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Abstract— State of the art of hand prosthetics is divided be-
tween simple and reliable gripper-like systems and sophisticate
hi-tech poly-articular hands which tend to be complex both in
their design and for the patient to operate. In this paper, we
introduce the idea of decoding different movement intentions of
the patient using the dynamic frequency content of the control
signals in a natural way. We move a step further showing
how this idea can be embedded in the mechanics of an under-
actuated soft hand by using only passive damping components.
In particular we devise a method to design the hand hardware
to obtain a given desired motion. This method, that we call of
the dynamic synergies, builds on the theory of linear descriptor
systems, and is based on the division of the hand movement in
a slow and a fast components. We use this method to evolve the
design of the Pisa/IIT SoftHand in a prototype prosthesis which,
while still having 19 degrees of freedom and just one motor,
can move along two different synergistic directions of motion
(and combinations of the two), to perform either a pinch or a
power grasp. Preliminary experimental results are presented,
demonstrating the effectiveness of the proposed design.

I. INTRODUCTION

Today, most prostheses in practical use are either merely
aesthetic or extremely simple, while robotics-enabled pros-
theses are still too costly, fragile, and unintuitive to be widely
used.

Although global-level statistics are difficult to extrapolate
from the heterogeneous, sometimes difficult to access, data of
medical records, the status quo of upper limb prosthetic aid
is constituted by cosmetic prostheses (CPs): merely aesthetic
devices, designed to maximize social and self acceptance
by the patient in terms of body image, they offer a very
limited, almost null, level of function. At the second place
come body-powered prostheses (BPPs) that use an elastic
grasping mechanism activated by the patient with a tendon,
usually attached to a harness worn on the shoulders or some
other body part. BPPs are widely used around the world
for their robustness, ease of use and low cost. Both these
category of prostheses are totally passive, whereas motion is
either totally absent, as in CPs, or generated by the user, as
in BPPs.
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Fig. 1. The prototype of dynamic synergies prosthesis being tested. The
two EMG electrodes are visible on the arm of a subject.

A third type of prostheses that reached a good diffusion is
that of myo-electric prostheses (MEPs). They have usually
one motorized DOF, controlled by the patient thanks to
signals fetched from the activation of two muscles on the
surface of the residual limb. MEPs are active, meaning that
they do no need the a physical effort from the patient in order
to generate motion (as opposed to BPPs), with undeniable
advantages in terms of fatigue. Unfortunately, a cognitive
component of fatigue is now present, due to the concentration
needed to operate the device.

Finally, the state of art of modern hand prosthetics is
populated by devices which, in order to achieve a higher
degree of dexterity, are characterized by a large number of
articulated joints. Usually referred to as poly-articular pros-
theses (PAPs), they usually offer a broader set of movement
capabilities, with the possibility to control up to 4 or 5 motors
independently and achieve several different postures.

Despite their high active dexterity - or, as we claim,
perhaps because of this - most state-of-the-art devices are
often deficient in terms of functionality, durability, adequate
cosmetic appearance, and affordability [1]. In particular, to
control such a high number of motors, two surface EMG
electrodes are not sufficient any more. In commercial devices
this gap is usually bridged by the adoption of switching
strategies (we describe some examples in section II) which
often tend to be rather complex to use for the patient.
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Fig. 2. Wavelet analysis of EMG control signals typically observed when operating a commercial PAP. Four arrows point to the switching commands,
while the rest of the signals correspond to proportional operation of the hand (open and close). From the wavelet analysis it is possible to see that the
the switching commands occupy the high frequencies (top of figures - activity is present in both signals for the co-contraction and in the closing signal
alone for the double and triple contractions) and the very low spectrum of the frequencies (the prolonged opening is visible on the bottom part of the
open channel), while the proportional control lies mostly in the middle - low slice of the spectrum. Note that the two signals are actual recording of EMG
signals, acquired with two Ottobock electrodes at the frequency of 10Hz, on a sound person simulating the control modes described in section II.

