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Abstract 23 

 24 

How the human brain controls hand movements to carry out different tasks is still debated. 25 

The concept of synergy has been proposed to indicate functional modules that may simplify the 26 

control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether 27 

and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. 28 

Here, we combined kinematic, electromyography, and brain activity measures obtained by 29 

functional magnetic resonance imaging while subjects performed a variety of movements towards 30 

virtual objects. Hand postural information, encoded through kinematic synergies, were represented 31 

in cortical areas devoted to hand motor control and successfully discriminated individual grasping 32 

movements, significantly outperforming alternative somatotopic or muscle-based models. 33 

Importantly, hand postural synergies were predicted by neural activation patterns within primary 34 

motor cortex. These findings support a novel cortical organization for hand movement control and 35 

open potential applications for brain-computer interfaces and neuroprostheses. 36 

 37 

38 
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Introduction 39 

 40 

Unique among primates, the human hand is capable of performing a strikingly wide range 41 

of movements, characterized by a high degree of adaptability and dexterity that enables complex 42 

interactions with the environment. This is exemplified by the hand’s ability to mold to objects and 43 

tools by combining motion and force in the individual digits so to reach a variety of hand postures. 44 

The multiple ways in which the hand can perform a given goal-directed movement arise from 45 

anatomical, functional, and kinematic redundancies, i.e., a large number of degrees of freedom 46 

(DoFs) (Bernstein, 1967). Such an organization results highly advantageous from an operational 47 

perspective, as redundant DoFs enable the hand to flexibly adapt to different task demands, or to 48 

switch among multiple postural configurations, while maintaining grasp stability (Bernstein, 1967; 49 

Santello et al., 2013). At the same time, this organization raises the question about how the central 50 

nervous system deals with these redundancies and selects a set of DoFs to accomplish a specific 51 

motor task (Latash et al., 2007). While some models propose the notion of “freezing” of redundant 52 

DoFs (Vereijken et al., 1992) or the implementation of optimization strategies (Flash and Hogan, 53 

1985; Todorov and Jordan, 2002; Todorov, 2004), further studies have favored an alternative 54 

solution based on linear dimensionality reduction strategies or motor synergies (Latash, 2010). 55 

From a theoretical perspective, synergies represent functional sensorimotor modules that 56 

result from the combination of elementary variables and behave as single functional units (Turvey, 57 

2007; Latash, 2010). From an experimental viewpoint, synergy-based models have been applied 58 

with success to electrophysiological and kinematic data acquired in frogs (d'Avella et al., 2003; 59 

Cheung et al., 2005), monkeys (Overduin et al., 2012) and humans (Bizzi et al., 2008). 60 

With regard to hand control in humans, synergies have been defined at different levels. 61 

Kinematic synergies correspond to covariation patterns in finger joint angles and are quantified 62 

through kinematic recordings (Santello et al., 1998; Gabiccini et al., 2013; Tessitore et al., 2013). 63 

Muscle synergies represent covariation patterns in finger muscle activations and are typically 64 
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extracted from electromyography (EMG) signals (Weiss and Flanders, 2004; d'Avella and 65 

Lacquaniti, 2013). 66 

The first quantitative description of kinematic hand synergies was obtained by analyzing 67 

hand postures used by subjects for grasping imagined objects that varied in size and shape (Santello 68 

et al., 1998). Three hand postural synergies were identified through a principal components analysis 69 

(PCA) that accounted for a high fraction (>84%) of variance in the kinematic data across all hand 70 

postures and characterized hand configurations as linear combinations of finger joints (Santello et 71 

al., 1998). Notably, other studies achieved similar results using kinematic data acquired during 72 

grasping of real, recalled and virtual objects (Santello et al., 2002), exploratory procedures (Thakur 73 

et al., 2008), or during different movements, such as typing (Soechting and Flanders, 1997), as well 74 

as with EMG signals from finger muscles during hand shaping for grasping or finger spelling 75 

(Weiss and Flanders, 2004). 76 

Given that final hand postures can be described effectively as the linear combination of a 77 

small number of synergies, each one controlling a set of muscles and joints, the question arises 78 

whether kinematic or muscular hand synergies merely reflect a behavioral observation, or whether 79 

instead a synergy-based framework is grounded in the human brain as a code for the coordination of 80 

hand movements. According to the latter hypothesis, motor cortical areas and/or spinal modules 81 

may control the large number of DoFs of the hand through weighted combinations of synergies 82 

(Gentner and Classen, 2006; Santello et al., 2013; Santello and Lang, 2014), in a way similar to that 83 

demonstrated for other motor acts, such as gait, body posture, and arm movements (Cheung et al., 84 

2009). Furthermore, the hand’s biomechanical constraints of the hand structure, e.g., multi-digit and 85 

multi-joint extrinsic finger muscles whose activity would generate coupled motion, that group 86 

several joints in nature, are compatible with the synergistic control of hand movements. 87 

Previous brain functional studies in humans are suggestive of a synergistic control of hand 88 

movements. For instance, in a functional magnetic resonance imaging (fMRI) study, 89 

synergistic/dexterous and non-synergistic hand movements elicited different neural responses in the 90 
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premotor and parietal network that controls hand posture (Ehrsson et al., 2002). Equally, 91 

transcranial magnetic stimulation (TMS) induced hand movements encompassed within distinct 92 

postural synergies (Gentner and Classen, 2006). Despite all the above pieces of information, 93 

however, whether and to what extent the representation of hand movements is encoded at a cortical 94 

level in the human brain directly as postural synergies still remains an open question. 95 

Alternative solutions to synergies for hand control have been proposed as well. Above all, 96 

classic somatotopic theories postulated that distinct clusters of neuronal populations are associated 97 

with specific hand muscles, fingers, or finger movements (Penfield and Boldrey, 1937; Penfield and 98 

Rasmussen, 1950; Woolsey et al., 1952). However, whereas a coarse arrangement of body regions 99 

(e.g., hand, mouth or face) has been shown within primary motor areas, the intrinsic topographic 100 

organization within limb-specific clusters remains controversial. In hand motor area, neurons 101 

controlling single fingers are organized in distributed, overlapping cortical patches without any 102 

detectable segregation (Penfield and Boldrey, 1937; Schieber, 1991, 2001). In addition, it has been 103 

recently shown that fMRI neural activation patterns for individual digits in sensorimotor cortex are 104 

not somatotopically organized and their spatial arrangement is highly variable, while their 105 

representational structure (i.e., the pattern of distances between digit-specific activations) is 106 

invariant across individuals (Ejaz et al., 2015). 107 

The present study was designed to determine whether and to what extent synergistic 108 

information for hand postural control is encoded as such at a neural level in the human brain 109 

cortical regions. 110 

An identical experimental paradigm was performed in two distinct sessions to acquire 111 

kinematic and electromyographic (EMG) data while participants performed grasp-to-use 112 

movements towards virtual objects. Kinematic data were analyzed according to a kinematic synergy 113 

model and an individual-digit model, based on the independent representation of each digit (Kirsch 114 

et al., 2014), while EMG data were analyzed according to a muscle synergy model to obtain 115 

independent descriptions of each final hand posture. In a separate fMRI session, brain activity was 116 
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measured in the same participants during an identical motor task. 117 

Hence, encoding techniques (Mitchell et al., 2008) were applied to brain functional data to 118 

compare the synergy-based model with the alternative somatotopic and muscular models on the 119 

basis of their abilities to predict neural responses. Finally, to assess the specificity of the findings, 120 

we applied a decoding procedure to the fMRI data to predict hand postures based on patterns of 121 

fMRI activity. 122 

 123 

Results 124 

Motion capture and EMG sessions: discrimination accuracy of different models on 125 

behavioral data. The hand kinematic data, acquired from the motion capture experiment, provided a 126 

kinematic synergy description, created using PCA on digit joint angles, and an individual digit 127 

description, i.e., a somatotopic model based on the displacements of single digits, calculated as the 128 

average displacement of their joint angles. The EMG data provided a muscle synergy description. 129 

To obtain comparable descriptions of hand posture, three five-dimensions models were chosen. A 130 

validation procedure based on a rank-accuracy measure was performed to assess the extent to which 131 

static hand postures could be reliably discriminated by each behavioral model, regardless of its 132 

fraction of variance accounted for. All the three models were able to significantly distinguish 133 

between individual hand postures (average accuracy ± standard deviation -SD-; chance level: 50%; 134 

kinematic synergy: 91.1±3.6%; individual digit: 85.9±5%; muscle synergy: 72±7.7%) 135 

(Supplementary file 1A). Specifically, the kinematic synergy model performed significantly better 136 

than both the individual digit and muscle synergy models while the individual digit model was 137 

significantly more informative than the muscle synergy model (Wilcoxon signed-rank test, p<0.05, 138 

Bonferroni-Holm corrected). 139 

 140 

fMRI session: discrimination accuracy of different models in single-subject encoding of hand 141 

posture. Three independent encoding procedures (Mitchell et al., 2008) were performed on the 142 
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fMRI data to assess to what extent each model (kinematic synergy, individual digit or muscle 143 

synergy) would predict brain activity. The discrimination accuracy was tested for significance 144 

against unique null distributions of accuracies for each participant and model obtained through 145 

permutation tests. 146 

Overall, the encoding procedure based on the kinematic synergy model was highly successful 147 

across all participants (average accuracy ± SD: 71.58 ± 5.52%) and always significantly above 148 

chance level (see Supplementary file 1B for single subject results). The encoding of the individual 149 

digit model was successful in five out of nine participants only (63.89 ± 6.86%). Finally, the muscle 150 

synergy model successfully predicted brain activity in six out of eight participants, with an average 151 

accuracy that was comparable to the individual digit model (63.9±6.5%). 152 

The kinematic synergy model outperformed both the individual digit and the muscle synergy 153 

models (Wilcoxon signed-rank test, p<0.05, Bonferroni-Holm corrected), whereas no significant 154 

difference was found between the individual digit and muscle synergy models (p=0.95). 155 

To obtain a measure of the overall fit between neural responses and behavioral performance, 156 

we computed the R2 coefficient between the fMRI data and each behavioral model across voxels, 157 

subjects, and acquisition modalities. The group averages were 0.41 ± 0.06 for the kinematic 158 

synergies, 0.37 ± 0.03 for the individual digits, and 0.37 ± 0.06 for the muscle synergies. Therefore, 159 

40.8% of the BOLD signal was accounted for by the kinematic synergies, whereas the two other 160 

behavioral models explained a relatively smaller fraction of the total variance. 161 

Functional neuroanatomy of kinematic hand synergies. The group analysis was performed 162 

only on the encoding results obtained from kinematic synergies, as this was the most successful 163 

model and the only one that performed above chance level across participants. The single-subject 164 

encoding results maps – containing only the voxels recruited during the procedure – were merged, 165 

with a threshold of p>0.33 to retain consistently informative voxels, overlapping in at least four 166 

participants. 167 

The group-level probability map, which displays the voxels recruited in at least four subjects, 168 
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consisted of a well-recognizable network of hand-related regions, specifically bilateral precentral 169 

cortex, supplementary motor area (SMA), ventral premotor and supramarginal areas, left inferior 170 

parietal and postcentral cortex (Figure 1; coordinates in Supplementary file 1C). 171 

 172 

(Insert figure 1 about here) 173 

 174 

Behavioral and neurofunctional stability of kinematic synergies and synergy-topic mapping. 175 

Since postural synergies were obtained in each subject independently, a procedure to assess the 176 

stability of the principal components (PCs) across participants was performed (see Methods 177 

section). For visualization purposes, we focused on the first three PCs, which could explain more 178 

than 80% of the variance across the entire hand kinematic dataset, and were also highly consistent 179 

across participants (Video 1). 180 

Accordingly to the aforementioned results, the first three kinematic PCs were mapped onto a 181 

flattened mesh of the cortical surface. This map displayed the fitting of each synergy within the 182 

voxels that were recruited by the encoding procedure across participants. Figure 2 shows that the 183 

group kinematic synergies are represented in the precentral and postcentral cortex in distinct 184 

clusters that are arranged in a topographical continuum with smooth supero-inferior transitions. The 185 

procedure developed to assess the topographical arrangement of synergies (see Methods) was 186 

statistically significant (C=0.192; p=0.0383), indicating that anatomically close voxels exhibited 187 

similar synergy coefficients (see Figure 2-figure supplement 1). 188 

 189 

(Insert figure 2 about here) 190 

 191 

Representational Similarity Analysis (RSA) and multidimensional scaling (MDS). 192 

Representational Spaces, drawn separately for the three models and fMRI data (using the activity 193 

from a region consistently activated across all the grasping movements), were compared at a single 194 
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subject and group level to assess the similarity between each behavioral model and the neural 195 

content represented at a cortical level. All group correlations, both between fMRI and behavioral 196 

data and between behavioral models were highly significant (p<0.0001) (for details see 197 

Supplementary files 1D, 1E and Figure 3-figure supplement 1). Moreover, a MDS procedure was 198 

performed to represent data from kinematic synergies and fMRI BOLD activity. Figure 3 shows the 199 

high similarity between these two spaces. 200 

 201 

(Insert figure 3 about here) 202 

 203 

From kinematic PCs to brain activity, and back: hand posture reconstruction from brain 204 

activity. To confirm the presence of neural representation of hand synergies at a cortical level and 205 

that this can be used to specifically control hand postures based on brain activity, we applied 206 

decoding methods as complementary approaches to encoding analyses (Naselaris et al., 2011). 207 

Hand posture (expressed as a matrix of 24 joints angles by 20 hand postures) was therefore 208 

predicted with a multiple linear regression procedure from fMRI data. Specifically, this procedure 209 

could reliably reconstruct the different hand postures across participants. The goodness-of-fit (R2) 210 

between the original and reconstructed joint angle patterns related to single movements, averaged 211 

across subjects, ranged between 0.51 and 0.90 (Supplementary file 1F). Three hand plots displaying 212 

original and reconstructed postures from a representative subject are shown in Figure 4. Notably, 213 

this decoding attempt reveals that brain activity elicited by our task can effectively be used to 214 

reconstruct the postural configuration of the hand. Moreover, the rank accuracy procedure 215 

specifically designed to test the extent to which each decoded posture could be discriminated from 216 

the original ones yielded significant results in six out of nine participants (Supplementary file 1G). 217 

