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Abstract— The problem of accurate localization using only
measurements from a LIDAR sensor is analyzed in this paper.
The sensor is rigidly fixed on a generic moving platform, which
moves on a plane. Practical on–line applications of localization
algorithms impose constraints on the execution time, problem
that is addressed in this paper and compared with other existing
solutions.

Due to the nature of the sensor adopted, the localization
algorithm is based on a fast and accurateregistration algorithm,
which is able to deal with noisy measurements, outliers and
dynamic environments. The proposed solution relies on the
RANSAC algorithm in combination with a Huber kernel in
order to cope with typical nuisances in LIDAR measurements.
The robust registration is successively used in combination
with an Extended Kalman Filter to track the trajectory of the
LIDAR over time, hence to solve the localization problem.

Simulations and experimental results are reported to show
the feasibility of the proposed approach.

I. INTRODUCTION

One of the main concerns for autonomous mobile robots
is their ability to localize w.r.t. a fixed reference frame as
they travel in an environment. In literature, thelocalization
problem is related to the robot’s position estimation in a
mapped environment, problem also referred in literature
as kidnapped robot problem([1]), and to the maintenance
of positions information over time. Since the localization
problem is a sensor related estimation problem, we aim to
solve it usingonly the information retrieved from alaser
range finder, or LIght Detection And Ranging(LIDAR).

The problem has been widely investigated in literature,
for example fusing a LIDAR with a vision system ([2], [3]),
or using independently moving platforms for laser scanners
([4], [5]). Our framework comprises a mobile platform
equippedonly with a rigidly fixed LIDAR whose plane of
measurements is parallel to the plane of motion. Such a
choice is motivated by the intrinsic mechanical robustness
(since one of its application is related to the DARPA Grand
Challenge competition) and by the limited computational
time constraint (a moving LIDAR frame has several plane of
measurements that should be processed at each time step).
Moreover, a slightly different definition of localization is
considered here, since the agent does not have an a–priori
map of the environment, and it is not a proper SLAM
problem, since a complete map of the surroundings is not
needed. Therefore, the problem we are trying to solve is the
pure localization in an unknown environment, starting from
a well defined initial position (usually the global reference
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frame is fixed to the environment and coincident with the
initial position of the moving robot, customary in the SLAM
literature). To maintain positions information over time,an
Extended Kalman Filter (EKF) is proposed and compared to
an existing particle filter approach, originally presentedfor
face tracking.

A. Algorithm Components

The measurements collected from the laser scanner are
generically referred in literature aspoint clouds, or range
images, collections of three–dimensional points that belong
to the scene in view. An effective localization algorithm
that profitably uses a laser scanner has to retrieve motion
information from the sensed point clouds, in other words it
has to solve thepoint registration, (or absolute orientation
problem). The registration is generically defined for two point
clouds and reconstructs the relative positions from which two
measurements of the same “scene” are taken (localization)
and/or the geometry of the scene in view (SFM or mapping
problem).

In literature a lot of registration algorithms have been
presented (e.g. see [6] or theMaximum Likelihood Esti-
mation Sample Consensus(MLESAC), proposed in [7]).
A distinction among the proposed algorithms is related to
the features adopted: surfaces, lines ([8]) or points. Most
often, the point–based algorithms are used, like the well–
known Iterative Closest Point(ICP) algorithm ([9]) and its
robust variants ([10]). Instead of computing a point–to–point
association, like the ICP does, and then minimizing over the
sum of association errors, other authors propose the use of
global cost indices over the point distributions using kernel
correlation ([11]) or Gaussian mixture densities alignment
([12]).

All the approaches presented in literature solve the reg-
istration problem between two set of points, dealing with
partially overlapping scenes or noise or outliers. Neverthe-
less, for the best of the author’s knowledge, there is not yet
a robust solution with a particular attention to the execution
time for an on–line feasible robotic application. Hence, this
paper presents a very simple solution to the registration
problem based on theRANdom SAmple Consensusalgorithm
(RANSAC, [13]) and on theHuber kernel([14]) that is both
quite accurate and fast.

With very little increment in complexity, the ability of
the RANSAC algorithm to generate hypotheses and then
voting them is also used for dynamic environments. Indeed,
when portions of the scene in view have relative motions but
there is a lack of highly identifiable features in the sensor



readings, it is very difficult to uniquely identify each portion
of the scene without using multiple hypotheses (see [15]).
In the presented paper, since the RANSAC–based algorithm
is used to detect rigidity, it is iterated to estimate all the
possible rigid transformations in the sensed environment,
with minimal changes in the implementation, in order to
preserve its robustness and its efficiency.

II. THE ABSOLUTE ORIENTATION PROBLEM

The measured data acquired by sampling the same scene
at different time instants and from different perspectives, is
expressed in different coordinate frames. Registration isthe
process of coherently expressing the different sets of data
into one coordinate system, hence it is a basic component of
a localization algorithm.

