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Abstract: Research of a modular stabilizing control law for uncertain, nonholo-
nomic mobile systems with actuators limitation has been investigated. Modular
design allows the definition of a stabilizing control law for the kinematic model. The
presence of uncertainties in the actuators parameters or in the vehicle dynamics has
been treated both adding suitable components to the Lyapunov function and using
parameters adaptation laws (e.g. adaptive control and backstepping techniques).
Simulations are reported for the set point stabilization of a unicycle like vehicle
showing the feasibility of the proposed approach. Torque limitations for a unicycle
like vehicle has been investigated using backstepping techniques for the vehicle
tracking problem. Simulations are reported. Copyright © 2006 IFAC

Keywords: Nonholonomic systems, adaptive control, limited actuation, vehicle

control

1. INTRODUCTION

Practical control of robots involves both the
design of state feedback control laws and the
modelling of the physical robotic platform used.
Notwithstanding the efforts spent to identify the
parameters of the mechanical system, control law
robustness is more often increased using adaptive
control (Jiang et al., 2004). On the other hand,
mechanical systems suffer also of limits on actua-
tion that should be taken into account to prevent
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instability. Combining parameters uncertainties
with actuator limits carries to a challenging yet
open problem, particularly if the system to control
is nonholonomic.

The problem of actuator limitations for velocity
control of kinematic nonholonomic systems has
been solved for example in (Sontag and Mal-
isoff, 1999) defining universal formulas for asymp-
totic stability, in (Nijmeijer et al., 2001), with time
varying control Lyapunov functions, or in (Beard
and Ren, 2004) for air vehicles’ control. In the
present paper, the problem of adaptive nonlinear
control for generic kinematic nonholonomic sys-
tems in the presence of actuator limits is con-
sidered assuming a linear relation between the
control space and the uncertainties.

In literature, the problem of stabilizing a unicycle
like vehicle (i.e. driftless nonholonomic system)



with both uncertain actuators and dynamic pa-
rameters has been solved for regulation (Aguiar
et al., 2000) and for path—following (Soetano et
al., 2003) using adaptive nonlinear and backstep-
ping control and assuming the knowledge of the
uncertainty sign. In (Tso et al., 2000) the track-
ing control of uncertain dynamic nonholonomic
system has been solved for systems transformable
in Extended One—Generator Multi—Chain Form,
defining universal formulas for Lyapunov stabi-
lization.

To the best of authors’” knowledge, while the
tracking problem has been solved considering the
presence of maximum velocity constraints, very
little has been done in the investigation of tracking
control laws with limited torques.

This paper presents an attempt to solve the con-
trol of nonholonomic mobile robots using adaptive
and switching control in the presence of uncertain-
ties related to actuation and dynamic, coping with
limitations on actuator saturations. The underly-
ing idea is that each component of the final control
law can be modularly composed using Lyapunov
functions, starting from a stabilizing controller
thought for the kinematic model. The problem of
torque limitations for the unicycle tracking prob-
lem has been solved using switching techniques.
Simulations are reported demonstrating the feasi-
bility of the proposed approach.

2. ADAPTIVE NONLINEAR CONTROL

Let us consider a generic, nonholonomic, input—
affine nonlinear system

q= f(q) +g(qu (1)

where ¢ € R" is the state space vector, f(q)
and g(q) are the drift and the input vector fields
respectively and v € IR™ are the available con-
trols. Let u(q) € U C IR™ be the control law
that asymptotically stabilizes the kinematic sys-
tem. Indeed, it exists a positive definite Lyapunov
function Vi(g) > 0, with

Vi(q) = VVi(q) [f(a) + 9(q)u(q)] <0 (2)
whenever g # 0.

