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Abstract: In this paper we study the convergence towards consensus on information in a
distributed system of agents communicating over a network. The particularity of this study
is that the information on which the consensus is seeked is not represented by real numbers,
rather by logical values or sets. Whereas the problems of allowing a network of agents to reach
a consensus on logical functions of input events, and that of agreeing on set–valued information,
have been separately addressed in previous work, in this paper we show that these problems can
indeed be attacked in a unified way in the framework of Boolean distributed information systems.
Based on a notion of contractivity for Boolean dynamical systems, a necessary and sufficient
condition ensuring the global convergence toward a unique equilibrium point is presented. This
result can be seen as a first step toward the definition of a unified framework to uniformly
address all consensus problems on Boolean algebras.
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1. INTRODUCTION

Recent years have witnessed a gradual yet constant migra-
tion of interests from applications involving a unique pro-
cess and controller, to scenarios where many distributed
agents harmoniously interact so as to achieve a common
control goal. Most of the problems, and of the solutions
that have been proposed so far, can be formulated as
consensus problems over continuous domains, where lo-
cal agents exchange data that consists of real vectors or
scalars. The only difference is in the type of rule each
agent uses to combine its own information with the one
received from its neighbors of the communication graph.
In the simplest case, the evolution of the network of agents
can be described by a linear iterative rule

x(t + 1) = A x(t) + B u(t) ,

where t is a discrete–time, x ∈ Rn is the system’s state,
A is a weight matrix, and u is an input vector. Matrix
A has to be compliant with the available communication
graph and is designed to allow the network convergence
to a unique decision x(∞) → α , that may or may not
depend on the initial system’ s state. Falling into this linear
framework are most of the key papers on consensus (Olfati-
Saber et al. [2007], Jadbabaie et al. [2003], Fax and Murray
[2004]). Moreover, the nonlinear setting encompasses other
important schemes for achieving consensus on continuous,
finite variables. Within this setting, the solution proposed
by Cortés et al. [2004], based on the centroidal Voronoi
tessellation, allows deployment of a collection of mobile
agents so as to maximize the network’s ability to perform a
sensing task within a given environment. These problems,

and indeed many others, can be efficiently solved by means
of these agreement mechanisms.

However, new emerging issues in the field of distributed
control entail defining different forms of consensus algo-
rithms. Very recently, Greco et al. [2008] have addressed
the sensing coverage problem with agents that are al-
lowed to move in a discrete, network–like environment.
The problem of averaging a set of initial measures, taken
by a collection of distributed sensors, in the presence of
communication constraints has been recently addressed by
Frasca et al. [2008]. A consensus strategy, where exchanged
data consists of symbols obtained through a logarithmic
quantizer, is proposed. On the furthermost part of this
track are problems over a discrete domain, where the
system’s state is a logical vector x ∈ Bn. This includes the
problem of building a map of visitors/intruders’ presence
in the rooms and corridors of an art gallery, that has been
attacked by Fagiolini et al. [2008b], through introduction
of so–called logical consensus.

Inadequacy of available solutions for distributed network
agreement arises also in control applications where sen-
sors’ measures are affected by uncertainty. Consider an
application where mobile robots must simultaneously lo-
calize themselves and build a map of the environment, by
using their local vision systems. Traditional approaches
to model sensors’ noise as an additive or multiplicative
signal is possible but not natural. Di Marco et al. [2003]
proposed a centralized solution, where robots exchange
data representing confidence sets of the positions of items
detected in the environment. Moreover, Fagiolini et al.



[2008a] considered the problem of detecting misbehaving
agents within a collection of robots that are supposed
to plan their motions according to a share set of rules.
The objective is attained by definition of a set–valued
consensus algorithm, where local agents exchange data
representing free and occupied regions of the environment.
The algorithm overcomes limitations of available solutions
in the fact that it can operate over infinite domains. Fi-
nally, Marzullo [1985] and later Mills [1991] considered the
problem of synchronizing the clocks of a set of distributed
agents, and proposed a centralized solution to the problem.
Fagiolini et al. [2009] have very recently shown that this
problem can be solved by means of set–valued consensus.

