
On the global convergence of a class of distributed algorithms for

maximizing the coverage of a WSN

Daniele Fontanelli, Luigi Palopoli, Roberto Passerone

Abstract— We consider the problem of finding a periodic
schedule for the wake-up times of a set of nodes in a Wireless
Sensor Network (WSN) that optimizes the coverage of the the
nodes are deployed on. An exact solution of the problem entails
the solution of an Integer Linear Program and is hardly viable
on low power nodes. In this paper, we study the convergence
of an efficient decentralized algorithm for node scattering
by casting the problem into one of asymptotic stability for
a particular class of linear switching systems. We present
asymptotic stability results for generic WSN topologies and an
application of the algorithm to the coverage problem to show
the effectiveness of the proposed solution.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are today increasingly

employed as monitoring and active devices in a wide spec-

trum of different applications that require processing capa-

bilities to recognize, classify and react to external events. In

particular, safety-critical applications, such as security, struc-

tural monitoring and critical process control, derive many

benefits from WSNs. One important issue to be addressed in

these contexts is the ability to preserve the functionality and

integrity of the network countering device failures, e.g, due

to power supply exhaustion, or by structural changes. These

effects can be mitigated by adjusting the network parameters

for maximum operational efficiency as changes are detected,

and by exploiting the considerable redundancy available in

the network to operate the nodes on low duty-cycles, one of

the primary techniques used today to conserve energy and

extend the lifetime of the system to the desired duration.

A WSN is typically designed as a dynamic distributed

system, in which complex tasks are performed through

the coordinated action of a large number of small devices

(nodes). This is especially true for the algorithms devoted to

ensuring the efficiency and integrity of the network, which

must identify the operating conditions that globally maximize

some cost function in a robust and efficient way. Because the

information readily available to each node is typically limited

to the immediate neighbors, optimization algorithms and

decision procedures operate through a series of iterations,

in which the network gets progressively closers to a global

optimum. Depending on the applications, and certainly in

the case of safety-critical systems, it is interesting to study
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the convergence properties of these algorithms in order to

evaluate their effectiveness and establish their correctness.

In past work [11], we have focused on the particular

problem of maximizing the sensing coverage of a network

under a minimum constraint on lifetime. In particular, we

have developed exact off-line solution algorithms for this

problem and evaluated the degree of optimality of its dis-

tributed implementation, known as wake-up scattering [5].

Later, we have proved local convergence properties of the

algorithm (i.e., with respect to small perturbations around an

equilibrium points) and global convergence in a few special

topology configurations [4]. In this paper, we extend the

proof of convergence to the general case.

A. Problem Definition and Background

Given a WSN deployed on a region, we aim at reducing

its power consumption (and therefore extend the lifetime)

while providing continuous node coverage over a monitored

area. To save power, we switch nodes off for a period of

time if another node covering the same area is guaranteed

to be active. This technique results in a (typically periodic)

schedule of the wake-up intervals of the nodes.

An optimal schedule may be computed either centrally

and off-line or online by the network itself, in a distributed

fashion. Online techniques, preferable for their flexibility

and their relative robustness to network topology changes,

typically use information from neighboring nodes [5], [12],

[6], [2], [1], and pose relevant problems such as algorithm

convergence to the solution, how far the solution is from

optimal, and how long the transient of the computation lasts.

These issues will be covered in the rest of the paper for the

wake–up scattering problem, proposed in [5].

Briefly, the algorithm computes a periodic schedule over

an epoch E, where each node wakes up for only a defined

interval of time W . The procedure optimizes the coverage

by scattering the wake-up times of neighboring nodes (nodes

that can communicate directly over the radio channel), i.e.,

nodes are scheduled so that they wake up as far in time

as possible from neighboring nodes. The rationale behind

this approach is the assumption that neighboring nodes are

more likely to cover the same area. This is true when the

sensing range and the radio range are comparable. While

this assumption is clearly an approximation, the technique is

extremely simple and relies solely on connectivity, instead

of requiring exact position information.

Since the objective of the scattering problem is to find a

periodic schedule for the node wake–up times, the problem

can be viewed as a deployment task, solved with respect to



time, over a cyclic set of possible configurations [8], [7], [9].

However, as shown below, there are reasonable situations

under which switches in the linear dynamics can happen

and the classical analysis on consensus problems cannot

be applied to the convergence of the wake-up scattering.