Because of the former limitations, a consistent amount of
research revolves around increasing the performance of EMG
prostheses control. Two very successful recent approaches
are those based on Targeted Muscular Re-Innervation
[15] and Intra-Muscular Wireless EMG transceivers [19].
Both techniques substantially increase the reading precision
achieved in recording the electrical muscle activation signal
and have been demonstrated able to successfully control a
multi-DOF prosthesis. Unfortunately, both these approaches
are able to achieve such results at the cost of: (i) requiring
larger number of electrodes, and moreover (ii) being invasive
- both approaches, in fact, require some amount of surgery
to be applied.

Other branches of research, on the other hand, try to
overcome the limitation of standard surface EMGs by just
increasing the number of electrodes and applying state of the
art pattern recognition techniques [14], [17], [20], [11]. In
particular the most ambitious goal for modern surface EMG
interpretation [8] and prostheses control [4] is the extraction
of modulating values, that is to be able to reconstruct signals
that are somehow continuous in nature and carry magnitude
information that can be used to modulate different control
channels, while past techniques were just based on assessing
the membership of the input to a particular class or cluster,
out of a finite set.

In this paper we propose an approach that tries to exploit
the frequency content of EMG in an innovative and natural
way. A prototype of a dynamic synergies hand was designed
and it was tested by using commercial EMGs electrodes.
Rather than using the sort of frequency modulation that

commercial EMG decoders adopt, we aim at shaping the
posture of a PAP by using the velocity reference itself,
associating different speeds with different movements. A
slow muscle contraction was associated with a slow synergy
while the fast synergy came from a fast muscle contraction.

The rest of the paper is organized as follows: section II
exposes the open problem of controlling a multi-DOF pros-
thetic device with EMG signals, while section III presents
and motivates our approach to its solution. Section IV shows
how such a solution can be embodied in the hardware of
a soft hand by introducing the concept of dynamic syner-
gies. Section V describes a prototype designed following
our methodology whose performance are demonstrated in
experiments presented in section VI. Finally, section VII
draws the conclusions of our work.

II. PROBLEM STATEMENT
As anticipated in the introduction, one problem that

severely hinders the diffusion of multi-DOF prostheses re-
sides in the barriers that the user needs to overcome to control
them. While traditional 1 DOF MEPs are controlled by two
sEMG electrodes, one for opening and one for closing, the
control of a large number of DOFs is not this straightforward.

To exploit all the possibilities offered by modern PAPs, up
to 4 or 5 DOFs must be controlled simultaneously. To sim-
plify this problem, usually PAPs embed a micro-controller
unit that takes care of controlling the prosthesis motions
by subdividing it in a series of pre-programmed gestures.
Within each gesture the hand move in a proportional way
using, once again, just two control signals: open and close.
Unfortunately this approach does not solve the problem



completely, but rather shifts it on the level of requiring some
kind of mechanism to switch between strategies. Commercial
PAPs usually rely on discrete triggering policies to let the
patient switch the hand between different motion patterns.
Some of the triggering policies adopted by products on the
market include (all the following modalities are extracted
from [12]) :
• EMG trigger sequences: specific muscle signals are used

to switch between different postures, examples include
– co-contraction (simultaneous activation of the two

opposite muscle channels),
– trains of impulses (e.g. doubles and triples of brief,

strong muscle activations) and
– held signals (keeping the open - or close - signal

active for at least a fixed amount of time when the
hand is already fully open - or closed).

• Gesture recognition: the hand uses a combination of
muscle EMG triggers (as the former) and inertial mea-
surements coming from an on-board IMU to recognize
user gestures and select the grasp posture consequently.

• Smart-phone control: the hand posture is selected on
a touch-screen with the other hand, and sent to the
prosthesis via wireless or blue-tooth communication.

• Short-range beacons (also called proximity sensing): the
prosthesis can be programmed to sense the proximity
of small radio devices (based on NFC, RF-ID or other
similar technologies), and to react by switching to a pre-
defined posture. These beacons can be installed either:

– in objects that are grasped frequently (object-
installed beacons) or

– on the user body (body-worn beacons), e.g. in
clothes and pockets.