Consider now a new input space V' C IR™ and
the isomorphism F1:U — V. The control
input u, € V may be, for instance, the actual,
low level velocity vector available on the physical
nonholonomic system, while the control input
can be viewed as a control abstraction, e.g. the
steering velocities of the kinematic system model.
The stabilizing controller will be trivially u, =
F~1(u). Let the isomorphism be a bilinear w.r.t.
U and some parameters 1 € IRP, then:

v — ﬁ_l(uvn) = F_l(u)e)ﬂi

where, assuming p = m, 1 = [1,1,...,1]T €
IR” and ©, = diag(n,;). From the hypothesis
of the isomorphism F!, it is possible to define
the invertible mapping function and the relative
Lyapunov function:

u= F(u,,n) = F(u,)0;'1 i
Vi(g,n) = VVi(q) [f(a) + 9(a) F(u,)0;'1] <0

Considering an imperfect knowledge of the pa-
rameters 7, Vl(q,n) is not defined any further.
Defining 77 = 7) — 17 as the parameters error on the
estimations 7, we have:

la) = F(u,7) = F(w)®,

a(q) = F(,n) = F( v)Oy 11 A

u(q) = F(u,,, n) = F(u,,, 77) = F(ﬁ,,)@;li
where u(q) is the desired, kinematically stabilizing
control law, u(q) € U and 4,(q) € V are the
actual control input and the low level control
input vectors respectively, affected by the para-
meter estimate 7). The control (q) is applied to
the system that has the true parameter 7. Using
the control Lyapunov function V(q) = V1(q), the
time derivative becomes:

V(g n,9) = VVi(q)[f(q) + "
= VVi(q)[f(a) + 9(q)U;0,0
= VVi(o)f ( )+
VVi(q)g(q)U, (~ 1i
= Vi(q9) + VVi(q)g(
where U, = diag(u;(q)).

Under the assumption that the parameters are
unknown but constant, i.e. 77 = 1), consider

V(qa , ﬁ) = V1 (q) +V ( ~) where:
V,(n,7) = —1T@T® 76,1 >0
V., (n,7) = 1T@T@ Tr@ 1

where I' > 0, symmetric and depends on the sign

of the uncertainties to verify V,(n,7) > 0 (the

sign assumption can be found also in (Soetano et
al., 2003) and (Aguiar et al., 2000)).

(3)

Choosing the adaptation of the uncertain parame-
ters as:
O,1=09=n=-T"'ULg(q)"VVi(9)", (4)

the time derivative of the Lyapunov function (3)
becomes 3 :

V(@ m,7) = —=VVi(q)g(q)U,0,0,'1
that ensures the perfect compensation of the un-
defined sign term. Hence, the final control Lya-
punov function and its time derivative are:

{V(qvnaﬁ) = Vl(q) + Vn(7777~7) >0
V(g,n,7) = Vi(q) <0 ’

3 where we use the fact that the diagonal matrices ©, and
@.,71 comiute.



and the system with uncertain parameters inherits
the stability features (simple or asymptotic) of the
kinematic system without uncertain parameters
since V(q,n,7) is negative semidefinite with re-
spect to the whole state space (g, %) = (0,7). The
uncertain parameter estimation does not neces-
sarily converges to zero, as is usual in the adap-
tive control framework, while the system correctly
does its job (this can be proved using LaSalle’s
theorem (Hahn, 1963)).

2.1 Actuator limits

Let us consider n; > 0, withi =1,...,mand 7, =
0, and a limited input velocity |i;| < Umax,, with
Umax; > 0,Vi = 1,...,m. The velocity constraint
is satisfied if

[a(q)| = |a(q) +w(q)| < [@(q)] + [w(@)] < Umax -

Due to the presence of uncertainties, the velocity
error in the low level inputs 4, (q) = 4, (q) —u.(q)
can be rewritten as

i, = F~(u(q))®,1 (5)

that ensures the separation of each uncertainty
with respect to the control input space (for the
linearity of the input transformation inverse F‘fl).
Applying the linear operator F' to (5) and multi-
plying both side by ©;'1, one gets:

i = F(i,(q)0;'1 =U,0,0,'1 (6)

For simplicity’s sake, let us now examine each
single uncertainty separately, since the parameter
matrices O are of diagonal form. Consider

@i(a)| = lus(a)) | =
n
The limited velocity constraint affects the desired
control inputs u;(q), with s = 1,...,m, the uncer-
tainty parameters error and the true value:

(0] <l + ) = o)l (| 2] +1)

i
Unfortunately, no assumptions can be made on
the values of the estimation parameters along the
controlled trajectories of the system. However, if

Uh

i

<k-1,Vi=1,....m,andk>1 (7)

i
holds for each time t > t3, where tg is the
starting time, the limited velocity constraint is
imposed directly on the desired, perfectly known,
kinematic control u(q), since