So far, design of logical consensus as well as consensus
on sets have been individually addressed, and only ad–
hoc solutions have been proposed. As a matter of fact,
a network of agents running either types of consensus are
instances of a Boolean iterative system, i.e. a system where
the state is a vector of elements in a Boolean domain and is
updated through operations in a Boolean algebra. The aim
of this paper is to present initial results toward the defini-
tion of a unified framework for dealing with such consensus
problems. With this respect, a notion of a Boolean vector
space is known since the seminal work of Subrahmanyam
[1964]. However, the behavior of a Boolean iterative system
is far from been completely understood. This fact and
the existence of problems of practical interests, such as
the ones mentioned above, are the main motivations for
the current work. The work is based on results available
from the literature on cellular automata and logical iter-
ative systems (Robert [1978, 1980]), that are extended to
general subsets of Rn. Based on a notion of contractivity
for Boolean dynamical systems, a necessary and sufficient
condition ensuring the global convergence toward a unique
equilibrium point is presented. Application of this result
is finally shown through some examples.

2. BOOLEAN ALGEBRAS AND BOOLEAN
ITERATIONS

A Boolean algebra is defined as the 6–tuple B̃ =
(B̃,∧,∨,¬, 0̃, 1̃), where B̃ is a set called domain, ∧ and ∨
are binary operations called meet and join, respectively,
¬ is a unary operation called complement, and 0̃ and
1̃ are called the null and unity elements of the algebra
and belong to the domain B̃. The elements of a Boolean
algebra must satisfy a set of axioms, omitted here for the
sake of brevity, that allow us to introduce a partial order
relation ≤. In particular, for any two elements a, b ∈ B̃, we
say that a ≤ b if, and only if,

a = a ∧ b or, equivalently a ∨ b = b .

0̃ and 1̃ are the least and greatest elements of the algebra.
Furthermore, an element a ∈ B̃ is referred to as a Boolean
scalar. Consider the set B̃n composed of Boolean vectors x,
provided with the meet ∧ and join ∨ with another vector
y ∈ B̃n, and the meet ∧ with a Boolean scalar a ∈ B̃.
Finally, consider the set composed of all square Boolean
matrices A ∈ B̃n×n, provided with the meet and join
operations between two Boolean matrices, and the meet
of a Boolean matrix A with a Boolean scalar a.

Definition 1. If A = {aij}, B = {bij} ∈ B̃n×n and v =
(v1, . . . , vn)T , w = (w1, . . . , wn)T ∈ B̃n, we define the
scalar product w · v to be

n∨

i=1

vi ∧ wi,

(Av)i to be the scalar product between the i-th row of
A and the vector v, and ABij to be the scalar product
between the i-th row of A and the j-th column of B.

In other words products between matrices and vectors,
and between two matrices, are computed in the usual way,
substituting + with ∪ and · with ∩. We will denote with 0
the null scalar, vector, or matrix, according to the context.
The above described partial order relation ≤ between any
two elements of B̃ can be extended to Boolean vectors and
matrices by assuming component–wise evaluation.
Remark 1. Examples of Boolean algebras are binary val-
ues with logical and, and or operations, and set–valued
Boolean algebras with union ∪ and intersection ∩ opera-
tions. See examples considered in the application section.

A Boolean vector function is an application f : U → Y ,
where U ⊆ B̃m, and Y ⊆ B̃p. A Boolean iteration map is
an application F : X × U → X, where X ⊆ B̃n, U ⊆ B̃m,
that links any pair of points (X, u) of the set X × U to
a point in X. Given an initial vector or point x(0) ∈ B̃n,
and an input sequence u(0), u(1), . . . , one can consider the
sequence of vectors generated by the iterative rule

x(t + 1) = F (x(t), u(t)) , (1)
where t = 0, 1, . . . is a discrete time.
Definition 2. (Equilibrium point). Given a constant input
sequence u(t) = ū, a vector x∗ ∈ B̃n is said to be an
equilibrium of application F if F (x∗, ū) = x∗.
Definition 3. (Basin of attraction). Given an equilibrium
point x∗ of F , i.e. F (x∗, ū) = x∗, the basin of attraction of
x∗ is defined as the set of all initial Boolean vectors x(0)
for which iterations of F eventually converge to x∗, i.e.
there exists a time k̄ ≥ 0 such that x

(
k̄
)

= x∗.