All of these strategies have limitations: some require the
execution of unnecessary, potentially un-natural movements
(gesture recognition and body-worn beacons), others require
the operation of an additional device with the other hand
(smart-phone control), and most of them charge the patient
with non-negligible cognitive load, EMG trigger probably
being the most cognitively-intense. The only one which
minimizes the user cognitive load (object-installed beacons)
requires prior adaptation of the surrounding environment and,
as such, will never cover the totality of situations a user can
live in.

Summing up, the problem we wish to tackle is the control
of a PAP by using a reduced set of EMG measurements,
ideally just two.

III. IDEA

In order to make a step toward the resolution of the
described problem we propose here a paradigm shift, aiming
to reach a more natural encoding of the user intentions.

Looking at the problem with the eye of the signal theory,
commercial EMG-based approaches somehow decode the
desired control of the PAP by operating a sort of frequency
division of the EMG signals. In fact, if we look at the
illustrative control signals of Fig. 2, and in particular at

their frequency content, it is clearly possible to separate the
phases of proportional prosthesis operation (i.e. when the
prosthesis is controlled within a modality) from the phases
of switching operation (i.e. when the user switches between
postures) by just looking at the frequency content of the
signal, in particular the very low range of the bandwidth and
the higher band are dedicated to modality switching, while
the middle part of the bandwidth is dedicated to proportional
control. This approach, which can be implemented very
efficiently, requires the user to encode the desired motion
of the prosthesis in a rather unnatural sequence of frequency
separated packets of information (performing almost a sort
of Frequency Shift Keying modulation), burdening the user
mind by forcing it to behave almost as a modem.

Hence we believe that forms of encoding that are more
natural for the human beings has to be investigated. A simple
model describing the transformation of action potential into
muscle activation (proportional to the EMG signal associated
with the muscle) is a low-pass filter. For limb muscles the
effective cutoff frequency is ∼ 2 Hz [3]. Hence a bigger effort
is required in order to generate an high frequency activation
w.r.t. a low-medium frequency one. Thus a natural way of
encoding the desired behaviour of a prosthesis should favor
encoding in the low-middle spectrum of the signal band.

A possible inspiration on how to approach this road comes
from the observation (e.g. [16]) that precision tasks usually
require higher attention, and are performed more slowly, with
respect to strength tasks. In particular, Vainio et al. [22],
[21] demonstrated that precision grip tasks on small objects
require statistically longer times to be performed than power
grip tasks on bigger objects.

So we assume that it could be more intuitive for a user
to have slower controls associated with movements that are
usually slow and faster signals associated with movements
that are usually fast. We also believe that a smooth transition
between the behaviors would be perceived as more natural
rather than a discontinuous one.

We call this idea of smoothly encoding different postures
with different speeds of the motion commands natural en-
coding of user intentions.

This idea can be implemented both on PAPs with many
independent motors, by the active synchronized control of
the different motors, or it can be passively embodied in
the hardware of a prosthesis by using passive mechanical
components as springs and dampers. In the next section we
will demonstrate how this passive approach can be integrated
in a synergy-based soft prosthesis.

IV. DYNAMIC SYNERGIES

Many experimental human motor studies (from [18] to
[9]) suggest that a reduced basis of the hand joint space is
sufficient for most of the total movement during grasping
tasks. This basis is named postural synergies. We will refer
to it through the matrix S. Based on this [2] proposes to
generate reference motions, using a reduced set of the main
postural synergies, which the real hand follows, compliantly
attracted, while physically interacting with the environment.



An implementation of this concept, the adaptive synergies
[10], was used for the design of the Pisa/IIT SoftHand [5],
which with only one soft synergy is able to present excellent
grasp capabilities.

We introduce here the dynamic synergies, an evolution of
the adaptive synergies which permits to embed the passive
intention encoding concept into the system mechanics. Using
a set of dampers, connected to the hand joints through a
generic transmission system, we are able to generate different
closures, i.e. different sets of synergies S, as the input
speed change. With respect to the add of new degrees of
actuation, this solution permits to maintain low encumbrance
and weight and a simple structure.

Assuming a PAP hand is under-actuated by means of a
differential mechanism with transmission distribution matrix
R, it is possible to write

Rq = σ ⇒ τσ = RT u , (1)

where σ is the displacement of the motor, τσ is the vector of
torques acting on the joints and u the force from the motor.
Similarly we call T the transmission distribution that maps
joint angles q into dampers positions x.