Intuitively, the reason of this divergence is the fact that

while agents moving on a line are “physically” prevented

from overtaking each other, this limitations does not apply

to the wake-up times of the nodes. Indeed, as shown below,

nodes can change their relative time positions if they do

not see each other and a switching behavior can be derived.

In [4], local convergence has been established in the general

topology case, while global convergence has been provided

in special cases by direct analysis of the connectivity of the

network. In this paper we extend those results, prove global

convergence in the general case and study its application to

the coverage problem to show its effectiveness in a practical

application.

The paper is organized as follows. In Section II, we

provide some the model of the wake-up scattering algorithm,

while in Section III we present an analysis on the WSN

nodes’ visibility instrumental to the stability proof. In Sec-

tion IV, we show the algorithm convergence in the case of

a generic network topology. In Section V, we propose some

topology examples and some results related to the coverage

problem that clarify the results of the paper and the potential

of the algorithm.

II. MODEL DEFINITION

Consider n nodes N1, . . . , Nn and let E be the duration

of the epoch. We denote by wi ∈ [0, E] the wake-up time

of node Ni. Let also Vi be the set of nodes visible from

node Ni (i 6∈ Vi). The wake-up time of node Ni at step k is

updated as follows:

wk+1
i = (1− α) wk

i + α
2

(

min
j∈Vi

{wk
j : wk

j ≥ wk
i }+

max
j∈Vi

{wk
j : wk

j ≤ wk
i }

)

mod E.

The initial condition w0
i , ∀i, is randomly chosen providing

w0
i < E and that α > 0 is a design parameter.

To illustrate the formulation, suppose that the epoch E
is equivalent to one minute and that the granularity of the

wake–up times is the second. In such a case, each wi

corresponds to a position of the second hand, that is invariant

to the minute and/or hour chosen. The epoch E defines a ring

symmetry, visually equal to the clock dial. For each pair of

nodes (Ni, Nj), we define two distances w.r.t. the wake up

times wi and wj : one, denoted E ≥
−→
d i,j ≥ 0 that goes

forward in time, the other, denoted E ≥
←−
d i,j ≥ 0 that goes

backward, i.e.,

−→
d i,j =

{

wj − wi if wi ≤ wj ,
wj − wi + E otherwise.

, (1)

while
←−
d i,j is obtained by equation (1) exchanging wi with

wj . From the definition above it follows that
←−
d i,j = E −

−→
d i,j . Furthermore, introducing the notation

∆̄k
−→
d

= α
2

(

min
l∈Vj

(
−→
d k

j,l)−min
l∈Vi

(
−→
d k

i,l)

)

∆̄k
←−
d

= α
2

(

min
l∈Vj

(
←−
d k

j,l)−min
l∈Vi

(
←−
d k

i,l)

) ,

we can write the distances update equations as

−→
d k+1

i,j =
−→
d k

i,j + ∆̄k
−→
d
− ∆̄k

←−
d
, (2)

←−
d k+1

i,j =
←−
d k

i,j − ∆̄k
−→
d

+ ∆̄k
←−
d
. (3)

Consider a state vector x whose entries are the distances−→
d i,l, ∀l ∈ Vi and i = 1, . . . , n. Similarly, let y be the

vector of distances
←−
d i,l. With the proposed choice of the

state variables, the update displacement ∆̄k
−→
d

only depends

on the distances in x, and ∆̄k
←−
d

only on the distances in y.

By imposing y = E1 − x, where 1 is the column vector

of appropriate dimensions with all entries equal to 1, the

discrete time evolution of distances is simplified as

xk+1 = Axk, (4)

where A has, at least, one eigenvalue equals to one.

From [4] we know that if two nodes do not see each other,

they may overtake each other. This behavior, together with

the fact that the updating equations (2) and (3) are nonlinear,

makes the overall system dynamics switching. Defining η(k)
as the switching signal, that takes values 1, . . . , S, the

switching system xk+1 = Aη(k)x
k is thus derived, with

system matrices {A1, A2, . . . , AS}. The region of the state

space in which the system evolves using a dynamic Ai is

a convex polyhedron delimited by a set of subspaces of the

type xi < xj , for appropriate choices of i and j. Hence, in

the general case, the number S of linear dynamics is upper

bounded by the number of pairs of nodes that do not see

each other.