 218 

(Insert figure 4 about here) 219 

 220 
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The possible role of visual object presentation: control analyses. Since motor and premotor 221 

regions supposedly contains neuronal populations that respond to visual stimuli (Kwan et al., 1985; 222 

Castiello, 2005; Klaes et al., 2015), one may argue that the visual presentation of objects in the 223 

current experiment contributes to the synergy-based encoding of BOLD activity in those regions. 224 

To exclude this possibility, an encoding procedure using the kinematic synergy model was 225 

performed within the region of interest (ROI) chosen for RSA and posture reconstruction, using 226 

exclusively the neural activity related to visual object presentation, measured five seconds after the 227 

stimulus onset. The procedure was unsuccessful in all participants, thus indicating that the 228 

kinematic synergy information in motor and premotor regions was purely related to motor activity 229 

(Supplementary file 1H). 230 

The encoding maps of kinematic synergies never included visual areas. Nonetheless, visual 231 

areas are likely to participate in the early stages of action preparation (Gutteling et al., 2015) and the 232 

motor imagery might have played a role during the task in the fMRI session. For this reason, we 233 

first defined a ROI by contrasting visual related activity after stimulus presentation and rest 234 

(q<0.01, FDR corrected), thus to isolate regions of striate and extrastriate cortex within the occipital 235 

lobe. Subsequently, an encoding analysis was performed similarly to the above-mentioned 236 

procedures. The results were at the chance level in seven out of nine participants (see 237 

Supplementary file 1I), suggesting that visual imagery processes in the occipital cortex did not 238 

retain kinematic synergy information. 239 

 240 

Discussion 241 

Scientists have debated for a long time how the human hand can attain the variety of 242 

postural configurations required to perform all the complex tasks that we encounter in activities of 243 

daily living. The concept of synergy has been proposed to denote functional modules that may 244 

simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. In the 245 

present study, by combining kinematic, EMG, and brain activity measures using fMRI, we provide 246 
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the first demonstration that hand postural information encoded through kinematic synergies is 247 

represented within the cortical network controlling hand movements. Importantly, we demonstrate 248 

that kinematic synergies strongly correlate with the neural responses in primary and supplementary 249 

motor areas, as well as movement-related parietal and premotor regions. Furthermore, we show that 250 

kinematic synergies are topographically arranged in the precentral and postcentral cortex and 251 

represent meaningful primitives of grasping. Finally, the neural responses in sensorimotor cortex 252 

allow for a highly successful decoding of complex hand postures. Therefore, we conclude that the 253 

human motor cortical areas are likely to represent hand posture by combining few elementary 254 

modules. 255 

 256 

Kinematic synergies optimally predict behavioral outcomes and neurofunctional 257 

representations of distinct grasping-to-use motor acts. Validation of behavioral data was 258 

performed as the first stage of analysis to assess the information content and the discriminability of 259 

the postures from the kinematic or EMG data. This procedure showed that each posture could be 260 

successfully classified above chance level by kinematic synergy, individual digit, and muscle 261 

synergy models. 262 

These results are highly consistent with the existent literature on synergies suggesting that 263 

just five PCs are sufficient to classify and reconstruct hand postures when computed only on hand 264 

kinematic data (Santello et al., 1998, 2002; Gentner and Classen, 2006), or both kinematic and 265 

EMG data (Weiss and Flanders, 2004; Klein Breteler et al., 2007). In the current work, we also 266 

demonstrate that kinematic synergies result in a higher discrimination accuracy of hand postures 267 

than individual digits and muscle synergies. 268 

In addition, the encoding procedures on fMRI-based neural responses show that kinematic 269 

synergies are the best predictor of brain activity, with a significantly higher discrimination accuracy 270 

across participants, indicating that kinematic synergies are represented at a cortical level. Even if 271 

previous studies suggest that the brain might encode grasp movements as combinations of synergies 272 
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in the monkey (Overduin et al., 2012), or indirectly in humans (Gentner and Classen, 2006; Gentner 273 

et al., 2010), to the best of our knowledge, no direct evidence has been presented to date for a 274 

functional validation and characterization of neural correlates of synergy-based models in brain 275 

activity. 276 

The results from RSA suggest that the three models used to predict brain activity may have 277 

similar, correlated spaces. However, each model provides a unique combination of weights for each 278 

posture across different dimensions (e.g., synergies or digits), thus resulting in distinct descriptions 279 

of the same hand postures. It should be noted that both the individual digit model and the muscle 280 

synergy model failed to predict brain activity in four and two participants, respectively. Thus, while 281 

they discriminated hand postures at a behavioral level, these models are clearly less efficient than 282 

the kinematic synergy model in predicting neural activity. 283 

Finally, the descriptive procedures (RSA and MDS) were performed to assess the 284 

differences between the fMRI representational space and the single-model spaces. The results 285 

indicate a high similarity between fMRI and kinematic synergies, as reflected in the largely 286 

overlapping representations obtained from kinematic data and fMRI as depicted in Figure 3. 287 

A recent study employed descriptive procedures (i.e., RSA) to demonstrate that similar 288 

movement patterns of individual fingers are reflected in highly correlated patterns of brain 289 

responses, that, in turn, are more correlated to kinematic joint velocities than to muscle activity, as 290 

recorded through high-density EMG (Ejaz et al., 2015). Our paper introduces a methodological and 291 

conceptual advancement. While, in Ejaz et al., full matrices of postural, functional or muscle data 292 

have been considered in the RSA to obtain more accurate descriptions, here we focused on 293 

descriptions with lower dimensionality which lose only minor portions of information. 294 

Consequently, by showing that brain activity in motor regions can be expressed as a function of a 295 

few meaningful motor primitives that group together multiple joints, rather than as combinations of 296 

individual digit positions, our results suggest that a modular organization represents the basis of 297 

hand posture control. 298 
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The functional neuroanatomy of kinematic synergies is embedded in motor cortical areas. 299 

The group probability maps of our study indicate that the regions consistently modulated by 300 

kinematic synergies, that include bilateral precentral, SMA and supramarginal area, ventral 301 

premotor, left inferior parietal and postcentral cortex, overlapped with a network strongly associated 302 

with the control of hand posture (Castiello, 2005). 303 

Specifically, we show that the combination of five synergies, expressed as PCs of hand joint 304 

angles, predicts neural activity of M1 and SMA, key areas for motor control. While previous studies 305 

in humans showed differential activations in M1 and SMA for power and precision grip tasks 306 

(Ehrsson et al., 2000) and for different complex movements (Bleichner et al., 2014), to date no 307 

brain imaging studies directly associated these regions to synergy-based hand control. 308 

Beyond primary motor areas, regions within parietal cortex are involved in the control of 309 

motor acts (Grafton et al., 1996). Inferior parietal and postcentral areas are engaged in higher-level 310 

processing during object interaction (Culham et al., 2003). Since grasping, as opposed to reaching 311 

movements, requires integration of motor information with inputs related to the target object, these 312 

regions may integrate the sensorimotor features needed to preshape the hand correctly (Grefkes et 313 

al., 2002; Culham et al., 2003). Consistently, different tool-directed movements were decoded from 314 

brain activity in the intraparietal sulcus (Gallivan et al., 2013) and it has been reported that this 315 

region is sensitive to differences between precision and power grasps (Ehrsson et al., 2000; Gallivan 316 

et al., 2011). The current motor task, even if performed with the dominant right hand only, also 317 

recruited motor regions of the right hemisphere. Specifically, bilateral activations of SMA were 318 

often described during motor tasks (Ehrsson et al., 2001; Ehrsson et al., 2002) and a recent meta-319 

analysis indicated a consistent recruitment of SMA in grasp type comparisons (King et al., 2014). 320 

Equally, a bilateral, but left dominant, involvement of intraparietal cortex for grasping has been 321 

reported (Culham et al., 2003). 322 

Moreover, some authors have hypothesized recently that action recognition and mirror 323 

mechanisms may rely on the extraction of reduced representations of gestures, rather than on the 324 
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observation of individual motor acts (D'Ausilio et al., 2015). The specific modulation of neural 325 

activity by kinematic synergies within the action recognition network seems in agreement with this 326 

proposition. 327 

The map of voxels whose activity is modulated by postural synergies extends beyond the 328 

central sulcus to primary somatosensory cortex, suggesting a potential two-fold (sensory and motor) 329 

nature of hand synergies. Indeed, at least some subdomains (areas 2 and 3a) contain neurons that 330 

respond to multiple digits (Iwamura et al., 1980), despite the evidence supporting specific single 331 

finger representations in S1 (Kaas, 1983). 332 

Finally, the width of our probability maps, measured on the cortical mesh, was ca. 1cm, 333 

which corresponds to the hand area, as defined by techniques with better spatial resolution, 334 

including ultra-high field fMRI or electrocorticography (ECoG) (Siero et al., 2014). 335 

 336 

Beyond the precision vs. power grasp dichotomy: synergy-based posture discrimination 337 

across participants. To exclude that the results from the encoding analysis can be driven by 338 

differences between classes of acts, i.e., precision or power grasps, rather than reflect the 339 

modulation of brain activity by kinematic synergies, the similarity between the twenty hand 340 

postures was evaluated in a pairwise manner. Specifically, the accuracy of the encoding model was 341 

estimated for pairs of distinct movements, unveiling the extent to which single hand postures could 342 

be discriminated from each other based on their associated fMRI activity. In the result heat map 343 

(Figure 5), two clusters can be identified: one composed mainly by precision grasps directed 344 

towards small objects, and a second one composed mainly by power grasps towards heavy tools. 345 

The remaining postures did not cluster, forming instead a non-homogeneous group of grasps 346 

towards objects that could be either small (e.g., espresso cup) or large (e.g., jar lid, PC mouse). 347 

These results indicate that goal-directed hand movements are represented in the brain in a 348 

way that goes beyond the standard distinction between precision and power grasps (Napier, 1956; 349 

Ehrsson et al., 2000). Other authors have proposed a possible “grasp taxonomy” in which multiple, 350 
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different types of grasps are described according to hierarchical criteria rooted on three main 351 

classes: precision, power and intermediate (Feix et al., 2009). By combining these three elementary 352 

grasps it is possible to generate a wide number of postures. Notwithstanding the advancements of 353 

these taxonomies in describing hand posture, much less effort has been made to understand how the 354 

wide variety of human hand postures can be represented in the brain. Our results indicate that a 355 

synergy framework may predict brain activity patterns underlying the control of hand posture. Of 356 

note, the highest-ranked kinematic synergies can be clearly identified as grasping primitives: the 357 

first synergy modulates abduction-adduction and flexion-extension of both the proximal and distal 358 

finger joints, while a second synergy reflects thumb opposition and flexion-extension of the distal 359 

joints only. Maximizing the first synergy leads therefore to a posture resembling a power grasp, 360 

while the second one is linked to pinch movements directed towards smaller objects, and the third 361 

one represents movements of flexion and thumb opposition (like in grasping a dish or a platter) 362 

(Santello et al., 1998; Gentner and Classen, 2006; Ingram et al., 2008; Thakur et al., 2008) (Video 363 

1). For this reason, the description of hand postures can benefit from reduction to combinations of 364 

few, meaningful synergies, which can provide more reliable results than clustering methods based 365 

on a small number of categories (Santello et al., 2002; Ingram et al., 2008; Thakur et al., 2008; 366 

Tessitore et al., 2013). 367 

 368 

(Insert figure 5 about here) 369 

 370 

How many hand synergies do humans have? In the present study we examined five hand 371 

postural synergies. This number was selected based on previous behavioral studies that showed that 372 

three and five PCs can account for at least 80% and 90% of the variance, respectively (Santello et 373 

al., 1998, 2002; Weiss and Flanders, 2004; Gentner and Classen, 2006; Gentner et al., 2010; 374 

Overduin et al., 2012). Indeed, a model with five synergies could successfully predict brain 375 

activation patterns. The first three synergies examined in the present study also show a high degree 376 
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of stability as the order of the most relevant PCs is highly preserved across the nine participants. 377 

Moreover, the synergies described in the current study are consistent with those reported by other 378 

authors (Santello et al., 1998, 2002; Gentner and Classen, 2006; Ingram et al., 2008; Thakur et al., 379 

2008), although, a larger number of both postures and subjects would be required for the definitive 380 

characterization of the stability of hand postural synergies. 381 

 382 

A challenge to individual digit cortical representations? The functional topography of 383 

hand synergies. The first three synergies are displayed on a flattened map of the cortical surface in 384 

Figure 2. The map suggests that the PCs are topographically arranged, forming clusters with a 385 

preference for each of the three synergies, separated by smooth transitions. This organization 386 

resembles that observed in the retinotopy of early visual areas (Sereno et al., 1995) or in auditory 387 

cortex as studied with tonotopic mapping (Formisano et al., 2003). This observation strongly 388 

suggests that primary motor and somatosensory brain regions may show specific, organized 389 

representations of synergies across the cortical surface. Such an observation is unprecedented, since 390 

the large number of previous studies adopted techniques, such as single cell recording (Riehle and 391 

Requin, 1989; Zhang et al., 1997) or intracortical microstimulation (ICMS) (Overduin et al., 2012), 392 

which can observe the activity of single neurons but do not capture the functional organization of 393 

motor cortex as a whole. Motor cortex has historically been hypothesized to be somatotopically 394 

organized in a set of sub-regions that control different segments of the body (Penfield and Boldrey, 395 

1937). However, whereas subsequent work confirmed this organization (Penfield and Welch, 1951), 396 

a major critical point remains the internal organization of the single subregions (e.g., hand, leg or 397 

face areas). To date, a somatotopy of fingers within the hand area appears unlikely: as each digit is 398 

controlled by multiple muscles, individual digits may be mapped in a distributed rather than discrete 399 

fashion (Penfield and Boldrey, 1937; Schieber, 2001; Graziano et al., 2002; Aflalo and Graziano, 400 