T q = x⇒ τx = T T (Cẋd) = T TCT q̇ , (2)

Note that the matrix C can always be chosen full rank
and diagonal. Moreover without loss of generality, eventually
rearranging σ and x, we can take both R and T orthonormal.

Writing the equilibrium of the joint torques, we obtain the
dynamic system:

T TCT q̇+Eq = RT u+w , (3)

Since Rank{T TCT} = nd ≤ n, this system falls into the
class of the so-called descriptor linear system [7]. Being
the system regular (E is invertible), the problem results well
posed, i.e. there exist always an unique solution.

We consider here the hand behavior for two extremal
conditions: fast and slow closure. We call slow closure an
hand closure such that q̇ ' 0, i.e. where the damping force
effect is negligible, giving:

Eq = RT u+w , (4)

which is the adaptive synergies force balance. It is worth
to be noticed that the imposed condition corresponds to say
that the system follows a quasi-static trajectory, since it is in
the equilibrium condition. This also means that the synergy
that we derive here is the hand steady state. Now grouping
yields the equation:[

−E RT

R /0

][
q
u

]
=

[
w
σ

]
. (5)

Solving it we obtain:
q = Ssσ +Nsw
Ss = E−1RT (RE−1RT )−1 = R+

E−1

Ns = E−1−E−1RT (RE−1RT )−1RE−1 = P⊥R E−1 .

(6)

Hence by proper choice of E and R we can design any slow
closure (e.g. for E = kI, we have that Ss = R).

Now, following descriptor system theory, we can perform
a standard decomposition of the system (3), into a fast and a
slow subsystems, through the pre-multiplication of the matrix
[T T ,T T

⊥ ]
T , where T⊥ is a base completion of T , such as

T T T
⊥ = 0 and T⊥T T

⊥ = I. Hence it results:[
T
T⊥

]
T TCT q̇+

[
T
T⊥

]
E
[
T T ,T T

⊥
][ T

T⊥

]
q = RT u+w , (7)

Hence, calling y , T⊥q{
Cẋ+T ET T x+T ET T

⊥ y = T (RT u+w)
T⊥ET T x+T⊥ET T

⊥ y = T⊥(RT u+w)
(8)

Where x is the state of the slow system. Now we explicit
y and we substitute it in the first equation. The resulting
standard decomposition is (we pose w = 0):

ẋ = Ax+Bu
T⊥ET T

⊥ y =−T⊥ET T x+T⊥RT u
q = T x+T⊥y

(9)

Where{
A =−C−1(T ET T −T ET T

⊥ (T⊥ET⊥)−1T⊥ET T )< 0
B =C−1(T −T ET T

⊥ (T⊥ET T
⊥ )
−1T⊥)RT

(10)
We call a fast closure the period of the hand closure in which
the force u is sufficiently fast to approximate1 T TCT q̇ ' 0
and q̇ 6= 0. In this hypothesis, deriving w.r.t. the time the
second equation of (1) and (9) we obtain:[

−T⊥ET T
⊥ T⊥RT

RT T
⊥ /0

][
ẏ
u̇

]
=

[
ẇ
σ̇

]
(11)

Hence Ey = T⊥ET T
⊥ assumes the role of an equivalent

stiffness matrix, and R= RT T
⊥ the role of an equivalent ratio

matrix. Solving w.r.t. ẏ we obtain:

ẏ =R+

E−1
y

σ̇ (12)

where R+

E−1
y

is the pseudo-inverse of R weighted on Ey.
Integrating, it gives:

y = y0 +R+

E−1
y

σ ⇒ q = q0 +T T
⊥R

+
Ey

σ . (13)

Thus we call fast dynamic synergy matrix:

S f = T T
⊥R

+

E−1
y
, (14)

which identifies the obtainable hand closures when the hand
is closed fast. This matrix depends on the same parameters
of the slow synergy Ss (i.e. E and R) and on the damper
topology T (it is worth to be noticed that S f does not depends
on the choice of the completion matrix T⊥, as we show in
appendix).