The sensor adopted in this paper, a laser scanner, emits a
laser beam at angleθ and measures the time–of–flight of the
beam till it hits a surface in the environment and returns to
the source. From the wave length of the laser beam and the
time–of–flight it is possible to reconstruct the distance ofthe
surface hit. Hence the measurements available are the angle
of emission of the beamθ and the distanceρ to the surface.
Each beam of the LIDAR is generated from the origin of
the LIDAR frameOl with an angle valueθi ∈ [0,π ], where
the angle is measured from theYl axis (hence, the beam
at angleθi = 0 lies on theYl axis with the same versus,
the beam at angleθi = π/2 lies on theXl axis with the
same versus). With this assumptions, each measurement is a
point pi = [xi yi ]

T ∈ IR2 in the plane of measurementsXlYl ,
hence expressed in the LIDAR frame< L > with xi ≥ 0.
Each measured point has a three-dimensional representation
Pi ∈ IR3, wherePi ∈ XlYl . More precisely, consider a fixed
world frame < W > and two generic LIDAR’s positions,
which correspond to two frames< L1 > and < L2 >. Let
the coordinates of the world pointsPi, ∀i = 1, ...,nw, w.r.t. <
L1 > and< L2 > be l j Pi = ḡ(l j R̄w,wT̄j)

wPi, where the generic
ḡ(R̄, T̄) ∈ SE(3). Thereforel2Pi = ḡ(l2R̄l1,

l1T̄2)
l1Pi.

Let us now define the mapping functionΓ : ϒk ⊂ IR3 → IR2

of each point in the 3–dimensional worldwPi ∈ IR3 onto the
LIDAR measurement space with reference frame< Lk >

lk pi = Γk(
wPi)

where the setϒk = {wPi ∈ IR3|lkR̄w(wPi −
w T̄k) · [001]T = 0}

and wT̄k is the translation vector that connects the origin of
< W >, Ow, with Olk , expressed in< W >. Hence

lk pi = ΠlkR̄w(wPi −
w T̄k), ∀Pi ∈ ϒk ⊂ IR3

whereΠ is the canonical projection matrix from 3–D to 2–D.
Consider now the set of 3–D pointswPi ∈ ϒ1 andwPi ∈ ϒ2,

with i ∈ Iw is the index of a sensed point that is mapped
both onto< L1 > and< L2 >. Hence,∀i ∈ Iw there exists a
j ∈ Il1 and ak∈ Il2 such thatl1mj = Γ1(

wPi) (mj stands for
the j–th model point) and l2sk = Γ2(

wPi) (sk stands for the
k–th scene point). Therefore, #Iw = #Il1 = #Il2 and ∀ j ∈ Il1
there existsk ∈ Il2 (i.e. correspondence problem) such that
l2sk = g(l2Rl1,

l1T2)
l1mj , whereg(R,T) ∈ SE(2). In practical

applications the setϒk should be substituted withϒmk , that

is the set of measurable points in thek–th position taking
into account the limited angle of the LIDAR (θi ∈ [0,π ] ⇒
pi ·Xl > 0) and its limited rangeρi (ρi ≤ ρmax⇒ ‖pi‖2 ≤
ρmax). Moreover,ϒmk should be further modified taking into
account the visibility constraint

ϒvk = {Pi ∈ ϒmk |∀Y ∈ ϒmks.t.Y = Olk +d(wPi −Olk), d ≥ 1}

With this model, the problem of registration between two
scans can be defined as:Given the set of pointswPi ∈ IR3,
with i ∈ Iw, such that l1mj = Γ1(

wPi), with j ∈ Il1,
wPi ∈

ϒv1, and l2sk = Γ2(
wPi), with k ∈ Il2,

wPi ∈ ϒv2, find the
transformation g(R,T) ∈ SE(2) between the setsvm1 =
{mj ,∀ j ∈ Il1} and vm2 = {sk,∀k∈ Il2}.

Notice that with the additional assumption of plane of
measurements constantly parallel to the plane of motion of
the LIDAR (assumption easily verified for indoor environ-
ments or factory floors, as well as the majority of the urban
roads) and solving the registration problem for transforma-
tion in SE(2), the robot is localized in the three–dimensional,
motion–less world frame<W > further assuming that in the
first position the rigid transformation ¯g(wR̄l1,

wT̄1) is known
(in practice, ¯g(wR̄l1,

wT̄1) = ḡ(I3, [0,0,0]T)).

III. RANSAC BASED REGISTRATION

The first problem we are trying to solve in this paper is
to find an accurate transformation between two point sets in
the presence of noise and outliers, preserving convergence
efficiency. The very basic idea of our solution relies on the
RANSAC algorithm, which fits a model to the randomly–
sampled experimental data and interprets/smooths measure-
ments containing a significance percentage of gross errors.
Since we are interested in the sensor localization rather
than in the environment mapping, we try to robustly search
for “rigidity” in the available data (see [16] for a similar
approach). More precisely, given the model setM and the
scene setS of measured points taken respectively from
frame positions< L1 > and < L2 >, RANSAC tries to
robustly estimate the rigid transformationg(R,T) ∈ SE(2)
that relates the two positions.