2006). An alternative view posits that movements are represented in M1 as clusters of neurons 401 

coding for different action types or goals (Graziano, 2015). In fact, mouse motor cortex is organized 402 
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in clusters that encode different motor acts (Brown and Teskey, 2014). Similarly, stimulation of 403 

motor cortex in monkeys produces movements directed to stable spatial end-points (Graziano et al., 404 

2002; Aflalo and Graziano, 2006) and may have a synergistic organization (Overduin et al., 2012). 405 

Recently, it has been demonstrated in both monkeys and humans that complex movements can be 406 

recorded from parietal as well as premotor and motor areas (Aflalo et al., 2015; Klaes et al., 2015; 407 

Schaffelhofer et al., 2015). Interestingly, a successful decoding can be achieved in those regions 408 

both during motor planning and execution (Schaffelhofer et al., 2015). These observations about the 409 

internal organization of motor cortex were demonstrated also in humans, revealing that individual 410 

representations of digits within M1 show a high degree of overlap (Indovina and Sanes, 2001) and 411 

that, despite digits may be arranged in a coarse ventro-dorsal order in somatosensory cortex, their 412 

representations are intermingled so that the existence of digit specific voxels is unlikely (Ejaz et al., 413 

2015). In contrast, individual cortical voxels may contain enough information to encode specific 414 

gestures (Bleichner et al., 2014). 415 

 416 

Measuring synergies: back from brain signal to motor actions. Finally, we questioned 417 

whether the information encoded in M1 could be used to reconstruct hand postures. To this aim, 418 

each individual posture was expressed as a set of synergies that were derived from the fMRI activity 419 

on an independent cortical map. The results were reported as correlation values between the sets of 420 

joint angles originally tracked during kinematic recording and the joint angles derived from the 421 

reconstruction procedure. Overall, hand postures can be reconstructed with high accuracy based on 422 

the neural activity patterns. This result yields potential applications for the development of novel 423 

brain computer interfaces: for instance, previous studies demonstrated that neural spikes in primary 424 

motor cortex can be used to control robotic limbs used for performing simple or complex 425 

movements (Schwartz et al., 2006; Schwartz, 2007; Velliste et al., 2008). Previous studies in 426 

monkeys suggest that neural activity patterns associated to grasp trajectories can be predicted from 427 

single neuron activity in M1 (Saleh et al., 2010; Saleh et al., 2012; Schaffelhofer et al., 2015) and 428 
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recently neuronal spikes have been associated to principal components (Mollazadeh et al., 2014). In 429 

humans, cortical activity obtained through intracranial recordings can be used to decode postural 430 

information (Pistohl et al., 2012) and proper techniques can even lead to decode EMG activity from 431 

fMRI patterns (Ganesh et al., 2008) or from ECoG signals (Flint et al., 2014). So far, decoding of 432 

actual posture from fMRI activity in M1 was possible at individual voxel level, albeit with 433 

simplified paradigms and supervised classifiers that identified only four different movements 434 

(Bleichner et al., 2014). In contrast, by proving that posture-specific sets of joint angles – expressed 435 

by synergy loadings – can be decoded from fMRI activity, we show that information about hand 436 

synergies is present in functional data and can be even used to identify complex gestures. Other 437 

authors similarly demonstrated that a set of few synergies can describe hand posture in a reliable 438 

way, obtaining hand postures that correlated highly with those recorded with optical tracking 439 

(Thakur et al., 2008). 440 

 441 

Limitations and methodological considerations. While nine subjects may appear to be a 442 

relatively limited sample for a fMRI study, our study sample is comparable to that of most reports 443 

on motor control and posture (e.g., Santello et al., 1998; Weiss and Flanders, 2004; Ingram et al., 444 

2008; Thakur et al., 2008; Tessitore et al., 2013; Ejaz et al., 2015) as well as to the sample size of 445 

fMRI studies that use encoding techniques, rather than univariate analyses (Mitchell et al., 2008; 446 

Huth et al., 2012). In addition, the data of our multiple experimental procedures (i.e., kinematic 447 

tracking, EMG and fMRI) were acquired within the same individuals, so to minimize the impact of 448 

inter-subject variability and to facilitate the comparison between different models of hand posture. 449 

Finally, robust descriptive and cross-validation methods complemented single-subject multivariate 450 

approaches, which are less hampered by the number of participants than univariate fMRI 451 

procedures at group level. 452 

A further potential criticism may involve the use of imagined objects – instead of real 453 

objects – as targets for grasping movements. The use of imagined objects allows to avoid 454 
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confounding variables including grasping forces, difficulty in handling objects within a restricting 455 

environments, that could play a role in modulating motor acts. In previous behavioral reports, 456 

synergies were evaluated using contact with real objects (Santello et al., 2002) and participants 457 

could also explore them in an unconstrained manner instead of concentrating on single actions (e.g., 458 

grasping) (Thakur et al., 2008). Another study tracked hand motion across many gestures performed 459 

in an everyday life setting (Ingram et al., 2008). Interestingly, the dimensionality reduction methods 460 

were adopted with high consistency in these reports, despite the wide variety of experimental 461 

settings, and the first few PCs could explain most of the variance across a very wide number of 462 

motor acts. Moreover, when motor acts were performed toward both real and imagined objects, the 463 

results obtained from synergy evaluation were highly similar (Santello et al., 2002). 464 

It can be argued that the better performance for kinematic synergies as compared to the other 465 

two alternative models may be due to the differences in the intrinsic signal and noise levels of the 466 

optical motion tracking and EMG acquisition techniques. Moreover, the muscle synergy model is 467 

inevitably simplified, since only a fraction of the intrinsic and extrinsic muscles of the hand can be 468 

recorded with surface EMG. Since all these factors may impact our ability to predict brain activity, 469 

we tested whether and to what extent different processing methods and EMG channel 470 

configurations could affect the performance of the muscle synergy model in discriminating single 471 

gestures and encoding brain activity. Therefore, we performed an additional analysis on an 472 

independent group of subjects, testing different processing methods and EMG channel 473 

configurations (up to 16 channels). The results, reported in the Appendix, demonstrate that EMG 474 

recordings with a higher dimensionality (Gazzoni et al., 2014; Muceli et al., 2014) or a different 475 

signal processing (Ejaz et al., 2015) do not lead to better discrimination results. These findings are 476 

consistent with previous reports (Muceli et al., 2014), and indicate that, in the current study, the 477 

worst performance of the muscle model relates more to the signal-to-noise ratio of the EMG 478 

technique per se, rather than to shortcomings of either the acquisition device or the signal 479 

processing methods adopted here. 480 
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While our data suggest that synergies may be arranged topographically on the cortical 481 

surface, the assessment of such a mapping is currently limited to the first three unrotated PCs. 482 

Additional studies are needed to investigate how topographical organization may be affected by the 483 

rotation of the principal components. Indeed, such an assessment requires the definition of stable 484 

population-level synergies to allow for the identification of optimally rotated components and to 485 

test their topographical arrangements across subjects; for this reason, it falls beyond the aims of the 486 

current study. Our work demonstrates that the topography of synergies, as defined as a spatial map 487 

of the first three PCs, is resistant to different arrangements; however, alternative configurations 488 

(rotated solutions within the PCA) can be encoded as well in sensorimotor cortical areas. The 489 

relatively low C index obtained in the mapping procedure and the total variance explained by the 490 

kinematic synergy model during the encoding procedure leave the door open to better models and 491 

different topographical arrangements. 492 

 493 

Beyond synergies: which pieces of information are also coded in the brain? In summary, 494 

our results provide strong support for the representation of hand motor acts through postural 495 

synergies. However, this does not imply that synergies are the only way the brain encodes hand 496 

movements in primary motor cortex. In our data, only a portion (40%) of the total brain activity 497 

could be accounted for by kinematic synergies. Hand motor control results from complex 498 

interactions involving integration of sensory feedback with the selection of motor commands to 499 

group of hand muscles. Similarly, motor planning is also a complex process, which requires 500 

selecting the desired final posture based on the contact forces required to grasp or manipulate an 501 

object. These elements must be continuously monitored to allow for on-line adaptation and 502 

corrections (Castiello, 2005). Previous studies demonstrated that only a small fraction of variance in 503 

M1 is related to arm posture (Aflalo and Graziano, 2006) and that grasping force can be efficiently 504 

decoded from electrical activity, suggesting that at least a subset of M1 neurons processes force-505 

related information (Flint et al., 2014). In addition, motor areas can combine individual digit pattern 506 
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on the basis of alternative non-synergistic or nonlinear combinations and the correlated activity 507 

patterns for adjacent fingers may depend on alternative mechanisms such as finger enslaving (Ejaz 508 

et al., 2015). It is likely that sensorimotor areas encode also different combinations of synergies, 509 

based – for instance – on the rotated versions of kinematic PCs: the encoding of synergies and of 510 

their rotated counterparts may represent a wider repertoire of motor primitives which can improve 511 

the flexibility and adaptability of modular control. Moreover, the information encoded may be 512 

related to the grasping action as a whole, not only to its final posture. Dimensionality reduction 513 

criteria can be also applied to hand posture over time, leading to time-varying synergies that encode 514 

complete preshaping gestures without being limited to their final position (Tessitore et al., 2013). 515 

This is consistent with EMG studies, which actually track muscle activity over the entire grasping 516 

trajectory (Weiss and Flanders, 2004; Cheung et al., 2009) and can add information about the 517 

adjustments performed during a motor act. Information about the temporal sequence of posture and 518 

movements may therefore be encoded in M1 and a different experimental setup is needed to test this 519 

hypothesis. 520 

It should also be noted that studies in animal models bear strong evidence for a distributed 521 

coding of hand synergies beyond motor cortex, i.e., spinal cord (Overduin et al., 2012; Santello et 522 

al., 2013). The question about the role of M1 – i.e., whether it actually contains synergic 523 

information or simply act as a mere selector of motor primitives that are encoded elsewhere – still 524 

remains open. Our study provides a relatively coarse description of the role of M1 neurons. 525 

According to the redundancy principle, only a part of M1 neurons may be directly implied in 526 

movement or posture control (Latash et al., 2007), whereas the remaining neurons may deal with 527 

force production or posture adjustments and control over time, allowing for the high flexibility and 528 

adaptability which are peculiar features of human hand movements. 529 

Altogether, the coding of motor acts through postural synergies may shed new light on the 530 

representation of hand motor acts in the brain and pave the way for further studies of neural 531 

correlates of hand synergies. The possibility to use synergies to reconstruct hand posture from 532 
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functional activity may lead to important outcomes and advancements in prosthetics and brain-533 

machine interfaces. These applications could eventually use synergy-based information from motor 534 

cortical areas to perform movements in a smooth and natural way, using the same dimensionality 535 

reduction strategies that the brain may apply during motor execution.  536 



 23

Materials and Methods 537 

 538 

Subjects. Nine healthy volunteers (5F, age 25±3 yrs) participated in the study. The subjects 539 

were right-handed according to the Edinburgh Handedness Inventory (Oldfield, 1971). All 540 

participants had normal or corrected-to-normal visual acuity and received a medical examination, 541 

including a brain structural MRI scan, to exclude any disorder that could affect brain structure or 542 

function. 543 

Experimental setup. The kinematic, EMG and fMRI data were acquired during three separate 544 

sessions that were performed on different days, in a randomly alternated manner across participants. 545 

Eight out of nine subjects performed all the three sessions, while EMG data from one participant 546 

were not recorded due to hardware failure. Across the three sessions, participants were requested to 547 

perform the same task of grasp-to-use gestures towards twenty different virtual objects. A training 548 

phase was performed prior to the sessions to familiarize participants with the experimental task. 549 

The kinematic and EMG experiments were performed to obtain accurate descriptions of the 550 

final hand posture. Three models of equal dimensions (i.e., five dimensions for each of the twenty 551 

postures) were derived from these two sessions: a kinematic synergy model based on PCA on 552 

kinematic data, an additional kinematic description which considers separately the displacements of 553 

each individual digit for each posture, and an EMG-based muscle synergy model. The models were 554 

first assessed using a machine-learning approach to measure their ability to discriminate among 555 

individual postures. The models were then used in a comparable method (i.e., encoding procedure) 556 

aimed at predicting the fMRI activity while subjects performed the same hand grasping gestures. 557 

Finally, fMRI activity was used to reconstruct the hand postures (i.e., decoding procedure). 558 

Kinematic experiment. The first experimental session consisted of kinematic recording of 559 

hand postures during the execution of motor acts with common objects. More specifically, we 560 

focused on the postural (static) component at the end of reach-to-grasp movements. Kinematic 561 

postural information was acquired with the model described in a previous study (Gabiccini et al. 562 
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2013), which is a fully parameterized model, reconstructed from a structural magnetic resonance 563 

imaging of the hand across a large number of postures (Stillfried et al., 2014). Such a model can be 564 

adapted to different subjects through a suitable calibration procedure. This model is amenable to in 565 

vivo joint recordings via optical tracking of markers attached to the skin and is endowed with a 566 

mechanism for compensating soft tissue artifacts caused by the skin and marker movements with 567 

respect to the bones (Gustus et al., 2012). 568 

Kinematic data acquisition. During the recordings, participants were comfortably seated with 569 

their right hand in a resting position (semipronated) and were instructed to lift and shape their right 570 

hand as to grasp a visually-presented object. Stimuli presentation was organized into trials in which 571 

pictures of the target objects were shown on a computer screen for three seconds and were followed 572 

by an inter-stimulus pause (two seconds), followed by an auditory cue that prompted the grasping 573 

movements. The interval between two consecutive trials lasted seven seconds. In each trial, subjects 574 

were requested to grasp objects as if they were going to use them, and to place their hands in the 575 

resting position once the movement was over. Twenty different objects, chosen from our previous 576 

report (Santello et al., 1998), were used in the current study (see Supplementary file 1J for a list). 577 

The experiment was organized in five runs, each composed by twenty trials, in randomized order 578 

across participants. Therefore, all the grasp-to-use movements were performed five times. The 579 

experiment was preceded by a training session that was performed after the positioning of the 580 

markers. Hand posture was measured by an optical motion capture system (Phase Space, San 581 