On the other hand, a node cannot overtake any other node

that it sees assuming 0 < α < 1. Therefore, if all nodes

see their nearest neighbors, the application of Equation (2)

and (3) always produces the same dynamic A1 and the

system evolves with a linear and time–invariant dynamics.

As shown in [4], the algorithm in this case asymptotically

converges to an equilibrium in which the wake–up times are

equally spaced in the epoch E. In the rest of the paper,

we will analyze the convergence properties for the general

switching system.

III. VISIBILITY ANALYSIS OF THE WSN

In this section the analysis of a generic WSN is presented

in terms of sub–networks and paths. Without loss of gen-

erality, the WSN nodes are supposed ordered, in the sense

defined in what follows.

Definition 1: A network ∆ with n nodes is called ordered

if for any pairs of ordered indices i < j implies wi < wj ,

∀i, j = 1, . . . , n.

Definition 2: Given an ordered network ∆, a sub–network

Θ is a set of nθ + 2 nodes {θ0, θ1, . . . , θnθ
, θnθ+1} , whose

wake–up times are ordered wθ0
< wθ1

< . . .< wθnθ
< wθnθ+1
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Fig. 1. Nearest neighbor visibility and proximity of the connected sub–
networks topology. Nearest neighbors are the closest nodes in clockwise
and counter–clockwise direction, i.e. the nearest neighbor to c are d and
b respectively. Visibility is depicted with squares and circles, hence the
nearest visible nodes from c are a and e, respectively. The pictures on the
left depict the initial configuration of the networks, while on the right the
corresponding equilibrium is shown. The circumferences are of length E.
(A) {b, d, g} 6∈ Vc,e,f and viceversa. (B) {b, d, g, h} 6∈ Vc,e,f,i,j and
viceversa.

and such that node θi sees (at least) nodes θi−1 and θi+1.

Nodes θ0 and θnθ+1 are defined as the end–points of the

sub–network.

The previous definitions are instrumental for the subse-

quent definition of partial visibility network by means of

sub–networks.

Definition 3: Given an ordered network ∆ and two sub–

networks Θ and Σ whose end–points are coincident and

equal to θ0 ≡ σ0 ≡ νi and θnθ+1 ≡ σnσ+1 ≡ νe

respectively, Θ and Σ are named connected sub–networks

Θ ! Σ if any element of Θ does not see any element of

Σ, except the end–points νi and νe.

Example 1: The network of figure 1-(A) has Θ =
{a, b, d, g, h} and Σ = {a, c, e, f, h}, with Θ ! Σ. The

network of figure 1-(B) has Θ = {a, c, e, f, i, j, a} and

Σ = {a, b, d, g, h, a}, with, again, Θ ! Σ.

Definition 4: Given an ordered network ∆, a path πi

of length li is a subset of ordered nodes of ∆, i.e.,

{δπi
1
, δπi

2
, . . . , δπi

li

}, such that the following properties hold:

1) Proximity: δπi
j

sees at least δπi
j+1

;

2) Recurrence: δπi
li

= δπi
1
;

3) Size:
∑li−1

j=1

−→
d δ

πi
j
,δ

πi
j+1

= E.

The notation δπi
j

should be intended as “the j–th node of πi

belonging to the ordered WSN ∆”.

In practice, a path π̄i is a network with nearest neighbor

visibility.

Definition 5: A sequence is a subset of path nodes that

verifies only the proximity property.

Definition 6: Two paths πi and πq are equivalent, i.e.,

πi ∼ πq , if πq can be obtained by πi by a node permutation

that preserves the order.

As an example of Definition 6, πi = {δπi
1
, δπi

2
, . . . , δπi

li

}

is equivalent to πq = {δπi
j
, . . . , δπi

li

, δπi
2
, . . . , δπi

j
}.

Definition 7: Given an ordered network ∆, let P be the

set of all possible paths. The equivalence class w.r.t. the

equivalence relation “∼” is denoted by πi⋆ = {πq ∈ P|πq ∼
πi}. Furthermore, let π̄i be the representative path of the

equivalence class of πi⋆, i.e., a path randomly selected from

πi⋆.

Definition 8: Let P̄ be the set of path representatives (one

for each equivalence class) such that:

1) ∀π̄i, π̄j ∈ P̄ ⇒ li ≥ lj if i < j;

2) ∀π̄i, π̄j ∈ P̄ ⇒ π̄i 6⊂ π̄j .