As results from previous considerations, the hand follows
the fast synergy reference S f σ , only for a limited period of
time (i.e. until the condition T TCT q̇' 0 holds), converging
finally to the slow synergy equilibrium Ss. Hence Ss has to

1Note that this condition is true for any signal for a sufficiently small
period of time.



Fig. 3. CAD Model of the prototype of the dynamic synergies hand. The
viscous element is placed in the dorsal side of the palm, directly connected
with the distal and proximal joints of the thumb.

be used for task that requires a finite time to be executed
(e.g. in-hand manipulation), or in a context where hand pre-
shaping, together with external constraints, lead to achieve
different steady state positions.

In the prototype proposed in this work, we fall in the
second case, taking advantage of the constraint represented
by the contact between fingers, and/or between finger and
object.

V. PROTOTYPE IMPLEMENTATION

A. Design choices

In [13] authors present a statistical study of daily life hand
movements. It results that movements of the four long fingers
are closely related. In contrast the movements of the thumb
are quite independent from each of the four fingers, and its
percentage of exclusive movements is twofold more frequent
than those of the index finger. Thus, among the other things,
different relative positions of thumb and index fingers permit
to pass from precision to power grips [6]. The importance of
these skills in every-day life is well known (e.g. [24]), such
as their role in the human evolution [23].

For this reason we focus in the design of dynamic syn-
ergies which differ for thumb motion. The pulleys R and
the springs E are designed as in the PisaIIT SoftHand [5],
implementing the first synergy of grasp. One damper with
transmission ratio T = [0 1√

2
1√
2

0 . . . 0], where the non zero
elements refer to distal and proximal thumb joints, results
sufficient in order to implement the researched behavior. The
corresponding fast synergy is S f ' [ 1

4 0 0 1
4 . . . 1

4 ].

B. Hand description

As shown in Fig. 3, the hand prototype is an evolution of
the Pisa/IIT Softhand. The palm structure (1) and the fingers
(2-3) are the same of the previous version. The actuation
is guaranteed by a 24V DC motor (7), placed in the dorsal

side of the palm and integrated in a support structure (8).
The damping element is a small hydraulic piston (4) filled
with silica oil. The oil can be changed in order to obtain
different viscosity coefficients. The damper is placed in the
dorsal side of the hand, parallel to the motor. It is directly
connected with a compression spring (5), to ensure the return
at the rest position of the damper piston during the hand
reopening phase. Only the thumb (3), and in particular its
distal and proximal joint, are directly connected with the
damper through a tendon. A support structure (6) hosts the
damper and, thanks to two slots, provides the possibility
to regulate its position. Furthermore the damper remains
continuously connected with the thumb through a tendon that
routes over a group of bearings. Finally a cover (9) allows
to have a more smooth and pleasant design, in addiction to
providing protection to the elements placed in the dorsal part
of the hand in case of impact.

VI. EXPERIMENTAL RESULTS

In this section we demonstrate the capabilities of the
prototype hand designed using the method of the dynamic
synergies.

A. Experiment 1

In a first experiment, the hand is controlled through a
Matlab/Simulink interface, based on the software of the
SoftHand, available online in the repository of the Natural
Machine Motion Initiative website2. The system is fed a
fast ramp command, to demonstrate the fast synergy, a slow
ramp, to demonstrate the slow synergy. The fast ramp is
setted at the maximum closing speed of the hand. Figures 4
shows the slow and fast dynamic synergies motions of the
prototype hand. As it was designed, the two different motions
lead the hand toward the two postures corresponding to the
power grasp (the closed fist) and to the pinch (thumb-index
opposition). A dynamic fast to slow motion, to show the
natural continuous sliding from fast to slow motion is shown
in Fig. 5.

B. Experiment 2

In a second experiment, the hand was controlled with a
mechanical interface in order to grasp some objects, thus
showing the advantage of having a spectrum of possible
grasps from where to choose. The images in Fig. 6 show
the ability of the prototype in grasping objects of several
sizes and shapes, adopting grasps that lie in the full spectrum
that goes from the pinch grasp posture to the power grasp
posture.