Leandro, CA, USA), composed of ten stereocameras with a sampling frequency of 480 Hz. The 582 

cameras recorded the Cartesian positions of the markers and expressed them with reference to a 583 

global inertial frame and to a local frame of reference obtained by adding a bracelet equipped with 584 

optical markers and fastened to the participants’ forearm. This allowed marker coordinates to be 585 

expressed with reference to this local frame. To derive the joint angles of the hand, other markers 586 

were placed on each bone (from metacarpal bones to distal phalanxes) and on a selected group of 587 

joints: thumb carpo-metacarpal (CMC), metacarpophalangeal (MCP) and interphalangeal (IP); 588 
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index and middle MCPs; and all proximal interphalangeals (PIPs). This protocol is shown in Figure 589 

5-figure supplement 1 and a full list of markerized joints and their locations can be found in 590 

Supplementary file 1K and in (Gabiccini et al. 2013). 591 

The placement of the markers was performed according to the model described in Gabiccini 592 

et al. (2013), which consists of 26 Degrees of Freedom (DoFs), 24 pertaining to the hand and 2 to 593 

the wrist. The wrist markers were not used in subsequent analyses. The marker configuration 594 

resembles a kinematic tree, with a root node corresponding to the Cartesian reference frame, rigidly 595 

fastened to the forearm, and the leaves matching the frames fixed to the distal phalanxes (PDs) of 596 

the five digits, as depicted in the first report of the protocol (Gabiccini et al. 2013),. 597 

Kinematic data preprocessing. First, the frame rate from the ten stereocameras was 598 

downsampled to 15 Hz. After a subject-specific calibration phase, which was performed to extract 599 

the geometric parameters of the model and the marker positions on the hand of each participant, 600 

movement reconstruction was performed by estimating all joint angles at each sample with an 601 

iterative extended Kalman filter (EKF) which takes into account both measurements explanation 602 

and closeness to the previous reconstructed pose (see Gabiccini et al., 2013 for further details). 603 

Once all trials were reconstructed, the posture representing the final grasping configuration was 604 

selected through direct inspection. The final outcome of this procedure was a 24 x 100 matrix for 605 

each subject, containing 24 joint angles for 20 objects repeated five times. 606 

Kinematic model. The kinematic data from each subject were analyzed independently. First, 607 

the hand postures were averaged across five repetitions for each object, after which the data matrix 608 

was centered by subtracting, from each of the 20 grasping movements, the mean posture calculated 609 

across all the motor acts. Two different models were obtained from the centered matrix. The first 610 

was a kinematic synergy model, obtained by reducing the dimensionality with a PCA on the 20 611 

(postures) by 24 (joint angles) matrix and retaining only the first five principal components (PCs). 612 

In this way, the postures were projected onto the components space, hence obtaining linear 613 

combinations of synergies. 614 
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To obtain an alternative individual digit model, defined on a somatotopic basis, the 615 

displacement of individual digits was also measured (Kirsch & Schieber, 2014). Briefly, the 616 

displacement of each finger for the twenty single postures was obtained by calculating the sum of 617 

the single joint angles within each digit and gesture, again excluding wrist DoFs. 618 

The analyses of all the sessions were carried out using MATLAB (MathWorks, Natick, MA, USA), 619 

unless stated otherwise 620 

EMG experiment. The second session consisted of a surface electromyography acquisition 621 

(EMG) during the execution of grasp-to-use acts performed towards the same imagined objects 622 

presented during the kinematic experiment. 623 

EMG acquisition. EMG signals were acquired from five different muscles using self-624 

adhesive surface electrodes. The muscles used for recording were: flexor digitorum superficialis 625 

(FDS), extensor digitorum communis (EDC), first dorsal interosseus (FDI), abductor pollicis brevis 626 

(APB), and abductor digiti minimi (ADM). The individuation of the sites for the recording of each 627 

muscle was performed according to the standard procedures for EMG electrode placement 628 

(SENIAM, Hermens et al., 1999; Hermens et al., 2000). The skin was cleaned with alcohol before 629 

the placement of electrodes. 630 

Participants performed the same tasks and protocol used in the kinematic experiment, i.e., 631 

visual presentation of the target object (three seconds), followed by an inter-stimulus interval (two 632 

seconds), an auditory cue to prompt movement, and an inter-trial interval (seven seconds). The 633 

experiment was divided into runs that comprised the execution of grasping actions towards all the 634 

20 objects, in randomized order. Participants performed six runs. Each gesture was therefore 635 

repeated six times. 636 

EMG signals were recorded using two devices (Biopac MP35 for 4 muscles; Biopac MP150 637 

for the fifth muscle) and Kendall ARBO 24-mm surface electrodes, placed on the above mentioned 638 

muscles of the participants’ right arm. EMG signals were sampled at 2 kHz. 639 

EMG model. First, EMG signals were resampled to 1 kHz and filtered with a bandpass (30-640 
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1000 Hz) and a notch (50 Hz) filter. For each channel, each trial (defined as a time window of 2,500 641 

samples) underwent the extraction of twenty-two primary time-domain features, chosen from those 642 

that are most commonly used in EMG-based gesture recognition studies (Zecca et al., 2002; 643 

Mathiesen et al., 2010; Phinyomark et al., 2010; Tkach et al., 2010; see Chowdury et al., 2013 for a 644 

review). Additional second-order features were obtained from the first features, computing their 645 

signal median, mean absolute deviation (MAD), skewness, and kurtosis. A complete list of the 646 

EMG features we used can be found in Supplementary file 1L. 647 

EMG model. A muscle model was derived from the chosen features as follows: first, the 648 

pool of 410 features (82 for 5 channels) was reduced to its five principal components. The 1 x 5 649 

vectors describing each individual movement were averaged across the six repetitions. This 20 650 

(movements) x 5 (synergies) matrix represented the muscle synergy model for the subsequent 651 

analyses. 652 

Models validation. To verify that the three models (kinematic synergies, individual digit, and 653 

muscle synergies) were able to accurately describe hand posture, their capability to discriminate 654 

between individual gestures was tested. To this purpose, we developed a rank accuracy measure 655 

within a leave-one-out cross-validation procedure, as suggested by other authors to solve complex 656 

multiclass classification problems (Mitchell et al., 2004). For each iteration of the procedure, each 657 

repetition of each stimulus was left out (probe), whereas all other repetitions (test set) were 658 

averaged. Then, we computed PCA on the data from the test set. The PCA transformation 659 

parameters were applied to transform the probe data in a leave-one-repetition-out way. 660 

Subsequently, we computed the Euclidean distance between the probe element and each element 661 

from test dataset. These distances were sorted, generating an ordered list of the potential gestures 662 

from the most to the least similar. The rank of the probe element in this sorted list was transformed 663 

in a percentage accuracy score. The procedure was iterated for each target gesture and repetition of 664 

the same grasping movement. The accuracy values were first averaged across repetitions and then 665 

across gestures, resulting in one averaged value for each subject. In this procedure, if an element is 666 
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not discriminated above chance, it may fall in the middle of the ordered list (around position #10), 667 

which corresponds to an accuracy of 50%. For this reason, the chance level is always 50%, 668 

regardless of the number of gestures under consideration, while 100% of accuracy indicated that the 669 

correct gesture in the sorted list retained the highest score (i.e., the lowest distance, first ranked) 670 

across repetitions and participants. 671 

The accuracy values were then tested for significance against the null distribution of ranks 672 

obtained from a permutation test. After averaging the four repetitions within the test set, the labels 673 

of the elements were shuffled; then, the ranking procedure described above was applied. The 674 

procedure was repeated 10,000 times, generating a null distribution of accuracies; the single-subject 675 

accuracy value was compared against this null distribution (one-sided rank test). This procedure 676 

was applied to the three models extracted from the kinematic and EMG data, obtaining a measure of 677 

noise and stability across repetitions and each posture, as described by the three different 678 

approaches. Such validation procedure was therefore a necessary step to measure the information 679 

content of these three models before testing their ability to predict the fMRI signal 680 

Individuation of the optimal number of components. The extraction of postural or muscle 681 

synergies from kinematic and EMG data was based on a PCA applied to the matrices of sensor 682 

measures or signal features, respectively. For the analyses performed here, we chose models based 683 

on the first five principal components that were shown to explain more than 90% of the variance in 684 

previous reports, even if those models were applied on data with lower dimensionality (Santello et 685 

al., 1998; Weiss et al., 2004; Gentner & Classen, 2006). Moreover, an additional model was 686 

obtained from the postural data, thus leading to three different models with the same dimensionality 687 

(five dimensions): a kinematic synergy model (based on PCA applied to joint angles), an individual 688 

digit model (based on the average displacement of the digits), and a muscle synergy model (based 689 

on PCA applied to EMG features). However, to verify that the procedures applied here to reduce 690 

data dimensionality yielded the same results of those applied in previous works, we performed PCA 691 

by retaining variable numbers of components, from 1 to 10, and applied the above-described 692 
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ranking procedure to test the accuracy of all data matrices. The plots of the accuracy values as a 693 

function of the number of PCs can be found in Supplementary files 1M and in Figure 6. The result 694 

of this analysis confirmed that the present data are consistent with the previous literature. The same 695 

testing procedure was also applied to the individual digit model by computing the rank accuracies 696 

for the full model (five components) and for the reduced models with 1 to 4 PCs. 697 

fMRI experiment. In the third session, fMRI was used to record the brain activity during the 698 

execution of grasp-to-use acts with the objects presented during the previous experiments. 699 

fMRI acquisition. Functional data were acquired with a 3.0 Tesla GE Signa scanner (GE, 700 

Milwaukee, WI, USA), equipped with an 8-channel head-only coil. A Gradient-Echo echo-planar 701 

sequence was used, with an acquisition matrix of 128 x 128, FOV = 240 x 240 mm, Repetition 702 

Time (TR) = 2.5 s, Time of Echo (TE) = 40 ms, Flip Angle (FA) = 90°. Each volume comprised 43 703 

3mm-thick slices and the resulting voxel size was 1.875 x 1.875 x 3 mm. Additional anatomical 704 

images were also acquired with a high-resolution T1-weighted Fast Spoiled Gradient Recalled 705 

sequence (FSPGR) with 1 mm3 isotropic voxels and a 256 x 256 x.170 mm3 field-of-view; TR = 706 

8.16 s, TE = 3.18 ms, FA = 12°. Head motion was minimized with foam pads. 707 

The task design was identical to that used in previous sessions. Specifically, participants had to 708 

shape their hand as if grasping one of the twenty visually-presented objects. In the current session, 709 

subjects were asked to perform only the hand preshaping, limiting the execution of reaching acts 710 

with their arm or shoulder, since those movements could easily cause head motion. The day before 711 

MRI, all subjects practiced movements in a training session. 712 

The paradigm was composed of five runs, each consisting of twenty randomized trials. Each trial 713 

consisted of a visual presentation of the target object (2.5s), an inter-stimulus pause (5s) followed 714 

by an auditory cue to prompt movements, and an inter-trial interval (12.5s). The functional runs had 715 

two periods of rest (15s) at their beginning and end to measure baseline activity. The total duration 716 

was six minutes and ten seconds (172 time points). The total scanning time was about forty 717 

minutes. 718 



 30

In all sessions, visual stimuli were black and white pictures of the target objects, with a normalized 719 

width of 500 pixels. The auditory cue was an 800 Hz sound lasting 150 ms. The experimental 720 

paradigm was handled by the software package Presentation® (Neurobehavioral System, Berkeley, 721 

CA, http://www.neurobs.com) using a MR-compatible visual stimulation device (VisuaStim, 722 

Resonance Technologies, Northridge, CA, USA; dual display system, 5”, 30° of horizontal visual 723 

field, 640x480 pixels, 60 Hz) and a set of MR-compatible headphones for stimuli delivery. 724 

fMRI preprocessing. The initial steps of fMRI data analysis were performed with the AFNI 725 

software package (Cox, 1996). All volumes within each run were temporally aligned (3dTshift), 726 

corrected for head motion by registering to the fifth volume of the run that was closer in time to the 727 

anatomical image (3dvolreg) and underwent a spike removal procedure to correct for scanner-728 

associated noise (3dDespike). A spatial smoothing with a Gaussian kernel (3dmerge, 4 mm, Full 729 

Width at Half Maximum) and a percentage normalization of each time point in the run (dividing the 730 

intensity of each voxel for its mean over the time series) were subsequently performed. Normalized 731 

runs were then concatenated and a multiple regression analysis was performed (3dDeconvolve). 732 

Each trial was modeled by nine tent functions that covered its entire duration from its onset up to 20 733 

s (beginning of the subsequent trial) with an interval of 2.5 s. The responses associated with each 734 

movement were modeled with separate regressors and the five repetitions of the same trial were 735 

averaged. Movement parameters and polynomial signal trends were included in the analysis as 736 

regressors of no interest. The t-score response images at 2.5, 5, and 7.5 s after the auditory cue were 737 

averaged and used as estimate of the BOLD responses to each grasping movement compared to rest. 738 

The choice to average three different time points for the evaluation of BOLD response was justified 739 

by the fact that such a procedure leads to simpler encoding models for subsequent analyses and that 740 

the usage of tent functions is a more explorative procedure that is not linked to an exact time point. 741 

For this reason, we could obtain an estimation of brain activity that is more linked to the motor act 742 

than to the visual presentation of the target object by concentrating only on a restricted, late time 743 

interval. This approach – or similar ones – has also been used by other fMRI studies (Mitchell et al., 744 
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2008; Connolly et al., 2012). 745 