% (q)| < 1@:i(g)| + |ui(a)] < klui(q)] =
[ui(9)] < T tmax, Yi=1,...,m

Since 1, > 0, by letting the uncertain parame-
ters 0 < #; < (k — 1)n;, the condition (7) is

fulfilled in the initial configuration (i.e. at tp).
Nevertheless, the constraints on the estimated pa-
rameters have to be satisfied on all the possible
trajectories of the nonholonomic system. Choos-
ing the Lyapunov function (3) and the adaptation
parameters law (4), the nonholonomic system is
controlled with limited controls if it is possible to
properly tuning the estimation parameter weight-
ing matrix I" using LaSalle’s theorem. Intuitively,
if IT]] — 400, V(g,n,7) ~ Vy(n,7), by using
V(g,m,7) < 0 and = 0, with n, > 0, it is
possible to assert that ||©,,|| will be not increasing
as t — +oo. This limit condition is enforced by
the orthogonality of ¢ and 7 and by the fact that
the two component Lyapunov functions V(g) and
V., (n,7) depend on g and 7 separately.

3. ADAPTIVE CONTROL FOR DYNAMIC
UNCERTAINTIES

Let us consider a general mechanical system with
nonholonomic constraints:

B*(q)i + C*(4,9)q + G (q) + Alg)"A = W*(g)7

Al9)qg =0= Alg)g + Alq)§ =0

(8)
Using standard manipulations of constrained dy-
namic systems (see for example (Tso et al., 2000)),
it is possible to decompose the system into two
parts: the kinematic model and the relative dy-
namic model. Hence, let us consider a generic
dynamic nonholonomic system, with drift term:

g = f(q) +9(qu
i = B(g,n)" ' (W(q)r — C(¢,q,m)u — G(g,n)+
+v*(a,m)) o)

where ¢ € IR" is the state vector of the kinematic
model state space (i.e. generalized system vari-
ables), f(q) and g(q) are the system vector fields
and v € IR™ are the kinematic controls*. n € R?
are the dynamic parameters of the mechanical
nonholonomic system. Furthermore, v*(q,7n) is a
generic non linear term that is supposed to be
linear with respect to the dynamic parameter
v*(q,n) = v(q)n, that could appear from changes
of coordinates. It is straightforward that:

B(g,n)u+ C(4,q,mu+ G(g,m) = Y (4,4, q4,q9)n

where Y (@, u, §,q) is the well known matrix re-
gressor. Suppose that a stabilizing control law
u for the kinematic system exists. Hence, there
exists a positive definite Lyapunov function Vi(q)
whose time derivative satisfies (2). The same kine-
matic control law can be used also with the full
dynamic system as the virtual control of a back-
stepping problem. Define i(q) = u,(q) — u(q)

4 The generic dynamic matrix M* in (8) changes to M
in (9) to highlight the nonholonomic constrained dynamic.



as the control error, where u, is the dynamic
system variable, i.e. the velocity control law of the
kinematic subsystem. Consider the torque control
law:

)~ (Blg, n)i(a) + C(d, a,m)ulg)+
+G(q,m) — 7" (g,m) — Kpii — A)
(10)
with K} a square, positive definite matrix (the
backstepping gain) that gives:

and A = (VVi(q)g(q))T.

To prove that the proposed control law effectively
stabilizes the system, we use the following control
Lyapunov function:

- 1. -
Va(q, @) = Vi(g) + 5@ Blg,ma, (1)
having time derivative:
V(g, 1) = VVi@)f(@) + ATur + @' B(g, )i+
= VYl(q) (@) + ATu — T Kyt
= Vi(q) — aT Ky
(12)
that is clearly negative definite. It is worth noting
that the term added in (11) represents the kinetic
energy of the vehicle and that B(q,n)—2C(4,q,7)
(that is skew-symmetric) represents the Hamil-
ton’s principle on the energy conservation®. The
first term of the right side of (12) ensures the sta-
bility of the system while the second term ensures
the convergence of & — 0. As the backstepping
gain matrix K} increases, the latter convergence

velocity increases as it is increasing the control
effort as well.