To study the behavior of the iterations of Eq. 1, given an
input sequence u(0), u(1), · · · , u(t), one can in principle
directly compute its evolution, which is inefficient and
not systematic. To avoid this, suitable analytical tools
would be required, but a full understanding of the behavior
of such systems has been reached only in the case of
the binary Boolean algebra B̃ = {0, 1} (Robert [1978,
1980]). In fact, the evolution of a cellular automaton,
that can be described by a logical iterative system, can
either converge to a fixed point or enter into a cycle.
Conversely, the fact that a generic Boolean iteration can
be defined over infinite domains B̃ does not allow us
to a priori exclude more complex evolutions, such as
the presence of accumulation points. For this reason, we
restrict to consider a class of Boolean iterations showing
“nice” behaviors. More precisely, we focus on contractive
iterations that can build upon the Boolean algebra of
the sets. Due to Stone’s Representation Theorem, the
presented results remain valid for all Boolean algebras that
are isomorphic to the algebra of the sets. In this vein,
recall that, given a (possibly infinite) nonempty set X , the
power set P(X ) = 2X , the set of all subsets of X , forms a



Boolean algebra with the two binary operations ∧ := ∩
(set intersection), and ∨ := ∪ (set union), the unary
operation ¬ := C(·) (set complementation), the smallest
element is 0̃ := ∅, and the largest element is 1̃ := X (the set
itself). The partial order relation ≤ specializes as follows.
Given two sets x, y ∈ X , we say that x is contained in y,
and we write x ⊆ y, if, and only if, one of the two following
equivalent relations holds: 1) x = x ∩ y, 2) x ∪ y = y.

For the remainder of this paper, we will assume a constant
input u(t) = ū, which will only translate the system’s
equilibrium and thus will be omitted for brevity.

3. CONVERGENCE OF CONTRACTIVE BOOLEAN
MAPS

We first need to introduce a metric over the Boolean
domain P(X ). To this aim, consider the Boolean vector
distance defined through the application D : P(X )n ×
P(X )n → P(X )n given by

D(x, y) def= (D1(x, y), . . . ,Dn(x, y))T , (2)

where x, y ∈ P(X )n, and

Di(x, y) = (C(xi) ∩ yi) ∪ (xi ∩ C(yi)) ,

is the symmetric difference between any pair of two el-
ements in P(X ). It is worth noting that, in case of the
binary Boolean algebra, with P(X ) = {0, 1}, this defi-
nition specializes to the binary vector distance used by
Robert [1980]. Moreover, it can be shown that the vector
distance D satisfies the following axioms

D(x, y) = D(y, x), ∀x, y ∈ Xn ,
D(x, y) = ∅ iff x = y ,
D(x, y) ⊆ D(x, z) ∪ D(z, y) .

We are also interested in the following notion:
Definition 4. (Incidence matrix). The incidence matrix
B(F ) = {bi,j} of a Boolean iteration F = (F1, . . . , Fn)T is
a binary Boolean matrix with

bi,j =
{
X if Fi depends on xj ,
∅ otherwise .

Example 1. Consider the following application

F (x) =

( (x1 ∩ x2) ∪ x3

C(x3)
X

)
.

Its incidence matrix is

B(F ) =

(X X X
∅ ∅ X
∅ ∅ ∅

)
.

We can prove the following results:
Proposition 1. Given any two generic vectors x, y ∈
P(X )n, the following Boolean inequality holds

D(F (x), F (y)) ⊆ B(F )D(x, y) . (3)

Proof 1. Let us consider the i–th component of the in-
equality

Di(Fi(x1, . . . , xn), Fi(y1, . . . , yn)) ⊆

⊆ Di(Fi(x1, . . . , xn), Fi(y1, x2, . . . , xn)) ∪
∪ Di(Fi(y1, x2, . . . , xn), Fi(y1, y2, x3 . . . , xn)) ∪
. . .
∪ Di(Fi(y1, . . . , yn−1, xn), Fi(y1, . . . , yn−1, yn)) ⊆

⊆ bi,1 D1(x1, y1) ∪ bi,2 D2(x2, y2) ∪ . . .
. . . ∪ bi,n Dn(xn, yn) .

The thesis follows by repeating this results for all rows of
the inequality.
Proposition 2. A Boolean matrix M satisfies the Boolean
inequality

D(F (x), F (y)) ⊆ M D(x, y) , (4)
for every pair of vectors x, y ∈ P(X )n, if, and only if,

B(F ) ⊆ M .