The coefficients, averaged related to the twenty stimuli of each subject, were transformed to the 746 

standard MNI 152 space. First FMRIB Nonlinear Image Registration Tool (FNIRT) was applied to 747 

the anatomical images to register them in the standard space with a resolution of 1 mm3 (Andersson 748 

et al., 2007). The matrix of nonlinear coefficients was then applied to the BOLD responses, which 749 

were also resampled to a resolution of 2x2x2 mm. 750 

fMRI single-subject encoding analysis. To identify the brain regions whose activity co-varied 751 

with the data obtained from the three models – kinematic, EMG synergies, and individual digits– a 752 

machine learning algorithm was developed, based on a modified version of the multiple linear 753 

regression encoding approach first proposed by Mitchell and colleagues (Mitchell et al., 2008). This 754 

procedure is aimed at predicting the activation pattern for a stimulus by computing a linear 755 

combination of synergy weights obtained from the behavioral models (i.e., Principal Components) 756 

with an algorithm previously trained on the activation images of a subset of stimuli (see Figure 5-757 

figure supplement 1). The procedure consisted in 190 iterations of a leave-two-out cross-validation 758 

in which the stimuli were first partitioned in a training set (18 stimuli) and a test set with the two 759 

left-out examples. The sample for the analysis was then restricted to the 5,000 voxels with the best 760 

average BOLD response across the 18 stimuli in the training set (expressed by the highest t-scores). 761 

For each iteration, the model was first trained with the vectorized patterns of fMRI coefficients of 762 

18 stimuli associated with their known labels (i.e., the target objects). The training procedure 763 

employed a least-squares multiple linear regression to identify the set of parameters that, if applied 764 

to the five synergy weights, minimized the squared error in reconstructing the fMRI images from 765 

the training sample. After training the model, only the 1,000 voxels that showed the highest R2 (a 766 

measure of fitting between the matrix of synergy weights and the training data) were retained. A 767 

cluster size correction (nearest neighbor, size = 50 voxels) was also applied, in order to prune small, 768 

isolated clusters of voxels. The performance of the trained model was then assessed, in a subsequent 769 

decoding stage, by providing it with the fMRI images related to the two unseen gestures and their 770 
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synergy weights, and requiring it to associate an fMRI pattern with the label of one of the left-out 771 

stimuli. The procedure was performed within the previously chosen 1,000 voxels and accuracy was 772 

assessed by considering the correlation distance between the predicted and real fMRI patterns for 773 

each of the two unseen stimuli. This pairwise procedure led therefore to a number of correctly 774 

predicted fMRI patterns ranging from 0 to 2 with a chance level of 50%. This cross-validation loop 775 

was repeated 190 times, leaving out all the possible pairs of stimuli. Therefore the results consisted 776 

of an overall accuracy value – the percentage of fMRI patterns correctly attributed, which is an 777 

expression of the success of the model in predicting brain signals – and a map of the voxels that 778 

were used in the procedure – i.e., the voxels whose signal was predictable on the basis of the 779 

synergy coefficients. Every voxel had a score ranging from 0 (if the voxel was never used) to a 780 

possible maximum of 380 (if the voxel was among the 1,000 with the highest R2 and the two left-781 

out patterns could be predicted in all the 190 iterations). The encoding analysis was performed in 782 

separate procedures for each model – i.e., kinematic and muscle synergies and individual digit. We 783 

obtained therefore three sets of accuracy values and three maps of the most used voxels for each 784 

subject. These results, which displayed the brain regions whose activity was specifically modulated 785 

by the grasping action that was performed inside the scanner, were subsequently used for building 786 

the group-level probability maps (see below). 787 

Assessment of the accuracy of the encoding analysis. The single-subject accuracy was tested 788 

for significance against the distribution of accuracies generated with a permutation test within the 789 

above-defined encoding procedure. Permutation tests are the most reliable and correct method to 790 

assess statistical significance in multivariate fMRI studies (Schreiber & Krekelberg, 2013; 791 

Handjaras et al., 2015). The null distribution of accuracies was built with a loop in which the model 792 

was first trained with five randomly chosen synergy weights that were obtained by picking a 793 

random value out of the 18 (one for each gesture) in each column of the matrix of synergies. The 794 

trained model was subsequently tested on the two left-out images. The procedure was repeated 795 

1,000 times, leading to a null distribution of 1,000 accuracy values against which we compared the 796 
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value obtained from the above-described encoding method. Similarly to the encoding analysis, we 797 

did not use either the fMRI images or the synergy weights of the two test stimuli for training the 798 

model. The left-out examples were therefore tested by an algorithm that had been trained on a 799 

completely independent data sample. The weights were shuffled only within column: this procedure 800 

yielded vectors of shuffled weights with the same variance as the actual kinematic PCs, even though 801 

those vectors were no longer orthogonal. Permutation tests were performed separately for each 802 

subject with the three data matrices. Each single-subject accuracy was therefore tested against the 803 

null distribution of accuracy values obtained from the same subject data (one-sided rank test). 804 

Group-level probability maps. A group map displaying the voxels that were consistently 805 

recruited across subjects was obtained for the kinematic synergy model. The single-subject maps 806 

achieved from the encoding analysis, which display the voxels recruited by the encoding procedure 807 

in each subject, were first binarized by converting non-zero accuracy values to 1, then summed to 808 

obtain an across-subjects overlap image. Moreover, a probability threshold of these maps (p>0.33) 809 

was applied on the maps to retain voxels in which the encoding procedure was successful in at least 810 

four out of the nine subjects (Figure 1). 811 

Discrimination of single postures by fMRI data. The accuracies of pairwise discrimination of 812 

postures, achieved during the decoding stage of the encoding procedure, were combined across 813 

subjects, so to identify the postures that could be discriminated with the highest accuracy based on 814 

their associated BOLD activity. The results were displayed as a heat map (Figure 5), with a 815 

threshold corresponding to the chance level of 50%. 816 

Assessment of kinematic synergies across subjects. To evaluate whether the synergies 817 

computed on kinematic data from our sample would allow for a reliable reconstruction of hand 818 

posture, we needed to verify that these synergies are consistently ranked across individuals. 819 

Therefore, we used Metric Pairwise Constrained K-Means (MPCK-M, Bilenko et al., 2004), a 820 

method for semi-unsupervised clustering that integrates distance function and constrained classes. 821 

We used the weights of the first three kinematic synergies for the 20 gestures in each subjects as 822 
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input data and arranged the set of 27 20-items vectors into three classes with 9 synergies that 823 

showed the higher similarity (see Supplementary file 1N). This analysis was limited to the first 824 

three PCs since previous reports (Santello et al., 1998; Gentner & Classen, 2006) suggest that they 825 

may constitute a group of “core synergies”, with a cumulative explained variance greater than 80%. 826 

This analysis was performed only on the synergies obtained from the kinematic synergy model, 827 

which was able to outperform both the individual digit and muscle synergy models in terms of 828 

encoding accuracy percentages on fMRI data. 829 

To facilitate the interpretation of the first kinematic PCs as elementary grasps, we plotted the 830 

time course of the corresponding hand movements. The plots are 2s-long videos showing three 831 

movements from the minimum to the maximum values of PCs 1, 2 and 3, respectively, expressed as 832 

sets of twenty-four joint angles averaged across subjects (Video 1). 833 

Cortical mapping of the three group synergies. The three group synergies were studied 834 

separately, computing the single correlations between each PC and the fMRI activation coefficient. 835 

This correlation estimated the similarity between the activity of every voxel for the twenty grasping 836 

acts and the weights of each single synergy. The coefficient of determination (R2) for each synergy 837 

was averaged across participants to achieve a measurement of group-level goodness of fit. The 838 

overlap image between the group-level probability map and the goodness of fit for each synergy 839 

was then obtained and mapped onto a flattened mesh of the cortical surface (Figure 2). The AFNI 840 

SUMA program, the BrainVISA package and the ICBM MNI 152 brain template (Fonov et al., 841 

2009) were used to render results on the cortical surface (Figure 1 and 2). 842 

To provide a statistical assessment of the orderly mapping of synergies across the regions 843 

recruited by the encoding procedure, a comparison between the map space and the feature space 844 

was performed (Goodhill and Sejnowski, 1997; Yarrow et al., 2014). The correlation of the two 845 

spaces is expressed by an index (C parameter) that reflects the similarity between the arrangement 846 

of voxels in space and the arrangement of their information content: high values indicate that voxels 847 

which contain similar information are also spatially close, suggesting a topographical organization. 848 
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The map space was derived measuring the standardized Euclidean distance between each voxel 849 

position in the grid. The feature space was computed using the standardized Euclidean distance 850 

between the three synergy weights, as defined by their R2, for each voxel and averaged across 851 

subjects according to the classes described in the sections Assessment of kinematic synergies across 852 

subjects and Cortical mapping of the three group synergies. The C parameter was achieved by 853 

computing the Pearson correlation between the map space and the feature space (Yarrow et al., 854 

2014). An ad-hoc statistical test was developed to assess the existence of the topography. A 855 

permutation test was performed generating a null-distribution of C values by correlating the map 856 

space with feature spaces obtained by averaging the three synergies across subjects with different 857 

random combinations (10,000 iterations). The p-value was calculated by comparing the null-858 

distribution with the C parameter obtained with the cortical mapping (one-sided rank test).  859 

Representational Similarity Analysis (RSA) and Multidimensional Scaling (MDS). 860 

Representational content measures (Kriegeskorte et al., 2008a; Kriegeskorte & Kievit, 2013) were 861 

carried out to explore the information that is coded in the regions activated during the execution of 862 

finalized motor acts. Representational Spaces (RS) are matrices that display the distances between 863 

all the possible pairs of neurofunctional or behavioral measures, informing us about the internal 864 

similarities and differences that can be evidenced within a stimulus space. By computing a second-865 

order correlation between single model RSs we can evaluate both the similarity between the 866 

information carried by the single behavioral models (kinematic, individual digits and EMG) and 867 

between behavioral data and brain activity as measured by fMRI. 868 

RSA was therefore performed within a subset of voxels that were consistently activated by the 869 

task. A Region of Interest (ROI) was derived from the fMRI data by performing a t-test (AFNI 870 

program 3dttest++) that compared the mean brain activity at 2.5, 5, and 7.5 s after the auditory cue 871 

and the activity at rest. Results were corrected for False Discovery Rate (FDR, Benjamini & 872 

Hochberg, 1995; p<0.05) (Figure 4–figure supplement 2). Afterwards, the t-scores relative to each 873 

voxel within the ROI were normalized by subtracting the mean across-stimulus activation of all the 874 
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voxels in the ROI and dividing the value by the standard deviation (z-score normalization). PCA 875 

was performed to reduce the BOLD activity of the voxels in the ROI to the first five principal 876 

components. Activation pattern RSs were then obtained for each subject by calculating the 877 

Euclidean distance between the PCs of all the possible pairs of stimuli (Edelman et al., 1998; 878 

Kriegeskorte et al., 2008b; Haxby et al., 2014). Model RSs were similarly computed for the three 879 

types of postural data. This procedure led to a set of brain activity RSs and three sets of model RSs 880 

for kinematic synergy, individual digit, and muscle synergy models, respectively. The single subject 881 

RSs were averaged to obtain a unique group RS for each model. 882 

Since we were interested in identifying the similarities and differences between the 883 

information expressed by the behavioral models and the information encoded in the brain, we 884 

estimated Pearson correlation separately between the fMRI-based RS and each model RS 885 

(Kriegeskorte et al., 2008a, 2008b; Devereux et al., 2013). Moreover, to study the possible specific 886 

relations between the behavioral models, additional pairwise correlations between the three model 887 

RSs were also performed. 888 

These correlations were tested with the Mantel test by randomizing the twenty stimulus labels 889 

and computing the correlation. This step was repeated 10,000 times, yielding a null distribution of 890 

correlation coefficients. Subsequently we derived the p-value as the percent rank of each correlation 891 

within this null distribution (Kriegeskorte et al., 2008a). The correlations were also estimated 892 

between single-subject RSs. 893 

 In addition, a MDS procedure, using standardized Euclidean distance, metric stress criterion 894 

and Procrustes alignment (Kruskal et al., 1978) was performed to represent the kinematic synergies 895 

and the patterns of BOLD activity across subjects (Figure 3). 896 

Decoding of hand posture from fMRI data. Additionally, the fMRI data were used to decode 897 

hand postures from stimulus-specific brain activity. 898 

This procedure was performed using fMRI coefficients to obtain a set of twenty-four values, each 899 

representing the distances between adjacent hand joints, which could then be used to plot hand 900 
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configuration. To this purpose, we first run a PCA on the fMRI data, using the voxels within the 901 

mask obtained for the RSA and MDS (see above and Figure 4–figure supplement 2) to avoid any 902 

possible selection bias; with this procedure, the dimensionality of the data was reduced to the first 903 

five dimensions, as previously done for kinematic and EMG data. 904 

Then, a multiple linear regression was performed within a leave-one-stimulus-out procedure 905 

by using the matrix of postural coefficients as predicted data and the reduced fMRI matrix as 906 

predictor. This allowed for the reconstruction of the coefficients of the left-out posture, yielding a 907 

matrix with twenty rows (postures) and twenty-four columns (joint angles). Finally, we estimated 908 

the goodness of fit (R2) between the reconstructed data and the original postural matrices recorded 909 

with the optical tracking system, both subject-wise (i.e., computing the correlation of the whole 910 

matrices) and posture-wise (i.e., computing the correlation of each posture vector). In addition, the 911 

decoding performance was assessed using a rank accuracy procedure (similar to those performed in 912 

the behavioral analyses) in which each reconstructed posture was classified against those originally 913 

recorded during the kinematic experiment. The accuracy values were tested against the null 914 

distribution generated by a permutation test (10,000 iterations). The reconstructed data were then 915 

plotted, using custom code written in MATLAB and Mathematica 9.0 (Wolfram Research, Inc., 916 

Champaign, IL, USA) (Figure 4). 917 

 918 

 919 

Acknowledgments 920 

We thank Mirco Cosottini and Luca Cecchetti for help with data collection, technical 921 

assistance, and critical discussions; Arash Ajoudani and Alessandro Altobelli for their help with 922 

additional experiments. 923 

  924 



 38

References 925 

Aflalo TN, and Graziano MS. 2006. Partial tuning of motor cortex neurons to final posture in a free-926 

moving paradigm. Proc Natl Acad Sci U S A 103:2909-2914. doi:10.1073/pnas.0511139103. 927 

Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck 928 

C, et al. 2015. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a 929 

tetraplegic human. Science 348:906-910. 930 

Andersson JL, Jenkinson M, and Smith S. 2007. Non-linear optimisation. FMRIB technical report 931 