For ease of notation, in what follows, we will
suppress the explicit dependence of system ma-
trices and controls by g, ¢, u, 4. Consider now a
partial knowledge of the dynamic parameters 7).
Let 7 = 7 — n be the parameter estimation error
and with M (7)) = M(f) — M(n) the estimation
error on the generic system matrix M due to
parameter uncertainties.

The torque control law is then:
T=WB@+Cu+ G+ (g
—y*(1) — Ky — A),
that replaced in B(n)i gives:
B(n)u = —Kyii — A+ Yi — i — C(n)i (14)

(recall that v*, ¥*, 4* are linear w.r.t. n, 77 and 7
respectively).

5 The skew-symmetric property holds for a particular
definition of C(q, ¢,n).

Let /7 = 0, i.e. constant unknown dynamic para-
meters, and the adaptation law of the parameters:
n=q=-T"'(Y" -4 (15)

and consider the composite Lyapunov function,
with its time derivative:

- S
Vs(a,,7) = Va(g,@) + 577" T
Vs(q,@,7) = VVi(q)f + ATur + a" B(y)ut
1 - Y Tt
+§uTB(77)u + 77T
(16)
where I' > 0 and symmetric (idependent from the
dynamic parameters sign).

Replacing (14) and (15) in (16), we obtain:

Vs(q,ii,7) = VVi(q)f + ATu— 0 Kyii
= VQ(qv ﬂ)

that is, once again, negative semidefinite if the de-
sired kinematic control law makes V1 (q) negative
definite. Therefore, the native control law u(q) is
used to stabilize the nonholonomic system since
the kinematic control error & — 0; the parameter
estimation 7) does not converge necessarily to 7,
but still allows for the control task to be solved.

(17)

4. ADAPTIVE CONTROL FOR DYNAMIC
AND ACTUATOR UNCERTAINTIES

Consider again the mechanical system (8) and the
stabilizing law (10). Let 7, € R™ be a different
set of torque inputs, related to some actuators’
parameters 7, € IR”, whose generic non linear

relation is 7 = F;(7,,n,). The full nonholonomic
dynamics become:

¢=f+gu
i = B(n) ' (WE(7y,m,) — C(ng)u — G(ng)+
+7*(Ma))

where 7, are dynamic parameters. The stabilizing
control law for the new set of inputs is clearly:
Ty = F;l(Tana)' Deﬁning /fla = ﬁa — Mg as
the parameters error, function of the parameter
estimation 7),, and supposing that the new input
field F; is bilinear w.r.t. 7 and 7, it is possible to
assert that:

7, = E-N(1,i,) = Fr ()6, 1
T = F‘r(%uana) = T(%”)(—);ali
T = F~‘T(TV777(1) = F‘T(%ua’f]a) = F”'(%”)é;ali

It is worth noting that 7, is the desired control
input w.r.t. the new set V, computed on the
estimation of the uncertainties 7),. Hence, the
control 7 is the actual torque control applied to
the system.

Consider the desired torque control law (13), that
take care of unknown dynamic parameter 7, with
the adaptation law (15). Recalling the actual



torque control 7 = 7 + 7 and equation (14) we
obtain:
B(ng)u = W(q)(7 +7) — C(ng)ur — G(na)+

+7*(n4) — B(na)ir

= —Kyi— A +Yi)y—7ijg— Clng)u+ W7

(18)

Adding the uncertainties on the actuators 7n,, the
derivative of the Lyapunov function (17) is no
longer defined. Hence, it is necessary to complete
Vs(q,d,7,) with an addtional:

1_7x ~ =
Vi, (la:1a) = 51767 0, 7T46,,1> 0
V% (%, 7~7a) = iT(:)%; Q;aTraé%i

where I';, > 0, symmetric and depends on the
sign of the actuator uncertainties 7,. Analogously
to (6), ¥ = TO, ©;'1, with T = diagr;. The ac-
tuators parameters adaptation law can be chosen
as: . )

O, 1=i,=n,=-T;'T"WTa (19)
and constructing the new Lyapunov function

V4(qa /&a ﬁda Nas ﬁa) = V3(q’ /&7 ﬁd) + V77@ (naa ﬁa)?
yields:

Va(q, T, 7, Mas Tq) = V1~(Q) — 0" Kyii+
-a'WTe, 0,'1-1"e] 6, T"T"W'a)
=Vi(q) — a' Kyt = Va(q, 1)
that is negative semidefinite, with equilibrium
point (qv ﬂv 7~7d7 ﬁa) = (07 0’ ﬁd’ ﬁa)'

The most powerful feature of the proposed ap-
proach is the design independence between the
problems involved in the stabilization task, whose
feasibility is achieved using backstepping tech-
niques and computed torque frameworks. The
controller design steps could be depicted briefly
in what follows:

1. Design a desired control law for the kinematic
nonholonomic system u(q);

2. Starting from u(q), design the desired torque
7 for the dynamic system (see (10));

3. If there are uncertainties on the dynamic pa-
rameters 1, of the system, modify the torque
control law 7 (and 7,) with estimated values
and use the dynamic parameters adaptation
law (15);

4. If there are uncertainties on the actuator pa-
rameters 7, too, add the actuator parameters
adaptation law (19).

5. TRACKING CONTROL WITH BOUNDED
TORQUES.

The general, modular, framework presented in the
previous paragraphs is now extended to the case
of constraints in the actuators torques for the
case of unicycle motion. An approaching controller
is used to minimize the distance e between the

Fig. 1. Trajectory tracking problem geometry.

controlled vehicle and the reference vehicle under
a parameter dependent threshold D,.;,. As the
robot reaches the desired distance Dy, another
parameter dependent distance Dy.x > Dmin 1S
defined and a backstepping controller is activated.
The latter controller stabilizes the robot onto the
desired trajectory and guarantees that the control
torques are limited if the distance e < Dpax
(this condition is guaranteed by the backstepping
controller as well).

5.1 Backstepping Controller

Let us consider the kinematic and dynamic model
of a unicycle and express the target coordinates
in the mobile vehicle reference system. Hence, the
error dynamics e = [eq, e2, e3]” are given by the
equations:

é1 = vrcos(e3) — v+ eqw
é2 = vpsin (e3) — eyw
€3 =W, — W

= é=f(e) +g(e)u

(20)

where v and w are the forward and steering

velocities. Dynamics are added by considering the

equations v(e) = 7, /m and w(e) = 7/I,, where

m and I, are the mass and the momentum of
inertia respectively (see (Aguiar et al., 2000)).

Using the control Lyapunov function

1
V, = 5 (7 +€3) + (1 — cos (e3)) (21)
we are able to synthesize two kinematic control
laws for the forward and steering velocities, v and
w respectively

2
U(e) = —Vmax arctan (ej) — v, cos (es)

T (22)
3(e) = wn + + 2 sin (es)
w(e) = wyr + —eov, + —sin(e

T Kes 2Ur KSS 3

that make V negative definite. It is easy to notice
that the forward velocity v is surely bounded by
Vinax + v, while @ maximum value depends on
the positive constants K.,, K,, but also on the
distance, through the error variable e,.



Adding dynamics, a new control Lyapunov func-
tion is obtained as:

1
Vi(ev,w) = Vit s (v-0"+5w-0)

that yields

ro = (=K (0 - ) + 2 D1

— - 9v (€))
B %,
Tw = L(— K (w—w) + De© + e I (e))

(23)
where Ky, and Ky, are positive constants, v and
w are the reference velocities provided by the
kinematic controller, and f(e) and g(e) are again

the vector fields of the kinematic model (20).

We are now interested in finding a maximum for
the two torques (23):

Tomax] = MU2Kpy [Vmax| + [Vr | (|Wmax| +
[ Wr ) F [Vrae| + [Vmax| + [d[wimax| +[d]) =
=Ty +d-T,,

Twma| = 12Ky |wimax| + K5 (2 +
F [V |wmase| - @) + K3 (|wmax] 4 [Wrn|) +
+Kes) =T, +d-T,,

(24)

As shown in equations (24), the maximum value of
the torques are given by a linear relation |Tmax| =
Ty +d- Ty, where T1 and T5 are functions of the ve-
hicle maximum velocities and inertial parameters.
The lower limit of the torque value is 77, hence the
problem to solve is to find the maximum value of
d in order to constraint the torque into the range
[0,T1 + Amax), With Apax > 0. Since the torque
controls critically depend on the distance between
the controlled and the desired reference vehicle,
before the resulting backstepping torque controls
can be applied to the system, an additional con-
troller, approaching the desired reference vehicle,
is adopted.