Proof 2. The proof of sufficiency is trivial. Let us then
focus on the necessity, and suppose by absurd that there
exists a Boolean matrix M = (mi,j) satisfying the inequal-
ity in Eq. 2, but also admitting an element mi,j ⊂ bi,j ,
where bi,j is the corresponding element in the incidence
matrix B(F ). This necessarily means that bi,j = X , and
mi,j ⊂ X . Then, as bi,j = X , Fi depends on xj , and
there must exist two vectors x = (x1, . . . , xj , . . . , xn)T ,
and x′ = (x1, . . . , yj , . . . , xn)T , with xj /= yj , such that

Di(Fi(x), Fi(x′)) = X .

Computation of x′ starting from x is always possible, but
is omitted here. Basically, given x, and Fi(x), we look for
a vector y such that Fi(y) is complementary to Fi(x). This
last quantity is upper bounded by


j−1⋃

s=1

mi,s Ds(xs, xs)︸ ︷︷ ︸
= ∅



 ∪ mi,j︸︷︷︸
⊂X

Dj(xj , yj)∪

∪




n⋃

s=j+1

mi,s Ds(xs, xs)︸ ︷︷ ︸
= ∅



 ⊂ X ,

that is a contradiction. Therefore, it must hold bi,j ⊆ mi,j ,
for all i, and j.
Proposition 3. Given two Boolean iteration maps F (x)
and G(x), the incidence matrix of the application obtained
as the composition of the two, F (G(x)), satisfies the logical
inequality

B(F (G)) ⊆ B(F ) B(G) . (5)
Proof 3. The proof trivially follows from above. Indeed, if
(F ◦G)i depends on xj , then there exists k s.t. Fi depends
on xk and Gk depends on xj . Hence, B(F )i,k ∩ B(G)k,j =
X which in turn implies that (B(F )B(G))i,j = X .

3.1 Boolean eigenvalues

Let us first consider linear Boolean iterative maps F that
are represented by constant matrices.
Definition 5. (basis vectors). The set composed of the n
Boolean vectors e1, e2, . . . , en ∈ X , with

ej = (∅, · · · , ∅︸ ︷︷ ︸
j−1 times

,X , ∅, · · · , ∅︸ ︷︷ ︸
n−j times

)T ,

forms a base of the infinite set P(X ).



The definition implies that every vector x ∈ P(X )n can be
represented as a linear combination of the basis vectors.
Definition 6. (Boolean eigenvalues and eigenvectors)
Given a Boolean matrix A ∈ P(X )n×n, a Boolean scalar
λ ∈ P(X ) is an eigenvalue of A if, and only if, there exists
a Boolean eigenvector x ∈ P(X )n, x /= ∅, s.t.

A x = λ x .

Definition 7. (Boolean spectrum)
The set of the eigenvalues of a Boolean matrix A represents
its Boolean spectrum and it is denoted as

σ(A) = {λ | ∃x /= ∅ : A x = λ x}.

Then, we can prove the following
Proposition 4. A Boolean matrix A ∈ P(X )n×n, A =
{ai,j} has a Boolean eigenvalue λ = ∅ if, and only if, A
has at least one column for which the union (join) of all
its elements is less than X , i.e. there exists j ∈ {1, · · · , n}
s.t.

n⋃

i=1

ai,j ⊂ X . (6)

Proof 4. (Sufficiency)
Suppose that j satisfies (6). We want to prove that λ = ∅
is a Boolean eigenvalue of A, i.e. there exists x /= ∅ s.t.
A x = ∅x = ∅. Consider a vector composed of emptysets
for all components except for the j–th. Then, we have
A x = Aj xj , where Ai is the i–th column of A, that we
want to be the vector of emptysets. This last equation can
be explicitly written as

ai,1 ∩ xj = ∅ ,
ai,2 ∩ xj = ∅ ,

...
ai,n ∩ xj = ∅ .