TR07JA1. Practice 2007a Jun.  932 

Benjamini Y, and Hochberg Y. 1995. Controlling the False Discovery Rate - a Practical and 933 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-934 

Methodological 57:289-300.  935 

Bernstein NA 1967. The co-ordination and regulation of movements. 1st English edn. Oxford, New 936 

York. Pergamon Press. 937 

Bilenko M, Basu S, and Mooney RJ 2004. Integrating constraints and metric learning in semi-938 

supervised clustering. In Proceedings of the twenty-first international conference on Machine 939 

learning (ACM), p. 11. 940 

Bizzi E, Cheung VC, d'Avella A, Saltiel P, and Tresch M. 2008. Combining modules for 941 

movement. Brain Res Rev 57:125-133. doi:10.1016/j.brainresrev.2007.08.004. 942 

Bleichner MG, Jansma JM, Sellmeijer J, Raemaekers M, and Ramsey NF. 2014. Give me a sign: 943 

decoding complex coordinated hand movements using high-field fMRI. Brain Topogr 27:248-257. 944 

doi:10.1007/s10548-013-0322-x. 945 

Brown AR, and Teskey GC. 2014. Motor cortex is functionally organized as a set of spatially 946 

distinct representations for complex movements. J Neurosci 34:13574-13585. 947 

doi:10.1523/JNEUROSCI.2500-14.2014. 948 

Castiello U. 2005. The neuroscience of grasping. Nat Rev Neurosci 6:726-736. 949 

doi:10.1038/nrn1744. 950 



 39

Cheung VC, d'Avella A, Tresch MC, and Bizzi E. 2005. Central and sensory contributions to the 951 

activation and organization of muscle synergies during natural motor behaviors. J Neurosci 952 

25:6419-6434. doi:10.1523/JNEUROSCI.4904-04.2005. 953 

Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, and Bizzi E. 2009. Stability of muscle 954 

synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci U S A 955 

106:19563-19568. doi:10.1073/pnas.0910114106. 956 

Chowdhury RH, Reaz MBI, Ali MAB, Bakar AAA, Chellappan K, and Chang TG. 2013. Surface 957 

Electromyography Signal Processing and Classification Techniques. Sensors 13:12431-12466. 958 

doi:Doi 10.3390/S130912431. 959 

Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO, Wu YC, Abdi H, and Haxby JV. 960 

2012. The representation of biological classes in the human brain. J Neurosci 32:2608-2618. 961 

doi:10.1523/JNEUROSCI.5547-11.2012. 962 

Cox RW. 1996. AFNI: software for analysis and visualization of functional magnetic resonance 963 

neuroimages. Comput Biomed Res 29:162-173.  964 

Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, and Goodale MA. 2003. Visually 965 

guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain 966 

Res 153:180-189. doi:10.1007/s00221-003-1591-5. 967 

Devereux BJ, Clarke A, Marouchos A, and Tyler LK. 2013. Representational similarity analysis 968 

reveals commonalities and differences in the semantic processing of words and objects. J Neurosci 969 

33:18906-18916. doi:10.1523/JNEUROSCI.3809-13.2013. 970 

D'Ausilio A, Bartoli E, and Maffongelli L. 2015. Grasping synergies: a motor-control approach to 971 

the mirror neuron mechanism. Phys Life Rev 12:91-103. doi:10.1016/j.plrev.2014.11.002. 972 

d'Avella A, Saltiel P, and Bizzi E. 2003. Combinations of muscle synergies in the construction of a 973 

natural motor behavior. Nat Neurosci 6:300-308. doi:10.1038/nn1010. 974 

d'Avella A, and Lacquaniti F. 2013. Control of reaching movements by muscle synergy 975 

combinations. Front Comput Neurosci 7:42. doi:10.3389/fncom.2013.00042. 976 



 40

Edelman S, Grill-Spector K, Kushnir T, and Malach R. 1998. Toward direct visualization of the 977 

internal shape representation space by fMRI. Psychobiology 26:309-321.  978 

Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, and Forssberg H. 2000. Cortical 979 

activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528-536.  980 

Ehrsson HH, Fagergren E, and Forssberg H. 2001. Differential fronto-parietal activation depending 981 

on force used in a precision grip task: an fMRI study. J Neurophysiol 85:2613-2623. 982 

Ehrsson HH, Kuhtz-Buschbeck JP, and Forssberg H. 2002. Brain regions controlling nonsynergistic 983 

versus synergistic movement of the digits: a functional magnetic resonance imaging study. J 984 

Neurosci 22:5074-5080.  985 

Ejaz N, Hamada M, and Diedrichsen J. 2015. Hand use predicts the structure of representations in 986 

sensorimotor cortex. Nat Neurosci. doi:10.1038/nn.4038. 987 

Feix T, Pawlik R, Schmiedmayer H-B, Romero J, and Kragic D 2009. A comprehensive grasp 988 

taxonomy. In Robotics, Science and Systems: Workshop on Understanding the Human Hand for 989 

Advancing Robotic Manipulation, pp. 2-3. 990 

Flash T, and Hogan N. 1985. The coordination of arm movements: an experimentally confirmed 991 

mathematical model. J Neurosci 5:1688-1703.  992 

Flint RD, Wang PT, Wright ZA, King CE, Krucoff MO, Schuele SU, Rosenow JM, Hsu FP, Liu 993 

CY, Lin JJ, et al. 2014. Extracting kinetic information from human motor cortical signals. 994 

Neuroimage 101:695-703. doi:10.1016/j.neuroimage.2014.07.049. 995 

Fonov V, Evans A, McKinstry R, Almli C, and Collins D. 2009. Unbiased nonlinear average age-996 

appropriate brain templates from birth to adulthood. Neuroimage.  997 

Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, and Goebel R. 2003. Mirror-998 

symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859-869.  999 

Gabiccini M, Stillfried G, Marino H, and Bianchi M. 2013. A data-driven kinematic model of the 1000 

human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis. 2013 1001 

Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros):3738-3745.  1002 



 41

Gallivan JP, McLean DA, Valyear KF, Pettypiece CE, and Culham JC. 2011. Decoding action 1003 

intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31:9599-1004 

9610. doi:10.1523/JNEUROSCI.0080-11.2011. 1005 

Gallivan JP, McLean DA, Valyear KF, and Culham JC. 2013. Decoding the neural mechanisms of 1006 

human tool use. Elife 2:e00425. doi:10.7554/eLife.00425. 1007 

Ganesh G, Burdet E, Haruno M, and Kawato M. 2008. Sparse linear regression for reconstructing 1008 

muscle activity from human cortical fMRI. Neuroimage 42:1463-1472. 1009 

doi:10.1016/j.neuroimage.2008.06.018. 1010 

Gazzoni M, Celadon N, Mastrapasqua D, Paleari M, Margaria V, and Ariano P. 2014. Quantifying 1011 

Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel 1012 

Electromyography. PLoS One 9. doi:10.1371/journal.pone.0109943. 1013 

Gentner R, and Classen J. 2006. Modular organization of finger movements by the human central 1014 

nervous system. Neuron 52:731-742. doi:10.1016/j.neuron.2006.09.038. 1015 

Gentner R, Gorges S, Weise D, aufm Kampe K, Buttmann M, and Classen J. 2010. Encoding of 1016 

motor skill in the corticomuscular system of musicians. Curr Biol 20:1869-1874. 1017 

doi:10.1016/j.cub.2010.09.045. 1018 

Goodhill GJ, and Sejnowski TJ. 1997. A unifying objective function for topographic mappings. 1019 

Neural Computation 9:1291-1303. 1020 

Grafton ST, Fagg AH, Woods RP, and Arbib MA. 1996. Functional anatomy of pointing and 1021 

grasping in humans. Cereb Cortex 6:226-237.  1022 

Graziano MS, Taylor CS, and Moore T. 2002. Complex movements evoked by microstimulation of 1023 

precentral cortex. Neuron 34:841-851. 1024 

Graziano MS. 2015. Ethological Action Maps: A Paradigm Shift for the Motor Cortex. Trends 1025 

Cogn Sci. doi:10.1016/j.tics.2015.10.008. 1026 

Grefkes C, Weiss PH, Zilles K, and Fink GR. 2002. Crossmodal processing of object features in 1027 

human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and 1028 



 42

monkeys. Neuron 35:173-184.  1029 

Gustus A, Stillfried G, Visser J, Jorntell H, and van der Smagt P. 2012. Human hand modelling: 1030 

kinematics, dynamics, applications. Biological Cybernetics 106:741-755. doi:DOI 10.1007/s00422-1031 

012-0532-4. 1032 

Handjaras G, Bernardi G, Benuzzi F, Nichelli PF, Pietrini P, and Ricciardi E. 2015. A topographical 1033 

organization for action representation in the human brain. Hum Brain Mapp. 1034 

doi:10.1002/hbm.22881. 1035 

Haxby JV, Connolly AC, and Guntupalli JS. 2014. Decoding neural representational spaces using 1036 

multivariate pattern analysis. Annu Rev Neurosci 37:435-456. doi:10.1146/annurev-neuro-062012-1037 

170325. 1038 

Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, and Hägg G. 1039 

1999. European recommendations for surface electromyography. Roessingh Research and 1040 

Development 8:13-54.  1041 

Hermens HJ, Freriks B, Disselhorst-Klug C, and Rau G. 2000. Development of recommendations 1042 

for SEMG sensors and sensor placement procedures. Journal of electromyography and Kinesiology 1043 

10:361-374.  1044 

Huth AG, Nishimoto S, Vu AT, and Gallant JL. 2012. A continuous semantic space describes the 1045 

representation of thousands of object and action categories across the human brain. Neuron 1046 

76:1210-1224. doi:10.1016/j.neuron.2012.10.014. 1047 

Indovina I, and Sanes JN. 2001. On somatotopic representation centers for finger movements in 1048 

human primary motor cortex and supplementary motor area. Neuroimage 13:1027-1034. 1049 

doi:10.1006/nimg.2001.0776. 1050 

Ingram JN, Kording KP, Howard IS, and Wolpert DM. 2008. The statistics of natural hand 1051 

movements. Exp Brain Res 188:223-236. doi:10.1007/s00221-008-1355-3. 1052 

Iwamura Y, Tanaka M, and Hikosaka O. 1980. Overlapping representation of fingers in the 1053 

somatosensory cortex (area 2) of the conscious monkey. Brain Res 197:516-520.  1054 



 43

Kaas JH. 1983. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol 1055 

Rev 63:206-231.  1056 

Kirsch E, Rivlis G, and Schieber MH. 2014. Primary Motor Cortex Neurons during Individuated 1057 

Finger and Wrist Movements: Correlation of Spike Firing Rates with the Motion of Individual 1058 

Digits versus Their Principal Components. Front Neurol 5:70. doi:10.3389/fneur.2014.00070. 1059 

Klaes C, Kellis S, Aflalo T, Lee B, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, Liu 1060 

C, and Andersen RA. 2015. Hand Shape Representations in the Human Posterior Parietal Cortex. J 1061 

Neurosci 35:15466-15476. 1062 

Klein Breteler MD, Simura KJ, and Flanders M. 2007. Timing of muscle activation in a hand 1063 

movement sequence. Cereb Cortex 17:803-815. doi:10.1093/cercor/bhk033. 1064 

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, and Bandettini PA. 1065 

2008a. Matching categorical object representations in inferior temporal cortex of man and monkey. 1066 

Neuron 60:1126-1141. doi:10.1016/j.neuron.2008.10.043. 1067 

Kriegeskorte N, Mur M, and Bandettini P. 2008b. Representational similarity analysis - connecting 1068 

the branches of systems neuroscience. Front Syst Neurosci 2:4. doi:10.3389/neuro.06.004.2008. 1069 

Kriegeskorte N, and Kievit RA. 2013. Representational geometry: integrating cognition, 1070 

computation, and the brain. Trends Cogn Sci 17:401-412. doi:10.1016/j.tics.2013.06.007. 1071 

Kruskal JB, Wish M, and ebrary Inc. 1978. Multidimensional scaling. In Sage university papers 1072 

series Quantitative applications in the social sciences no 07-011 (Newbury Park Sage Publications,). 1073 

Kwan HC, MacKay WA, Murphy JT, and Wong YC. 1985. Properties of visual cue responses in 1074 

primate precentral cortex. Brain Res 343:24-35. 1075 

Latash ML, Scholz JP, and Schoner G. 2007. Toward a new theory of motor synergies. Motor 1076 

Control 11:276-308.  1077 

Latash ML. 2010. Motor synergies and the equilibrium-point hypothesis. Motor Control 14:294-1078 

322.  1079 

Mathiesen JR, Bøg MF, Erkocevic E, Niemeier MJ, Smidstrup A, and Kamavuako EN. Prediction 1080 



 44

of grasping force based on features of surface and intramuscular EMG.  1081 

Mitchell TM, Hutchinson R, Niculescu RS, Pereira F, Wang XR, Just M, and Newman S. 2004. 1082 

Learning to decode cognitive states from brain images. Machine Learning 57:145-175. doi:Doi 1083 

10.1023/B:Mach.0000035475.85309.1b. 1084 

Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, Mason RA, and Just MA. 2008. 1085 

Predicting human brain activity associated with the meanings of nouns. Science 320:1191-1195. 1086 

doi:10.1126/science.1152876. 1087 

Mollazadeh M, Aggarwal V, Thakor NV, and Schieber MH. 2014. Principal components of hand 1088 

kinematics and neurophysiological signals in motor cortex during reach to grasp movements. J 1089 

Neurophysiol 112:1857-1870. doi:10.1152/jn.00481.2013. 1090 

Muceli S, Jiang N, and Farina D. 2014. Extracting Signals Robust to Electrode Number and Shift 1091 

for Online Simultaneous and Proportional Myoelectric Control by Factorization Algorithms. IEEE 1092 

Transactions on Neural Systems and Rehabilitation Engineering 22:623-633. 1093 

doi:10.1109/Tnsre.2013.2282898. 1094 

Napier JR. 1956. The prehensile movements of the human hand. J Bone Joint Surg Br 38-B:902-1095 