In light of the previous definitions, we are now able to

make a link between the paths and the connected sub–

networks. Indeed, if π̄i∩ π̄j = {δk, . . . , δk+m}, with m ≥ 1
and δk, . . . , δk+m is a sequence belonging to both π̄i and π̄j ,

then there exists two connected sub–networks, Σ ∈ π̄i and

Θ ∈ π̄j , having start–point δk+m and end–point δk. Notice

that the number of connected sub–networks for π̄i and π̄j is

then equal to the number of sequences belonging to both π̄i

and π̄j .

Example 2: Let us consider the case of connected sub–

networks, represented in figure 1-(A). The set P̄ comprises

2 strings, i.e.,
{

π̄1 = {a, c, e, f, h, i, j, a}
π̄2 = {a, b, d, g, h, i, j, a}

,

that comprises the connected sub–networks of Example 1.

Example 3: Let us consider the case of connected sub–

networks, represented in figure 1-(B). The set P̄ has 2 strings,

i.e.,
{

π̄1 = {a, c, e, f, i, j, a}
π̄2 = {a, b, d, g, h, a}

,

the connected sub–networks of Example 1.

Example 4: Consider two paths of the same length given

by
{

π̄1 = {a, b, c, d, e, f, g, a}
π̄2 = {a, h, i, d, e, j, k, a}

,

then the two paths define two pairs of connected sub–

networks.

IV. STABILITY ANALYSIS

Before going into details, the following Lemma, presented

in [4] and describing the convergence of the scattering

algorithm when no switching occurs, is reported.

Lemma 1: Given the system xk+1 = Axk and x0 ∈ Snx

E ,

with Snx

E = {x ∈ R
nx |0 ≤ xi ≤ E} and nx the dimension

of x, the following statements hold true:

• xk ∈ Snx

E ∀k > 0;

• the system is stable;

• the equilibrium points x̄ belong to a linear subspace

defined by the m ≥ 1 eigenvectors vi associated to the

m eigenvalues λi = 1.



The main result of this Lemma, that will be used in the

sequel, is related to the sign invariance of distances between

nodes that see each other, i.e., nodes that see each other

never overtake each other, regardless of the switchings that

may occur (see [4]).

A. Global Stability for Connected Sub–Networks

Consider an ordered network with two connected sub–

networks Θ and Σ with end–points νi and νe. Let θ−1 ≡
σ−1 ≡ ν′i be the nearest node to node νi in the counter-

clockwise direction (ν′e be the nearest node to node νe in

clockwise direction). Let ξ be the generic nearest node to νi

in the clockwise direction (either θ1 or σ1).

The update equations for Θ can be written as

−→
d k+1

θi,θi+1
=
−→
d k

θi,θi+1
+ α

2 (
−→
d k

θi+1,θi+2
−
−→
d k

θi,θi+1
)−

α
2 (
−→
d k

θi,θi+1
−
−→
d k

θi−1,θi
),

,

(5)

∀i = 1, . . . , nθ − 1, where θi+2 = νe for i = nθ − 1. For

i = 0 we have

−→
d k+1

νi,θ1
=
−→
d k

νi,θ1
+

α

2
(
−→
d k

θ1,θ2
−
−→
d k

νi,ξ)−
α

2
(
−→
d k

νi,θ1
−
−→
d k

ν′

i
,νi

).

(6)

Substituting the index θi with σi, the update equations for

the Σ sub–network is obtained.

Since node θi, ∀i, does not see any node in Σ, it can

overtake any node in Σ. Hence, the following Lemma holds.

Lemma 2: Given an ordered network and two connected

sub–networks Θ and Σ, whose end–points are νi and νe, the

scattering dynamic matrix A in (4) switches if and only if
−→
d θ1,σ1

or
−→
d θnθ

,σnσ
changes sign over time.

Since the switchings are then state dependent, it is neces-

sary to study the dynamics of the distances between nodes

that do not see each other, i.e.,
−→
d θi,σi

. The rationale of the

analysis that follows stems from the subsequent relations of

general validity

−→
d νi,θi

=
−→
d νi,θ1

+

i−1
∑

j=1

−→
d θi,θi+1

(7)

−→
d θi,σi

=
−→
d νi,σi

−
−→
d νi,θi

, (8)
−→
d θi+1,σi+1

−
−→
d θi,σi

=
−→
d σi,σi+1

−
−→
d θi,θi+1

, (9)
−→
d θnθ

,σnσ
=
−→
d θnθ

,νe
−
−→
d σnσ ,νe

. (10)

Equations (7) and (8) follow trivially from the ring topology

and the fact that νi ∈ Θ and νi ∈ Σ. Equation (9) is obtained

by substituting equation (8), for i and i + 1, in the left hand

side terms of the equation (9). Equation (10) follows from

equation (8) computed for counterclockwise distances and

then substituting the epoch E invariance property.