This holds if, and only if, it also holds
(a1,j ∩ xj) ∪ (a2,j ∩ xj) ∪ · · · ∪ (an,j ∩ xj) = ∅ ,

and by the distributivity property it yields
(a1,j ∪ a2,j ∪ · · · ∪ an,j) ∩ xj = ∅ ,

n⋃

i=1

ai,j ∩ xj = ∅ ,

that requires that the two sets are disjoint. Moreover, the
value x̄j = X \ (

⋃n
i=1 ai,j) /= ∅ satisfies this condition and,

due to the hypothesis in Eq. 6, is different from ∅, which
implies that x = (∅, · · · , ∅, x̄j , ∅, · · · , ∅)T is an eigenvector
of A.

(Necessity)
Suppose that λ = ∅ is an eigenvalue of A. This implies
that there exists x /= ∅ s.t. A x = ∅. This means⋃n

i=1 ai,j ∩ xj = ∅ , for all j . This condition is trivially
satisfied for every null component of x. For every other
component of x that is different than ∅, the component
itself must be disjoint to the union of the sets composing
the corresponding column of A. This implies that their
union can not cover the entire set X , which finally gives
the thesis.
Remark 2. It is worth noting that, if A has a Boolean
eigenvalue λ, with assigned eigenvector x, then, for every
permutation P , the matrix A′ def= PT A P has the same
eigenvalue, assigned with eigenvector v = PT x. Note that
P is a permutation in the classical sense, but where 0, and

1 are replaced with ∅, and X , respectively. To prove this,
observe that, for hypothesis, we have A x = λ x. Left–
multiplying by PT this gives PT A x = λ PT x , and,
from the identity I = PT P , where I is the matrix with
X on the diagonal elements and ∅ elsewhere, we have
(PT A P ) (PT x) = λ (PT x) , which proves the statement.

Let us give some examples of eigenvalues λ with relative
eigenvectors vλ. It is worth noting that eigenvalues (and
eigenvectors) show behaviors which are not possible in Rn.
For instance, we can have several eigenvalues associated
with the same eigenvector, or σ(A) = P(X ) (see also
following Prop. 6).
Example 2. Suppose X = (∞,∞). Consider the matrix[

∅ ∅
(17, 28] 13

]
→ λ = ∅ , vλ = (x1, ∅)T , ∀x1 ⊂ X .

By Prop. 4, λ = ∅ is an eigenvalue as the union of the
elements of the first column is not the complete set X .
Example 3. As a second example, consider the matrix[

[3, 5) X
X 4

]
. In this case, direct computation shows that,

for every x ⊂ X , λ ⊂ x is an eigenvalue with (an)
associated eigenvector vλ = (x, x)T .

In the remainder of the section, we focus on Boolean
matrices whose elements can only be in the set {0,X}.
Proposition 5. Let A be a n×n matrix s.t. [A]ij ∈ {∅,X}.
λ = X is not an eigenvalue of a A if, and only if, there
exists a permutation that brings A in strictly lower form.
Proof 5. (Sufficiency)
Suppose the existence of a permutation matrix P s.t.
A′ def= PT A P is strictly lower triangular. Then, we need to
prove that there exists no vector x /= ∅ s.t. A′ x = X x = x .
This trivially holds due to the form of matrix A′. Direct
computation of the previous equation gives

∅ = x1 ,
a′2,1 ∩ x1 = x2 ,

a′3,1 ∩ x1 ∪ a′3,2 ∩ x2 = x3 ,
...

a′n,1 ∩ x1 ∪ · · · ∪ a′n,n−1 ∩ xn−1 = xn .

The only vector that solves the system of equations is
x = ∅, which means that λ = X can not be a Boolean
eigenvector A.

(Necessity)
We need to prove that, if λ = X is not an eigenvalue of A,
then there exists a permutation that brings A in strictly
lower triangular form.

Note that X is an eigenvalue of A if, and only if, A has
a fixed point. So, let us start imposing that the vector
w = (X , . . . ,X )T is not a fixed point. Then, if A has not
an empty row, the scalar product between every row of A
and w is X , and therefore w would be a fixed point. Then
suppose that the i–th row of A is made of emptysets. We
can now apply to A a permutation that exchanges the i−th
row with the first one, and then exchanges the i−th with
the first column. In this way we obtain a matrix where the
first row is empty.

By induction, suppose that there exists a permutation
matrix P such that PT A P has the form







∅ . . . ∅
a′2,1 ∅ . . . ∅

...
. . .

...
a′i,1 . . . a′i,i−1 ∅ . . . ∅

a′i+1,1 . . . a′i+1,n
...