C. Experiment 3

Finally, the prototype of dynamic synergies prosthesis was
controlled using two Ottobock surface EMG electrodes. The
experimental setup is shown in Fig. 1, where the EMG
electrodes are connected, as input, with the electronic board
of the hand. Fig. 7 shows the wavelet analysis on some EMG
signals used to effectively drive the prototype. It can be seen

2www.NaturalMachineMotionInitiative.com



(b) 0 s (c) 0.5 s (d) 1 s (e) 1.5 s

(g) 0 s (h) 5 s (i) 10 s (j) 13 s

Fig. 4. The prototype moving along the fast synergy (top row) and along the slow synergy (bottom row), the two plots (leftmost panels) show the reference
value and the effective position of the motor. The snapshots show the hand closing. It is possible to see that the fast synergy closes the hand in a fist (the
primitive synergy of the power grasp) while the slow motion closes the hand in a pinch grasp. Note that the snapshots are extracted at different instants
of time for the two sequences; this is in accordance with the fact that the slow synergy takes longer to close than the fast synergy. Note also that in order
to maximize the decoupling, the speed of the slow synergy is very low, resulting in a rather long closure time. The closure time to obtain a pinch grasp
needs not to be so slow, as it is show in Fig. 5.

(b) 0 s (c) 1 s (d) 2 s (e) 3 s

Fig. 5. Shortest time needed to obtain a pinch grasp, reference and actual motor position (a) and snapshots of the hand closing (other panels). By
optimizing the reference, it is possible to seamlessly shift from the fast to the slow synergy, and thus minimize the time to closure while still obtaining a
pinch grasp closure.

that signals are more spread in frequencies because there is
no need to separate frequencies as in Fig. 2.

Additional details can be found on the video attachment.

VII. CONCLUSIONS

This paper intended to tackle the problem of encoding
different movement intentions of the user of a poly-articular
prosthesis using the dynamic frequency content of the control
signals in a natural way. To achieve this objective we drew
inspiration from how human movements normally present a
correlation between precise and slow motions on one side
and strong and fast motions on the other. Moreover, we
demonstrated how this approach can be passively embedded
in the hardware design of a soft synergistic hand by using

dampers. We derived a method to place the dampers in order
to design a given set of motions, that we call the method
of dynamic synergies. Using this method we designed a
prototype prosthetic hand which has 19 degrees of freedom
and just one motor and can move along two different
synergistic directions of motion, to perform either a pinch
or a power grasp. The prototype function was demonstrated
in some preliminary experiment. Future works will address
proper validation of our approach with patient studies.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Some example of grasps using SoftHand Pro-D: pinch grasps (a-e) and power grasps (f-j).
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Fig. 7. Wavelet analysis of EMG control signals used to control the prototype hand. The signals are more spread in frequencies because there is no need
to separate frequencies as in Fig. 2. Note that the signals were acquired on a sound individual.

APPENDIX

Taking the fast dynamic synergy expression:

S f = T T
⊥R

+

E−1
y

=

= T T
⊥E−1

y RT (RE−1
y RT )−1 =

= T T
⊥ (T⊥ET T

⊥ )
−1(RT T

⊥ )
T ((RT T

⊥ )(T⊥ET T
⊥ )
−1(RT T

⊥ )
T )−1

(15)

We write a different choice of T⊥ as the generic change
of variables T⊥ → UT⊥, with U unitary. We call SU

f the

associated fast dynamic synergy. From which:

T T
⊥UT (UT⊥ET T

⊥UT )−1(RT T
⊥UT )T =

=T T
⊥ (U

TU−T )(T⊥ET T
⊥ )
−1(U−1U)(RT T

⊥ )
T =

=T T
⊥ (T⊥ET T

⊥ )
−1(RT T

⊥ )
T ,

(16)

and:

(RT T
⊥UT )(UT⊥ET T

⊥UT )−1(RT T
⊥UT )T =

=(RT T
⊥ )(U

TU−T )(T⊥ET T
⊥ )
−1(U−1U)(RT T

⊥ )
T =

=(RT T
⊥ )(T⊥ET T

⊥ )
−1(RT T

⊥ )
T

(17)

Hence we have that

SU
f = S f ∀U s.t. : UTU = I (18)



i.e. the result is independent from the choice of T⊥.
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