Remark 1: The analysis carried out in this section is pre-

sented for clockwise distances. Nevertheless, similar results

can be obtained using counterclockwise distances.

Consider the case in which nθ > nσ (as in the figure 1-

(B)). Substituting the update equations
−→
d k+1

νi,θi
and
−→
d k+1

νi,σi

into equation (5) and using the equations (7), (8) and (9),

one gets

−→
d k+1

θi,σi
= (1− α)

−→
d k

θi,σi
+

α

2

−→
d k

θi+1,σi+1
+

α

2

−→
d k

θi−1,σi−1
.

(11)

Notice that for i = 1,
−→
d θi−1,σi−1

=
−→
d νi,νi

= 0. Fur-

thermore, for i = nσ,
−→
d θi+1,σi+1

=
−→
d θi+1,νe

. Therefore,

let z = [
−→
d θ1,σ1

, . . . ,
−→
d θnσ ,σnσ

]T , be the state vector of

distances between nodes that do not see each other till

nσ , and consider its linear dynamics zk+1 = Acnzk + ck,

where ck = [0, . . . , 0, α/2
−→
d k

θi+1,νe
]T . By the update equa-

tions (11) follows trivially that Acn is a tridiagonal Toeplitz

matrix that has nσ distinct eigenvalues λi. Furthermore, for

0 < α < 1, Acn turns to be a Schur matrix which is also

non negative (recall (11)). The existence of an equilibrium

point for z is proved in what follows.

Lemma 3: The state space vector z converges to an equi-

librium z̄ > 0.

Proof. Since the term ck ≥ 0, ∀k, and Acn is a non negative

Schur matrix, it follows that for k > k̃ > 0, zk ≥ 0. Hence,

the node closer to νi belongs to Θ for k > k̃. Writing the

system for counterclockwise distances, it follows similarly

that the node closer to νe belongs again to Θ for k > k̃.

From Lemma 2 no switchings will ever occur and then,

from Lemma 1,
−→
d k

θi+1,νe
is constant for k > k̃. It turns out

that the equilibrium point is given by z̄ = (Inσ
−Acn)−1c,

where Inσ
is the identity matrix of appropriate dimensions.

Using results from linear algebra reported in [3], we have

that (Inσ
− Acn)−1 is a positive matrix, hence z̄ > 0.

Lemma 4: Given an ordered network ∆ with two con-

nected sub–networks Θ and Σ, whose end–points are νi and

νe, and with nθ > nσ, the dynamics of node distances in

Σ is given by a linear system whose dynamic matrix Aσ is

doubly stochastic and whose input ck
σ is bounded.

Proof. Consider the state vector defined by the node distances

of Σ, i.e., zσ = [
−→
d νi,σ1

, . . . ,
−→
d σnσ ,νe

]T . From Lemma 3, the

nodes νi and νe are not influenced by the nodes in Σ after

the transient. Therefore, from (6), zk+1
σ = Aσzk

σ +ck
σ , where

Aσ is a Schur matrix that is tridiagonal, doubly stochastic

and non negative by construction. The input vector is instead

given by ck
σ = α/2[(

−→
d k

ν′

i
,νi
−
−→
d k

νi,θ1
), 0, . . . , 0, (

−→
d k

νe,ν′

e
−

−→
d k

θnθ
,νe

)]T .

Therefore, recalling the definition of paths π̄i, the follow-

ing summarizing Theorem holds.

Theorem 1: Consider a network with exactly two paths,

π̄1 and π̄2 with l1 > l2, and such that π̄1 ∩ π̄2 =
{δk, . . . , δk+m−1} is a sequence of length m. Let Θ ∈ π̄1

and Σ ∈ π̄2 be the two connected sub–networks thus defined.

The equilibrium distances of the nodes in π̄1 is E/l1, while

the equilibrium distances of the nodes in π̄2\(π̄1 ∩ π̄2) is

given by
E(l1 −m)

l1(l2 −m)
.