913.  1096 

Naselaris T, Kay KN, Nishimoto S, and Gallant JL. 2011. Encoding and decoding in fMRI. 1097 

Neuroimage 56:400-410. doi:10.1016/j.neuroimage.2010.07.073. 1098 

Oldfield RC. 1971. The assessment and analysis of handedness: the Edinburgh inventory. 1099 

Neuropsychologia 9:97-113.  1100 

Overduin SA, d'Avella A, Carmena JM, and Bizzi E. 2012. Microstimulation activates a handful of 1101 

muscle synergies. Neuron 76:1071-1077. doi:10.1016/j.neuron.2012.10.018. 1102 

Penfield W, and Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex 1103 

of man as studied by electrical stimulation. Brain 60:389-443. doi:10.1093/brain/60.4.389. 1104 

Penfield W, and Rasmussen T 1950. The cerebral cortex of man; a clinical study of localization of 1105 

function. New York, Macmillan. 1106 



 45

Penfield W, and Welch K. 1951. The supplementary motor area of the cerebral cortex; a clinical 1107 

and experimental study. AMA Arch Neurol Psychiatry 66:289-317.  1108 

Phinyomark A, Limsakul C, and Phukpattaranont P. 2009. A Novel Feature Extraction for Robust 1109 

EMG Pattern Recognition. Journal of Computing 1:71-80.  1110 

Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, and Ball T. 2012. Decoding natural grasp 1111 

types from human ECoG. Neuroimage 59:248-260. doi:10.1016/j.neuroimage.2011.06.084. 1112 

Riehle A, and Requin J. 1989. Monkey primary motor and premotor cortex: single-cell activity 1113 

related to prior information about direction and extent of an intended movement. J Neurophysiol 1114 

61:534-549.  1115 

Saleh M, Takahashi K, Amit Y, and Hatsopoulos NG. 2010. Encoding of coordinated grasp 1116 

trajectories in primary motor cortex. J Neurosci 30:17079-17090. doi:10.1523/JNEUROSCI.2558-1117 

10.2010. 1118 

Saleh M, Takahashi K, and Hatsopoulos NG. 2012. Encoding of coordinated reach and grasp 1119 

trajectories in primary motor cortex. J Neurosci 32:1220-1232. doi:10.1523/JNEUROSCI.2438-1120 

11.2012. 1121 

Santello M, Flanders M, and Soechting JF. 1998. Postural hand synergies for tool use. J Neurosci 1122 

18:10105-10115.  1123 

Santello M, Flanders M, and Soechting JF. 2002. Patterns of hand motion during grasping and the 1124 

influence of sensory guidance. J Neurosci 22:1426-1435.  1125 

Santello M, Baud-Bovy G, and Jorntell H. 2013. Neural bases of hand synergies. Front Comput 1126 

Neurosci 7:23. doi:10.3389/fncom.2013.00023. 1127 

Santello M, and Lang CE. 2014. Are movement disorders and sensorimotor injuries pathologic 1128 

synergies? When normal multi-joint movement synergies become pathologic. Front Hum Neurosci 1129 

8:1050. doi:10.3389/fnhum.2014.01050. 1130 

Schaffelhofer S, Agudelo-Toro A, and Scherberger H. 2015. Decoding a wide range of hand 1131 

configurations from macaque motor, premotor, and parietal cortices. J Neurosci 35:1068-1081. 1132 



 46

Schieber MH. 1991. Individuated finger movements of rhesus monkeys: a means of quantifying the 1133 

independence of the digits. J Neurophysiol 65:1381-1391.  1134 

Schieber MH. 2001. Constraints on somatotopic organization in the primary motor cortex. J 1135 

Neurophysiol 86:2125-2143.  1136 

Schreiber K, and Krekelberg B. 2013. The statistical analysis of multi-voxel patterns in functional 1137 

imaging. PLoS One 8:e69328. doi:10.1371/journal.pone.0069328. 1138 

Schwartz AB, Cui XT, Weber DJ, and Moran DW. 2006. Brain-controlled interfaces: movement 1139 

restoration with neural prosthetics. Neuron 52:205-220. doi:10.1016/j.neuron.2006.09.019. 1140 

Schwartz AB. 2007. Useful signals from motor cortex. J Physiol 579:581-601. 1141 

doi:10.1113/jphysiol.2006.126698. 1142 

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, and Tootell RB. 1143 

1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance 1144 

imaging. Science 268:889-893.  1145 

Siero JC, Hermes D, Hoogduin H, Luijten PR, Ramsey NF, and Petridou N. 2014. BOLD matches 1146 

neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor 1147 

cortex. Neuroimage 101:177-184. doi:10.1016/j.neuroimage.2014.07.002. 1148 

Soechting JF, and Flanders M. 1997. Flexibility and repeatability of finger movements during 1149 

typing: analysis of multiple degrees of freedom. J Comput Neurosci 4:29-46.  1150 

Stillfried G, Hillenbrand U, Settles M, and van der Smagt P. 2014. MRI-Based Skeletal Hand 1151 

Movement Model. Human Hand as an Inspiration for Robot Hand Development 95:49-75. doi:Doi 1152 

10.1007/978-3-319-03017-3_3. 1153 

Tessitore G, Sinigaglia C, and Prevete R. 2013. Hierarchical and multiple hand action 1154 

representation using temporal postural synergies. Exp Brain Res 225:11-36. doi:10.1007/s00221-1155 

012-3344-9. 1156 

Thakur PH, Bastian AJ, and Hsiao SS. 2008. Multidigit movement synergies of the human hand in 1157 

an unconstrained haptic exploration task. J Neurosci 28:1271-1281. 1158 



 47

doi:10.1523/JNEUROSCI.4512-07.2008. 1159 

Tkach D, Huang H, and Kuiken TA. 2010. Study of stability of time-domain features for 1160 

electromyographic pattern recognition. Journal of Neuroengineering and Rehabilitation 7. doi:Artn 1161 

21. Doi 10.1186/1743-0003-7-21. 1162 

Todorov E, and Jordan MI. 2002. Optimal feedback control as a theory of motor coordination. Nat 1163 

Neurosci 5:1226-1235. doi:10.1038/nn963. 1164 

Todorov E. 2004. Optimality principles in sensorimotor control. Nat Neurosci 7:907-915. 1165 

doi:10.1038/nn1309. 1166 

Turvey MT. 2007. Action and perception at the level of synergies. Hum Mov Sci 26:657-697. 1167 

doi:10.1016/j.humov.2007.04.002. 1168 

Velliste M, Perel S, Spalding MC, Whitford AS, and Schwartz AB. 2008. Cortical control of a 1169 

prosthetic arm for self-feeding. Nature 453:1098-1101. doi:10.1038/nature06996. 1170 

Vereijken B, Whiting HT, and Beek WJ. 1992. A dynamical systems approach to skill acquisition. 1171 

Q J Exp Psychol A 45:323-344.  1172 

Weiss EJ, and Flanders M. 2004. Muscular and postural synergies of the human hand. J 1173 

Neurophysiol 92:523-535. doi:10.1152/jn.01265.2003. 1174 

Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, and Travis AM. 1952. Patterns 1175 

of localization in precentral and "supplementary" motor areas and their relation to the concept of a 1176 

premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238-264.  1177 

Yarrow S, Razak KA, Seitz AR, and Series P. 2014. Detecting and quantifying topography in neural 1178 

maps. PLoS One 9:e87178. 1179 

Zecca M, Micera S, Carrozza MC, and Dario P. 2002. Control of multifunctional prosthetic hands 1180 

by processing the electromyographic signal. Crit Rev Biomed Eng 30:459-485. 1181 

Zhang J, Riehle A, Requin J, and Kornblum S. 1997. Dynamics of single neuron activity in monkey 1182 

primary motor cortex related to sensorimotor transformation. J Neurosci 17:2227-2246.  1183 

  1184 



 48

Figure Legends 1185 

Figure 1: This probability map shows the voxels that were consistently engaged by the encoding 1186 

procedure across subjects, i.e., those voxels whose activity was predictable on the basis of the 1187 

kinematic synergies. A hand-posture related network comprising the left primary and 1188 

supplementary motor areas, the superior parietal lobe and the anterior part of intraparietal sulcus 1189 

(bilaterally) was recruited with high overlap across subjects. Despite additional regions (i.e., 1190 

Brodmann Area 6) resulted from the encoding analyses, they are not evident in the map due to their 1191 

deep location. 1192 

Figure 1–source data 1: this compressed NIfTI file in MNI152 space represents the voxels that 1193 

were recruited by the encoding procedure in more than three subjects. The value of each individual 1194 

voxel corresponds to the number of subjects in which that voxel was recruited. 1195 

Figure 1–source data 2: this compressed NIfTI file in MNI152 space represents the Region of 1196 

Interest chosen for encoding brain activity from visual region, defined on the basis of a t-test of the 1197 

overall brain activity (i.e., task versus rest condition) five seconds after the visual stimulus onset, 1198 

corrected for multiple comparisons with False Discovery Rate (q<0.01). 1199 

 1200 

Figure 2: Cortical flattened map depicting the topographical organization of the first three 1201 

synergies across primary motor, somatosensory, and parietal regions. The portion of cerebral cortex 1202 

represented in the map corresponds to the area enclosed in the rectangle in the brain mesh (top, 1203 

right). 1204 

M1: Primary Motor Cortex. CS: Central Sulcus. S1: Primary Somatosensory cortex (postcentral 1205 

gyrus). aIPS: anterior intraparietal sulcus. SPL: Superior Parietal lobule 1206 

 1207 

Figure 2–figure supplement 1: Topography assessment: map and feature spaces: The two 1208 

maps represent the map space (upper image), which depicts the pairwise physical distance (i.e., 1209 

standardized Euclidean distance) between the voxels of the results map, and the feature space 1210 
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(lower image), which depicts the distance (i.e., standardized Euclidean distance) between the 1211 

goodness-of-fit (R2) of the first three kinematic PCs in each voxel. For further details see Methods 1212 

and Yarrow et al. (2014). There was a significant similarity between the two spaces, assessed with 1213 

the permutation test described in the Methods (C=0.192; p-value=0.0383). Voxels were reordered 1214 

accordingly to their physical distance to improve readability of the two maps. 1215 

 1216 

Figure 3. This picture displays the Multidimensional Scaling (MDS) results for kinematic synergies 1217 

(left) and fMRI brain activity (right). With the exception of few postures (e.g. dinner plate, frisbee 1218 

and espresso cup) that were misplaced in the fMRI data with respect to the kinematic synergies 1219 

representation, the other object-related postures almost preserved their relative distances. 1220 

 1221 

Figure 3–figure supplement 1: Average correlations between behavioral models and fMRI 1222 

data: The histogram reports the correlation values (transformed to z-scores and averaged across 1223 

subjects) between each behavioral model and the fMRI data. Error bars represent the SEM. The 1224 

noise ceiling, estimated using the procedure described by Ejaz et al. (2015) is also reported. The 1225 

two dashed lines describe the upper and lower bounds, respectively. The  single-subject correlation 1226 

values are reported in Supplementary file 1D. 1227 

 1228 

Figure 4: This picture represents the postures obtained from the fMRI data and those originally 1229 

recorded through optical tracking. The figure shows three pairs of hand plots corresponding to three 1230 

postures from a representative subject, and the goodness-of-fit between the original and decoded 1231 

sets of joint angles. In these plots, the two wrist angles are not rendered. 1232 

 1233 

Figure 4–source data 1: this compressed NIfTI file in MNI152 space represents the Region of 1234 

Interest chosen for RSA and posture decoding, defined on the basis of a t-test of the overall brain 1235 

activity (i.e., task versus rest condition), corrected for multiple comparisons with False Discovery 1236 
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Rate (q<0.05). 1237 

 1238 

Figure 4–figure supplement 1: Marker placement for kinematic hand posture data 1239 

acquisition: The picture depicts the hand of a subject with the complete set of optical markers used 1240 

to define hand posture through optical tracking. This set of markers corresponds to the joint and 1241 

bones positions originally recorded; the rendering in Figure 4 was performed with reference to this 1242 

acquisition protocol. 1243 

 1244 

Figure 4–figure supplement 2: ROI used for performing RSA and posture decoding: This map 1245 

represents the Region of Interest which contained all the voxels used for performing 1246 

Representational Similarity Analysis and hand posture decoding. The region was obtained with a t-1247 

test of the overall brain activity (i.e., task versus rest condition), corrected for multiple comparisons 1248 

with False Discovery Rate (q<0.05). The population of voxels represented here was subsequently 1249 

reduced with a PCA accounting for most of the variance as described in the Methods. 1250 

Figure 5. Discrimination accuracies for single postures as represented by kinematic synergies. Two 1251 

clusters of similar postures are easily identifiable (i.e., precision grip and power grasps). However, 1252 

other postures were recognized without showing an evident clustering, suggesting that the encoding 1253 

procedure was not biased by a coarse discrimination of motor acts. 1254 

 1255 

Figure 5–figure supplement 1: Workflow of the encoding analysis: This diagram depicts the 1256 

workflow of the multiple linear regression procedure applied on fMRI data using the matrices 1257 

obtained from the data acquired in the kinematic and EMG experiments as encoding models. The 1258 

pairwise discrimination accuracy was estimated in the decoding phase, represented as the final step 1259 

of this diagram. 1260 

 1261 
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Figure 6. The three graphs display the rank accuracy values as a function of the dimensionality 1262 

(i.e., the number of retained PCs) of each behavioral model. The two models derived from 1263 

kinematic and EMG data (upper and middle graphs, respectively) have a number of synergies 1264 

ranging from 1 to 10 while the individual digit model (lower) had 1 to 5 retained PCs. Darker bar 1265 

colors indicate the dimensionality chosen for encoding brain functional data. 1266 