. . .
...

a′n,1 . . . a′n,n





,

and consider the vector v = (∅, . . . , ∅,X , . . . ,X )T , where
the first i rows are null. v is not a fixed point of PT A P
only if there exists j > i such that the j−th row of PT A P
has the form (a′j,1, . . . , a′j,i, ∅, . . . , ∅). We can now apply to
PT A P a permutation that exchanges the j−th row with
the i−th one, and then exchanges the j−th with the i−th
column. The inductive step is complete because we obtain
a matrix of the form



∅ . . . ∅
a′2,1 ∅ . . . ∅

...
. . .

...
a′i+1,1 . . . a′i+1,i ∅ . . . ∅
a′i+2,1 . . . a′i+2,n

...
. . .

...
a′n,1 . . . a′n,n





,

which concludes the proof.
Proposition 6. Let A = {ai,j} be a n × n matrix s.t.
ai,j ∈ {∅,X}. If X /∈ σ(A), then

σ(A) = P(X ) \ X .

Proof 6. By Remark 2 we can suppose that A is strictly
triangular. The eigenvector v = (∅, · · · , ∅, C(λ)))T is asso-
ciated with eigenvalue λ. In fact ∅ = A v = λ v = ∅ with
λ /= ∅, v /= ∅.

3.2 Contractive Iterative Maps

A notion of contraction for a generic Boolean iterative map
F w.r.t. the vector distance D can be defined as
Definition 8. (Contractive Iterative Map). An application
F : P(X )n → P(X )n is said to be contractive w.r.t. the
vector distance D : P(X )n × P(X )n → P(X )n if

• X /∈ σ(B(F )), and,
• ∃M ∈ B̃n×n : ∀x, y ∈ P(X )n,

D(F (x), F (y)) ⊆ M D(x, y) . (7)

where Eq. (7) is called contraction inequality.
Remark 3. From Prop. 5, it is worth noting that an
application F is said to be contractive if there exists a
permutation matrix P ∈ {∅,X}n×n s.t. PT B(F ) P is
strictly triangular.

The main result can be stated in the following
Theorem 1. F is contractive w.r.t. the vector distance D
if, and only if, there exists a positive integer q such that
F q is a constant application.
Proof 7. (Sufficiency) Being F contractive, X /∈ σ(B(F ))
and B(F ) up to transformation PT B(F ) P , where P is
a permutation matrix, is strictly triangular. Therefore, it
is ensured the existence of a positive integer q ≤ n s. t.
(B(F ))q = ∅ . It also holds that

!

"

# $

Fig. 1. Example of communication Graph.

∅ ⊆ B(F q) = B( F · · · F ) ⊆
⊆ B(F ) · · · B(F ) = (B(F ))q .

Then, it must hold B(F q) = ∅. This implies that the
application F q is independent of x and it guarantees the
existence of a point ξ ∈ P(X )n s. t. F q(x) = ξ , for
every x ∈ P(X ). Moreover, the rest iteration of F gives
F q+1(ξ) = F q(F (ξ)) = ξ , as F q is constant, but also
F q+1(ξ) = F (F q(ξ)) = F (ξ) , which implies that F (ξ) =
ξ . Then, ξ is a fixed point of F , and it is also unique.
Indeed, suppose by absurd the existence of a second fixed
point η ∈ P(X )n of F , with η /= ξ. Then, we have

∅ ⊆ D(ξ, η) = D(F (ξ), F (η)) ⊆ B(F )D(ξ, η) ⊆
⊆ · · · ⊆ (B(F ))q D(ξ, η) = ∅ ,

as (B(F ))q = ∅. Then, D(ξ, η) = ∅, and ξ = η, which is a
contradiction.

(Necessity)
Suppose that F q is a constant application. Then B(F q) =
B(F )q = ∅. It follows that B(F ) does not admit a
fixed point. Then, X /∈ σ(B(F )) and, by Proposition 5,
B(F ) must be strictly triangular up to a transformation
PT B(F ) P , where P is a permutation matrix. We have
that q ≤ n and F is contractive.
Remark 4. If ξ is the unique fixed point, iterations of F
starting from any initial point x(0) ∈ P(X )n converge to
ξ in at most q steps.