Proof. In view of Lemma 2, the switchings are determined

by the sign of the first and the last element of z. Since

z̄ > 0 (see Lemma 3), the dynamics of the network is

eventually governed by the l1 = n− nσ nodes with nearest



neighbor visibility of π̄1, for which the size property of

Definition 4 holds. Since for nearest neighbor visibility the

dynamic matrix is a doubly stochastic matrix (see [4], [10]),

each distance converges to the mean of all distances, hence

E/l1.

The equilibrium of the node distances of the path π̄2 is

unknown only for the connected sub–network Σ ∈ π̄2. Since

the equilibrium of nodes νi and νe is given by the path π̄1 and

in view of Lemma 4, ck
σ → 0 for k → +∞ and the distances

between the nodes in Σ will be all equal at the equilibrium.

Since the overall distance between the end–points of Σ is

given by E(nθ + 1)/(n− nσ), the proof follows.

Let us summarize the previous result in matrix terms.

With reference to the longest path π̄1, the dynamic of

the distances between nearest neighbor nodes xπ̄1 can be

expressed by a single matrix Aπ̄1 ∈ R
(l1−1)×(l1−1). The

dynamic of the distances of the network π̄1 ∪ π̄2 is de-

termined by the switching matrix set Aπ̄1∪π̄2 and it is

described by the vector xπ̄1∪π̄2 = [xT
π̄1 , xT

π̄2/(π̄1∩π̄2)]
T .

For instance, with reference to Example 2 (figure 1-(A)),

xπ̄1 = [
−→
d a,c,

−→
d c,e,

−→
d e,f ,

−→
d f,h,

−→
d h,i,

−→
d i,j ,

−→
d j,a]T and

xπ̄2/(π̄1∩π̄2) = [
−→
d a,b,

−→
d b,d,

−→
d d,g,

−→
d g,h]T . By means of

Theorem 1, the matrix governing the dynamic of the dis-

tances after the transient is given by

Aπ̄1∪π̄2 =

[

Aπ̄1 0
Bπ̄1∪π̄2 Aπ̄2

]

∈ Aπ̄1∪π̄2 ,

where Aπ̄1 is a doubly stochastic circulant matrix and Aπ̄2 is

a doubly stochastic tridiagonal matrix. Of course, if π̄1∩π̄2 =
∅, Bπ̄1∪π̄2 = 0 and Aπ̄1∪π̄2 contains only one block diagonal

matrix.

It is worthwhile to note that if there are two (or more)

sequences, δk, . . . , δk+n and δl, . . . , δl+n that belongs to

both π̄i and π̄j , then there are two (or more) pairs of

sub–networks, one having start–point δk+n and end–point

δl and the other one having start–point δl+n and end–point

δk. However, the Theorem 1 is still valid for each pair of

connected sub–networks. Moreover, notice that the set of all

the paths in P̄ , represent all the possible dynamics for the

scattering algorithm, i.e., determines all the possible dynamic

matrices Aη(k). For instance, for nearest neighbor visibility,

P̄ contains only one path.

Remark 2: Since Acn ≥ 0 of Lemma 3 is Schur, we are

able to discuss the switchings of the system with respect to

the parameters choice and to the initial configuration of the

network, i.e., z(0):

1) If z(0) ≥ 0, no switching occurs;

2) For a generic z(0), if α ≤ 1/(1−cos(iπ/(nθ +1)) ∀i,
then 0 ≤ λi < 1 and a limited number of switchings

exists;

3) If α > 1/(1 − cos(iπ/(nθ + 1)), due to presence of

at least one λi < 0, an infinite number of switchings

cannot be ruled out since the linear system presents

an oscillating behavior of the state variables in z.

Nevertheless, since the oscillations are damped, the

system will practically eventually reach the steady state

value.
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Fig. 2. Nearest neighbor visibility and proximity for a generic network
topology. Visibility is depicted with different symbols. Notice that if a node
has m associated symbols, it means that m different nodes can be the nearest
for some instants. The pictures on the left depict the initial configuration of
the network, while on the right the equilibrium is shown. The circumferences
are of length E.

Remark 3: In the case of nθ = nσ (as in the figure 1-

(A)), Lemma 3 is still valid with ck = 0, ∀k. Hence, z = 0
is the unique equilibrium point. Similarly, Theorem 1 holds

also in this case with equilibrium distances equal for the two

paths, i.e., the equilibrium is the switching surface between

two different dynamics.