 1267 

  1268 
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Video 1: This video shows the meaning of the kinematic synergies measured in this study, by 1269 

presenting three movements from the minimum to the maximum values of kinematic synergies 1, 2 1270 

and 3, respectively, expressed as sets of twenty-four joint angles averaged across subjects. It can be 1271 

observed that the first synergy modulates abduction-adduction and flexion-extension of both the 1272 

proximal and distal finger joints, while the second synergy reflects thumb opposition and flexion-1273 

extension of the distal joints only. Maximizing the first synergy leads therefore to a posture 1274 

resembling a power grasp, while the second one is linked to pinch movements directed towards 1275 

smaller objects, and the third one represents movements of flexion and thumb opposition (like in 1276 

grasping a dish or a platter) (Santello et al., 1998; Gentner and Classen, 2006; Ingram et al., 2008; 1277 

Thakur et al., 2008). 1278 

  1279 
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Supplementary file 1A: Single subject rank accuracy values 1280 
Values of rank accuracy, measured with the leave-one-stimulus-out procedure, for the nine subjects, 1281 
with the p-value obtained from the permutation test (10000 iterations). The comparison between the 1282 
performance values indicate that the kinematic synergy model was significantly better than both the 1283 
individual digit and muscle synergy models (Wilcoxon signed-rank test, p=0.0078), and the 1284 
individual digit model was significantly more informative than the muscle synergy model 1285 
(p=0.0156) 1286 

 1287 

Supplementary file 1B: Single subject encoding accuracy values 1288 
The accuracy of predicting brain activity from the behavioral models (kinematic synergy, individual 1289 
digit and muscle synergy models), obtained with the cross-validation procedure, is reported here for 1290 
each subject, along with the chance levels derived from the permutation tests, the threshold at 1291 
p=0.05 and the actual p-value obtained from the tests against the null distributions of accuracies. 1292 
The accuracy values reported in red are not significant. The comparisons between individual 1293 
accuracy values, performed using Wilcoxon signed-rank tests, show that the kinematic synergy 1294 
model outperformed both the individual digit (p=0.0234) and the muscle synergy (p=0.0391) 1295 
models, whereas no significant difference was found between the individual digit and muscle 1296 
synergy models (p=0.9453). 1297 

 1298 

Supplementary file 1C: Size and coordinates of the clusters of greatest overlap between 1299 
subjects 1300 
This table reports the regions that were consistently recruited across subjects (p>0.33, 4 out of 9 1301 
subjects). The region names are reported alongside with their size and with the coordinates of the 1302 
peak voxel in RAI orientation according to the MNI 152 atlas. 1303 

 1304 

Supplementary file 1D: RSA results: single-subject and group correlations between RSs 1305 
The table contains the results from Representational Similarity Analysis (RSA). The single-subject 1306 
correlation values are reported, along with the group-level correlation (i.e. obtained from the 1307 
averaged RSs across subjects) and with the p-values resulting from the Mantel test. Kinematic = 1308 
kinematic synergy model; EMG = muscle synergy model; ID= Individual Digit model. The accuracy 1309 
values reported in red are not significant according to the Mantel test (10,000 iterations). 1310 

 1311 

Supplementary file 1E: RSA results: single-subject and group correlations between 1312 
behavioral and fMRI RSs 1313 
The table contains the results from Representational Similarity Analysis (RSA) between each 1314 
behavioral model and fMRI data. The single-subject correlation values are reported, along with the 1315 
group-level correlation (i.e. obtained from the averaged Representational Spaces – RSs – across 1316 
subjects) and with the p-values resulting from the Mantel test. Kinematic = kinematic synergy 1317 
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model; EMG = muscle synergy model; ID= Individual Digit model. The accuracy values reported in 1318 
red are not significant according to the Mantel test (10,000 iterations). 1319 

 1320 

Supplementary file 1F: Goodness of fit between original and decoded hand postures 1321 
Average goodness-of-fit (R2) values and Standard Deviations (STD) between original and 1322 
reconstructed sets of joint angles related to specific hand postures across all subjects. The decoding 1323 
procedure allowed us to obtain the set of synergies related to each grasping motor acts directly from 1324 
fMRI activity, thus to reconstruct the different hand postures across participants. 1325 

 1326 

Supplementary file 1G: Rank accuracy values between original and decoded hand postures 1327 
The table reports the rank accuracy values for the discrimination between the original and decoded 1328 
sets of joint angles related to specific hand postures across all subjects. The decoding procedure 1329 
allowed us to obtain the set of synergies related to each grasping motor acts directly from fMRI 1330 
activity, thus to reconstruct the different hand postures across participants. 1331 

 1332 

Supplementary file 1H: Encoding accuracy values for the picture-related brain activity 1333 
To assess to what extent the visual presentation of objects might have influenced the encoding of 1334 
BOLD activity in motor regions, the encoding procedure was performed within the same ROI 1335 
chosen for RSA and posture reconstruction and choosing BOLD activity at five seconds after the 1336 
visual object presentation as an estimate of brain responses to the visual presentation of target 1337 
objects. Only the kinematic synergy model was used. The chance levels derived from the 1338 
permutation tests (1000 iterations) are reported, as well as the threshold at p=0.05 and the actual p-1339 
value obtained from the tests against the null distributions of accuracies. The accuracy values 1340 
reported in red are not significant. The results show that the procedure is unsuccessful in all subjects 1341 
and do not account for a confounding role of image-related activity on the posture encoding results. 1342 

 1343 

Supplementary file 1I: Encoding accuracy values for kinematic synergies in visual areas 1344 
To assess the impact of visual imagery on our results, the encoding procedure was performed within 1345 
a Region of Interest selected based on the image-related activity (at 5 seconds after presentation) vs. 1346 
rest (q<0.01, FDR corrected). The encoding of postures (using the kinematic synergy model only) 1347 
was then tested in the voxels forming this ROI. The chance levels derived from the permutation 1348 
tests (1000 iterations) are reported, as well as the threshold at p=0.05 and the actual p-value 1349 
obtained from the tests against the null distributions of accuracies. The accuracy values reported in 1350 
red are not significant. The results show that the procedure is unsuccessful in seven subjects and 1351 
therefore it suggests a very limited impact of visual imagery on the posture encoding results. 1352 

 1353 

Supplementary file 1J: List of objects 1354 
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Table displaying the twenty common-use objects (chosen from the 57 in Santello et al., 1998) that 1355 
were used in this study. 1356 

 1357 

Supplementary file 1K: List of marked joints and bones 1358 
Complete list of hand joints and bones marked during the optical tracking experiment. Two 1359 
additional markers were placed on the wrist, for a total of 26 optical markers. 1360 

 1361 

Supplementary file 1L: EMG features 1362 
The features that were extracted from the EMG signals are listed above. Muscle synergies were 1363 
quantified through principal components analysis performed across features and EMG electrodes 1364 
yielding a five-dimensional set of synergies. 1365 

 1366 

Supplementary file 1M: Rank accuracy values for 1 to 10 PCs 1367 
The table displays the rank accuracy values for the two models derived from kinematic and EMG 1368 
data, with a number of retained PCs ranging from 1 to 10 (kinematic and EMG synergies) or 1 to 5 1369 
(individual digits). The reported values are the accuracy scores averaged across subjects and their 1370 
SD. Notably, the individual digit model could explain only a moderate fraction of the total variance 1371 
of the kinematic data (mean: 26.59%, range 14.46% to 34.97%). PCA dimensionality reduction was 1372 
therefore successful as the first five synergies (later used for encoding fMRI activity) could explain 1373 
a mean variance across subjects of 91.78% in the kinematic data and 72.64% in the EMG data. 1374 

 1375 

Supplementary file 1N: Group synergies defined by constrained k-means 1376 
The three core kinematic synergies from each participant were grouped across participants with a 1377 
semi-supervised clustering algorithm (Bilenko et al., 2004). The procedure showed that the first 1378 
three synergies were highly consistent and had the same rank across almost all subjects (i.e., PC 1 1379 
was in the first position in most of the subjects). Overall, 77.78% of the single subject synergies 1380 
were consistently labeled across subjects. The table represents the three “group synergies” and lists 1381 
the single-subject synergies that compose each of them. 1382 

 1383 

  1384 
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Appendix: Impact of the number of channels on gesture discrimination from EMG data 1385 
It could be hypothesized that the worse performance of the muscle synergy model as compared to 1386 
the alternative kinematic synergy or individual digit models could be related to its lower 1387 
dimensionality (five muscles against 26 hand DoFs). Despite previous reports indicate that a 1388 
reliable gesture discrimination can be achieved from seven (Weiss & Flanders, 2004; Shyu et al., 1389 
2002) or fewer muscles (Ganesh et al., 2007; Ahsan et al., 2011), it is feasible to record a larger 1390 
number of muscles using advanced EMG devices. 1391 
Hence, we verified the impact of the number of EMG channels on the muscle synergy model in an 1392 
independent sample of four healthy young subjects (4M, age 34±6) using the same experimental 1393 
paradigm described in the Methods. 1394 
EMG data were acquired using a 16-channel Bagnoli 16 EMG recording device (Delsys Inc, Natick, 1395 
MA, USA). Sixteen electrodes were placed on the hand and forearm using the same placement 1396 
adopted in our protocol (see Methods and Figure 1 below) as well as in two distinct protocols with 1397 
different spatial resolutions (Bitzer and van der Smagt, 2006; Ejaz et al., 2015).Six runs were 1398 
acquired, each comprising twenty trials of delayed grasp-to-use motor acts towards visually-1399 
presented objects (see Methods).  1400 

  1401 
Appendix-figure 1: Placement of the sixteen electrodes on the right arm. 
Four configurations were tested, either with five (1-5, see Methods), ten (1-4, 
6-8, 14-16, from Bitzer & Van der Smagt, 2006), or fourteen channels (from 
Ejaz et al., 2015). 

To estimate the impact of the number of EMG recording sites and the preprocessing methods, data 1402 
were analyzed using two distinct procedures: a mean-based procedure (similarly to Ejaz et al., 1403 
2015), and a feature-based procedure. 1404 
In the mean-based procedure, data from the sixteen EMG channels (acquired at 1,000 Hz) were de-1405 
trended, rectified, and low-pass filtered (fourth-order Butterworth filter, 40 Hz). The time series 1406 
from each gesture and channel were later averaged over a 2.5 seconds time window (2,500 time 1407 
points). From this preprocessing we obtained twenty 16x1 vectors for each run. 1408 
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In the feature-based procedure, EMG signals were preprocessed and eighty-two features from each 1409 
channel were extracted as described in the Methods section. 1410 
Subsequently, two procedures were developed to uncover the impact of different processing 1411 
methods and EMG channel configurations. First, we generated all the possible configurations that 1412 
could be obtained by choosing the channels randomly. Second, we selected three fixed 1413 
configurations as subsamples of electrodes (displayed in Figure 1), according to the Methods in this 1414 
manuscript (electrodes 1-5) and previous reports that recorded ten (Bitzer and Van der Smagt, 2006; 1415 
electrodes 1-4, 6-8, 14-16), or fourteen channels (Ejaz et al., 2015; electrodes 1-14). 1416 
To allow comparisons across different channel configurations, the EMG matrix (i.e., the averaged 1417 
EMG activity in the mean-based procedure and the extracted features in the feature-based 1418 
procedure) was reduced to five dimensions using PCA. Then, both these procedures were assessed 1419 
with a leave-one-out cross-validation algorithm based on the same rank accuracy measure described 1420 
in the manuscript. 1421 
This additional experiment provides a measure of the quality of each channel configuration: the 1422 
higher the accuracy, the more informative the configuration. The results are shown in Figure 2 as 1423 
the average across combinations and subjects ± SEM. We tested all configurations that could be 1424 
obtained by randomly selecting 5 to 16 electrodes (red and blue lines), as well as three fixed 1425 
configurations according to the setups described above (orange and light blue dots). The red line 1426 
represents the results using the mean-based procedure, while the blue line depicts the feature-based 1427 
procedure. The orange and light blue dots represent the results of the three fixed configurations of 1428 
channels in the two procedures.  1429 

 1430 
Appendix-figure 2 Results of the rank accuracy procedure as a function of the 
number of EMG channels. The red line shows the accuracy values for 
random configurations of 5 to 16 electrodes, using the mean-based 
preprocessing adopted by Ejaz et al., (2015). The orange dots represent the 
accuracy values for three fixed configurations. The blue line shows the 
accuracy values for 5 to 16 channels using the feature-based preprocessing 
(see Methods); the light blue dots show the accuracy for three fixed 
configurations.Values are reported as mean across subjects ± SEM (error 
bars and bands). 

The results show that, for the feature-based procedure, the accuracy increases as a function of the 1431 
number of electrodes, reaching a peak with 16 channels (mean ± SEM: 81.6 ± 2%); the mean 1432 
accuracy across all the possible configurations with five channels is 73.5 ± 2.5%. The accuracy 1433 
obtained with the setup adopted in our current paper was 74.2 ± 6.4%. For the mean-based 1434 
procedure described in Ejaz et al. (2015), eleven channels yielded the highest accuracies among all 1435 
the possible random configurations (value: 72.2 ± 3.2%); accuracy decreased when lower or higher 1436 
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numbers of electrodes were recorded. In these data, the accuracy for the configuration of five 1437 
channels adopted in our paper was 69.5 ± 1.6%. 1438 
Overall, these results indicate that the extraction of features from the EMG signal proves to be a 1439 
reliable procedure to a discriminate complex hand gestures. In addition, despite the fact that the 1440 
feature-based approach seems to benefit from EMG recordings with more channels, the gain when 1441 
raising the number of channel to 16 is low (5.5%). This result, along with the above-chance 1442 
discrimination achieved when analyzing five channels clearly suggests that the number of muscles 1443 
recorded in our paper represents the muscle space with a reasonable accuracy. Moreover, feature-1444 
based approaches are likely to be better descriptors of more complex gestures (as the ones 1445 
considered in our study) with respect to the mean signal over time, as hypothesized and discussed in 1446 
previous reports (Hudgins et al., 1993; Zecca et al., 2002). 1447 
In conclusion, the muscle synergy model, even if based on many EMG channels, still underperforms 1448 
relatively to the models obtained from kinematic data in encoding fMRI responses. For this reason, 1449 
the worst performance of the muscle synergy model is likely to represent an intrinsic limitation of 1450 
surface EMG signals rather than a flaw of the recordings and analyses performed in our paper.  1451 
 1452 
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