9(b), 9(a), and 9(c) we show the desired link and
joint trajectories and the corresponding measured trajectories
respectively. The chosen case allows to analyze the general
behavior of VSA system. Other trials were done changing the
desired trajectories. We ensure that the motor follows the
desired joint reference appropriately, without affecting the
motors effort. On the other hand, the measured link positions
are different from the desired link trajectories, due to the
system’s nonlinearities and non-modeled behaviors. For this
study, the idea is to obtain an insight of the behavior of
systems using VSA, for which we provide a feedforward
strategy, obtaining an optimal stiffness profile. Indeed, for the
nature of the system, the position responses are vibrating. A
control strategy that combines the optimal solution presented
in this paper with a feedback action will be implemented in
a future work. However, the system reaches the steady state,
and the studied cases are comparable. The costs calculated
for each case, are reported in table I. The results obtained
indicate that there is a cost reduction of at least 16.75% when
using the optimal stiffness profile w.r.t. the worst case.

VI. CONCLUSIONS

In this paper, we presented a methodology to determine
the optimal stiffness temporal profile for the reduction of
energy cost for VSA mechanical systems that perform cyclic
motions. Simulations were carried out for 1 DoF and 2 DoF
models and the experiment is done for the case of 1 DoF,
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Fig. 9. Desired Link and motor position vs. Measured positions and
measured stiffness preset (in degrees) shown in dashed black line

however it may be applicable the n-DoF case. The latter is
left as future study. On the other hand, we have studied cyclic
motions because, as introduced before, they are interesting
for different robotic applications. This choice may allow
also to find the optimal joint trajectories, for example using
numerical optimization techniques. However, this issue has
already been studied for constant stiffness actuation and can
be developed in further studies. The methodology presented
in this work can also be applied to noncyclic motions, e.g.
point to point tasks, considering a fixed time interval and
the corresponding constraints of the motion. Moreover, we
found an analytical solution for the optimal stiffness which
can be constant or variable, depending on the solution of
each sub-period. The advantage of VSA is evident in some
of the cases presented for which we show cost savings, but in
other cases it may be better to keep the stiffness constant, in
terms of energy consumption. Indeed the choice of varying
stiffness depends on the task and directly on the trajectories,
and on the cost of changing and keeping the stiffness actively
constant, due to the mechanical implementation of the VSA.
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