4. APPLICATION

Consider a network of 4 agents, that are able to commu-
nicate according to the graph depicted in Fig. 1. To begin
with, suppose that the agents exchange binary values, i.e.
B̃ = {0, 1} and thus 0̃ = 0 and 1̃ = 1, and that update
their states according to the binary iterative rule






x1(t + 1) = u(t) ,
x2(t + 1) = u(t) ,
x3(t + 1) = x1(t) x2(t) ,
x4(t + 1) = x2(t) x3(t) + x1(t) x2(t) x3(t) ,

(8)

whose incidence matrix is

B(F ) =





0 0 0 0
0 0 0 0
1 1 0 0
1 1 1 0



 .

Being B(F ) strictly lower triangular and by Prop. 5, it
is straightforward to verify that λ = 1̃ = 1 /∈ σ(B(F )).
Then, Theorem 1 allows us to conclude that the iterative
rule in Eq. 8 is contractive. Since x̄ = u is a (unique)
fixed point of the map, iterations will eventually converge
to x̄ irrespectively of the initial point x(0).

Let us now consider the binary iterative map








x1(t + 1) = u(t) + x2(t) ,
x2(t + 1) = x1(t)x3(t) + x1(t) x2(t) ,
x3(t + 1) = x1(t)x2(t) + x4(t) ,
x4(t + 1) = x1(t) + x2(t) x3(t) x4(t) ,

(9)

whose incidence matrix is

B(F ) =





0 1 0 0
1 1 1 0
1 1 0 1
1 1 1 1



 .

By using Prop. 5, it is easy to show that λ = 1̃ = 1 is an
eigenvalue of B(F ). Indeed, there exists no permutation
matrix P s.t. the matrix PT B P is strictly lower triangu-
lar. Starting from the initial value xa(0) = (0, 1, 1, 0)T , the
system will converge to u, whereas starting from xb(0) =
(0, 1, 1, 1)T , the system will not reach a steady state, and
enter into a cycle composed of the states (u, 1, 1, 1)T and
(1, u, 1, 1)T .

Consider now two examples where agents exchange set–
valued data (B̃ = X , 0̃ = ∅, and 1̃ = X ). Assume the
continuous domain to be X = [0,∞). For convenience,
suppose that u ∈ [10, 20] and that agents update their
states according to the Boolean iterative map






x1(t + 1) = u(t) ∪ [10, 20] ,
x2(t + 1) = x1(t) ,
x3(t + 1) = x1(t) ∪ x2(t) ,
x4(t + 1) = (x1(t) ∪ x2(t)) ∩ x3(t) .

(10)

As its incidence matrix B(F ) is strictly lower triangular,
λ = 1̃ = X /∈ σ(B(F )). According to Theorem 1, we
can conclude that the Boolean iterative map in Eq. 10 is
contractive. This implies that the point x̄ = (u∪ [10, 20])
is the unique fixed point of the system, and every iterations
of it will converge to that point.

A variation of the above map is represented by the system





x1(t + 1) = (x1(t) ∩ x3(t)) ∪ [10, 20] ,
x2(t + 1) = x1(t) ,
x3(t + 1) = x1(t) ∪ x2(t) ,
x4(t + 1) = (x1(t) ∪ x2(t)) ∩ x3(t) ,

(11)

whose incidence matrix is

B(F ) =





X ∅ X ∅
X ∅ ∅ ∅
X X X ∅
X X X ∅



 .

By Prop. 5 is it easy to show that λ = 1̃ = X is
an eigenvalue of B(F ), and that the Boolean iterative
map in Eq. 11 is not contractive. Indeed, starting from
the initial point xa(0) = (∅, [2, 5], [7, 10], [8, 12])T , the
system will converge to [10, 20], whereas, starting from
xb(0) = ([30, 40], [40, 50], [20, 60], [30, 90])T , the system
will converge to ([10, 20] ∪ [30, 40]).

5. CONCLUSION

The paper focused on the convergence of information
in distributed systems, where agents share data that
represents logical values or sets. Based on a notion of
contractivity for Boolean dynamical systems, a necessary
and sufficient condition ensuring the global convergence
toward a unique equilibrium point is presented. Such
contractive systems and the corresponding iterative maps

are good candidates for achieving consensus on Boolean
information, and their design will be developed in future
work.
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