5.2 Approaching Controller

This controller is meant to drive the vehicle inside
the range where the backstepping controller works
with constrained torques. Consider a new state
space ¢ for the vehicle (see again figure 1), where
q = [e,a, B]T with e the distance vector between
the vehicle and the target and with a and § angles
between vector e and the relative direction of each
vehicle. The kinematic model of the variables q is
then:

é = —vcosa+ v, cos 3
. sin o sin 3
a=—-w-+v . + v, - (25)
. sin o sin 3
B =w,—v — Uy

e e

Consider the Control Lyapunov Function

1 1
Va(q) = 5042 + 3 In(1+ 62),

defined on (a,e,8) = [0,27) X [Duin, +00] X
[0,27). V3 does not depend explicitly on 3 as,
during the approaching phase, the relative orien-
tation between the target and the vehicle is not
relevant. Its time derivative is given by

. e

Ve _ e &

2(q) = ad + Tt
and by substituting the controls v and @:
7 = sat(e) cos
sin a sin 3 (26)

+ v,

wv=K,a+wv

where sat(e) is a saturation function (see (Beard
and Ren, 2004)), we obtain

. 14 e?
Vy = 1j62 < —;e KaOéQSat(e)COSQOé+’UTC085>
e 2
= ——V
14+e2 2

As sgn(Vy) = sgn(\Lfg), let us maximize "‘72 (recall
that e > Dynin)

Vi < —2K,02 —sat(e) cos®> o + vy, .

sat(e) is an increasing function of the distance,
therefore, its minimum point is D;,. It is al-
ways possible to choose sat(e) such that vp_, =

sat(Dpin) > Vp,,,., ecessary condition for Vs to
be negative definite on a = 0. Hence

Vo < 2K,0? —wp,_. cos’a+uv, .

min

2 ..
—vp,,., cos“a + v, can be positive for a €

. . v, _
(o, @) with @ = acos (— ﬁ“) and @ =
min
acos Z;—") Note that o and @ are well
min

> v, . Hence a sufficient

defined since vp_,,
condition for Vs to be negative definite is given
by
2 Urmax
—2K.a" + v, <0= K, >
E 2 QQ

With this parameter choice the system (25) with

the control laws (26) is globally uniformly ulti-
mately bounded on (o, e) = [0,27) X [Dmin, +00].

As in (23), backstepping techniques lead to the
control laws for the vehicle’s dynamic model, that
can be maximized as in (24):

|7 0 ras| T [Vmax])+

Rmax
= m(2Kpy|Vmax| + —— (v
T

1
1+ K, + —
+m(1+ + 27r))

T | = L2 (2K b |Wmas| + (|Vrg | + |UrnaX|)2+
+ Ko ([vmax| + Ka) + [V [ ([0r e |+
"vaaX‘ + ‘vmaXD + 7T)

(27)

The control laws (27) allow to bound the control
torques while the vehicle approaches the region



where the controller (23) is able to track the target
and respect the torques constraints.

5.8 Switching Control Law

The adopted switching control law is very sim-
ple: just a single switch from the approaching
to the backstepping controller is allowed once
the distance between the vehicle and the target
is less than Dy;,. The convergence of the pro-
posed method is proven considering that the ap-
proaching controller ensures that the region with
e < Dmin is reached in a finite time, where the
asymptotically stable backstepping controller is
activated.

We are now interested in fixing the value of the
switching distance Dp,i,: let us consider an isosur-
face of the Lyapunov function V. The projections
on the (eq, e3) plane for different ez angles are con-
centric circles. From Lyapunov theory, a system
trajectory originated inside an isosurface with n.d.
time derivative is bounded in the same isosurface.
This means that fixing Dy, as the radius of
the smallest circle (computed at e3 = 7), in the
worst case, when the backstepping controller is
activated, a trajectory starting at a distance Dy,
from the origin of the (e;,es) plane will never
exceed the D,y distance, radius of the largest
circle (computed at e3=0), therefore the torque
constraints will be respected.