Remark 4: Recalling equation (11), the analysis still

works if νi ≡ νe (depicted in figure 1-(B)).

B. Global Stability for a Generic Network Topology

To prove the convergence in the general case, we will

make use of the definition of paths π̄i to construct all the

possible sub–networks for a generic network topology (see

figure 2).

Example 5: Let us consider the generic network topology

depicted in figure 2. The P̄ has 6 strings, i.e.,






























π̄1 = {a, c, d, g, h, i, a}
π̄2 = {a, b, d, g, h, i, a}
π̄3 = {c, d, g, h, j, c}
π̄4 = {e, j, e}
π̄5 = {e, i, e}
π̄6 = {c, f, c}

.

The final result of the paper on the global convergence of

the distributed wake–up scattering algorithm is presented in

the sequel.

Theorem 2: Given a generic network, the wake–up scat-

tering algorithm asymptotically converges towards an equi-

librium where the node distances are related to the path

length l1.

For space limits, we present here only a sketch of the

proof, which is based on an extension of Lemma 3 and

Lemma 4. Consider two paths that simultaneously generate

connected sub–networks with π̄1, i.e., π̄1∩π̄q∩π̄p 6= ∅. As in

the previous case, it is again possible to define the state vector

of all the distances between nodes that do not see each other.

Since the nodes of the connected sub–networks may be also

inter–connected, a set of switching dynamic matrices are then

obtained. Nevertheless, it can be shown that Lemma 3 can

be extended to this case. Generalizing to an arbitrary number

of paths sharing a sequence of nodes with π̄1, the stability

for the nodes in π̄1, with distance equilibrium determined

by E/l1 (Theorem 1), is derived. The stability of the nodes
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Fig. 3. Steady state wake-up times. (A) Complete visibility. (B) Partial
visibility.

0  20.0 40 60 80 100 120 140 160 180 200
20%

25%

30%

35%

40%

45%

50%

Area Covered by the Network

Partial

Full

(A) (B)

Fig. 4. The coverage scenario. (A) Spatial distribution of the nodes, (B)
Evolution of the ratio between covered area and coverable area.

for all the paths π̄j with j > 1 follow from the generalized

Lemma 4.

V. TOPOLOGY EXAMPLES

In this section, we provide some numerical evidence

of the effectiveness of the approach. We consider a very

simple deployment consisting of 10 nodes. The epoch for

the schedule equal to 5 time units and a wake-up interval

for the nodes equal to 1. Therefore, each node is awake for

20% of the total time. In the simulations presented α = 0.5
and in the initial configuration all the nodes have the same

wake–up time.

In figure 3.(A), the final configuration reached by the

network wake–up times in the case of nearest neighbor vis-

ibility is depicted. Node names are represented with letters.

Solid lines connects nearest visible nodes, while dashed lines

connect visible but not nearest nodes. Notice that the network

presents full visibility among nodes. In the case of partial

visibility, the steady state wake–up times are depicted in

figure 3.(B). In this case, some nodes converge in the same

position, i.e., they are switched on and off in the same time

instant.

In order to show the performance of the wake–up scat-

tering algorithm for the coverage problem, we consider a

rectangular sensing range for the nodes. The nodes are

randomly distributed over a 500× 500 bi-dimensional area.

The deployment in the environment is shown in Figure 4.(A).

Several regions of the considered arena are covered by

multiple nodes. Therefore, a good schedule is one where

the wake-up times of nodes sharing “large” areas are far

apart. Using the algorithm presented in [11], we come up

with an optimal schedule, where an average of 52.94% of

the “coverable” area (i.e., the area actually within the sensing

range of the nodes) is actually covered. The application of the

wake-up scattering algorithm, assuming alternatively com-

plete and partial visibility between the nodes, produces the

result shown in Figure 4.(B). The attained relative coverage

over 100 experiments is 47.3%, with a deviation from the

optimal solution of less than 10% of the optimal coverage,

in the full visibility case.

VI. CONCLUSIONS

In this paper, we have presented convergence results of

a distributed algorithm used for maximizing the lifetime

of a WSN. We have focused our attention on an algo-

rithm recently proposed in the literature, showing how its

convergence can be cast into a stability problem for a

linear switching system. We have proved the stability of the

distributed algorithm in the general case, starting from the

analysis of specific topologies of the WSN. An application

of the scattering algorithm to the coverage problem has been

presented to prove the relevance of the approach in a practical

problem.
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