6. SIMULATION RESULTS

6.1 Regulation with kinematic uncertainties and
limited velocity

As an application example of the method ex-
plained previously, a unicycle like vehicle is con-
trolled with limited velocity. The kinematic con-
trol law reported in (Murrieri et al, 2004) has
been modified as reported in (Caiti et al., 2005).

In figure 2 is depicted a parking trajectory when
the robot is placed in ¢ = [270, 3.6, 3.95]7 and
the vehicle parameters are set to R = 100 and

L = 500. The estimated parameters value is
R = 190 and L = 150. The velocity limits
are (Umax; Wmax) = (50 mm/sec, 1/2 rad/sec),

while the scaling factor p, = 660. The controller
parameter A in (Murrieri et al., 2004) is 0.04.
The parking problem is solved using the adaptive
controller with limited velocity.

In figure 3, the computed controls are reported
(the linear velocity v, left, and the angular velocity
w, right). Each figure depicts also the velocity
limits.

theta:-9.0605¢-006

Fig. 2. Vehicle manoeuvre during a docking oper-
ation with unknown parameters and limited
velocities.

Limited Angular Velocity

2

Fig. 3. Computed controls: linear velocity v (left),
angular velocity w (right). Each figure reports
the velocity limits too.

...... 126760 s

200) 20l

Fig. 4. Vehicle manoeuvre during a docking opera-
tion with both unknown dynamic and actua-
tor’s parameters. Both the adaptive (left) and
native (right) controller behavior is reported.

6.2 Regulation with dynamic and kinematic
uncertainty

Let 7 = [r,,70]T = [r1,72]7 be the available
force and torque controls, i.e. the forward force
and the steering torque of the vehicle respectively,
and 7, = [r,, 7|7 = [r,,,7,,]T be the torques of
the vehicle’s wheels, on the right and left side of
the robot respectively:

1 R R
Ty = (Tr +71)= Tr =Typ— + Tw—

e B k-

Tw:(’f'»,-*’rl)ﬁ Tl:TUE—TwZ
In figure 4 is depicted a parking trajectory when
the robot is placed in ¢ = [380, 0.92, 3.97]T, with
the mass m = 10 and the inertia momentum I =1
and with the actuator’s parameters set to R = 100
and L = 500. The dynamic estimated parame-
ters 7, = [, I|T = [76,4.5]7 and the actua-
tor’s estimated parameters 7, = [1/R, L/R]T =
[1/174,664/174]T. The controller parameter \ =
1/2. The simulation has been carried out for
20sec. On the left, the parking problem is solved
using the adaptive controller while, on the right
side of the figure, the parking problem is carried
out with the native controller u(q), without any
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Fig. 5. Trajectories of mobile robot at different
starting position.

Fig. 6. Computed torque controls: linear (left) and
angular (right) controls.

parameter adaptation (see (Caiti et al., 2005) for
more detailed simulation results).

6.3 Tracking control with bounded torques

Simulation results for the tracking control of a tar-
get vehicle with bounded torques are presented.
In what follows, the reference vehicle describes a
circle while the controlled vehicle starts from dif-

ferent positions. Vehicle parameters can be found
in (Caiti et al., 2005).

In figure 5 the trajectories of the controlled robot
starting from ¢ = [Dcosé, Dsiné, 6|7, with D =
10m and ¢ € {0,7/2, 7, —m/2} are depicted. The
target starts from ¢, = [0, —5,0]7 and describes
a circle of radius »r = 5m. The corresponding
computed torque controls are reported in figure 6.

7. CONCLUSIONS

Nonlinear adaptive control laws for generic kine-
matic nonholonomic systems in the presence of ac-
tuator limits and uncertainties have been derived.
An extension to uncertain dynamic systems using
backstepping techniques and control Lyapunov
functions has been used. It has been shown that it
is possible to obtain a control Lyapunov function
in a modular way, starting from a stabilizing law
for the kinematic, perfectly known model. Our ef-
fort has been devoted to bound the control inputs
of the kinematic and dynamic system, in order to
avoid actuator saturations.

Simulation results have been reported, showing
a vehicle manoeuvre during a parking operation
with unknown parameters and limited velocities
and vehicle manoeuvres during a tracking opera-
tion with limited torques. Our future efforts will
focus on merging the previous results and the
obtaining smooth control laws for the set-point
and tracking control problems.
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