Our algorithm is very simple and it is depicted in details in
Table I. Notice that the rigid transformation is used to deter-
mine theinliers, i.e. the points that verify the hypothesis. In
an ideal case where there is no noise, no outliers and the point
correspondence is correct, this rigid transformation is also
the actual rigid transformation that connects the two point
clouds. In the presence of nuisances, robustness is added
computing the registration using a least squared estimate on
the inliers (see point 4−c in Table I).

Following [13], the algorithm is applied for a fixed number
of iterationsk that depends on the expected level of noise and
outliers percentage and guarantees to select a valid couple.
More precisely,k is function of the desired probabilityw to
select correctlyn data points, the minimum number of points
to estimate the model. In our casen = 4, 2 points for each
measured set. The numberk is estimated experimentally. For
instance, in the presence of noise with 30% of outliers and



1) Selection of thescene control points
(a) Randomly select a couple of pointss1 ands2 in the set

S and compute their distancedS = ‖s1−s2‖.
2) Selection of themodel control points

(a) Randomly select inM a couple of points(m1,m2)
with the constraintdM = d(m1,m2)≃ dS (i.e. such that
|dS −dM | ≤ dth, wheredth is a user defined threshold).
If such a couple does not exist, go back to the step 1.

3) Model Parameter Estimation
(a) Find the transformation parametersR and T using the

selected couples:φ = ∠(s1− s2)−∠(m1/m2) and T =
1/2(s1 +s2−R(φ)(m1 +m2)).

(b) Apply the estimated transformation to the setS : S ′ =
g(R,T)S .

4) Model Verification
(a) Count the numberNin of points in S ′ consistent with

the modelM (inliers).
(b) Go back to step 1 until a maximum number of iterations

is reached.
(c) - Select the hypothesis with the largest number of

inliers and solve the least mean square problem
(R,T)∗ = argmin(R,T) ∑Nin

i=1

∥

∥mi −g(R,T)si
∥

∥

2 only on
the found inliers and return(R,T)∗.

- If Nin < Nmin, return with no results.

TABLE I

A SUMMARY OF THE STAGES OF THERANSAC–BASED ALGORITHM

FOR A 2–D TRANSFORMATION.

a rotation angleφ = π/8, we might expect to find a correct
correspondence ink≈ 53 selections.

It is worthwhile to note that similarly to our robust solution
of successive measurements association (via rigidity), [17]
use an effective hypotheses and validation scheme for data
association, although robustness is achieved if an accurate
sensor location and an a–priori map of landmarks are avail-
able. Furthermore, the outliers are explicitly consideredin
that work only in the sceneS but not in the model (map)
M .

A. Comparative Examples in the Ideal Case

The RANSAC–based algorithm presented in the previ-
ous section is compared with some of the more efficient
registration algorithms presented in literature. To make the
comparison more fair (the algorithms in literature are not
explicitly thought for LIDAR measurements but for generic
point clouds), an ideal sensor is used in this section, whereas
there is no angle limitationθi ∈ (−π ,π ], the angle distance
between two consecutive beamsθi+1 − θi = ε > 0 is little
as desired, the range measurements are theoretically infinite
ρmax= +∞ and there is no occlusions in the measurements.
Therefore, considering a set ofK LIDAR positions w.r.t.
the reference frame< W >, ϒvk ≡ ϒmk ≡ ϒk holds∀k ∈ K.
Moreover, each of the measured point is isolated, that is
given two measured pointspi , p j ∈ IR2, ‖pi − p j‖> δ , where
δ is the standard deviation of the Gaussian distributed noise.

The algorithms used for the comparisons are the ICP (??),
the Kernel Correlation ([11]), and theCoherent Point Drift
([12]). In figure 1 the accuracy on theXw andYw axis are
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Fig. 1. Accuracy on theXw and Yw axis (in millimeters, upper row),
accuracy of the orientation angle (in degrees, bottom row, left) and the
execution time (in seconds, bottom row, right). The effect of both noise
(drawn from a Gaussian distribution with increasing standard deviation
from 0mm to 40mm) and outliers (with a percentage from 0% to 40%)
are reported.

reported in the upper row (in millimeters), while in the
bottom row the accuracy of the orientation angle (reported
in degrees) and the execution time (in seconds) are depicted.
The effect of both noise (drawn from a Gaussian distribution
with increasing standard deviation from 0 mm to 40 mm)
and outliers percentage (from 0% to 40%) are reported. In
the graphs, the mean error and its standard deviations are
reported for the accuracy and for the execution time. Notice
that a percentage of 40% of outliers both in the scene and in
the model point clouds represent a total percentage of 80%
in the worst case. As it can be easily seen, the RANSAC–
based algorithm performs better than the other algorithms in
accuracy and is considerably faster to be executed.

IV. STRUCTURED ENVIRONMENTS

The characteristics of the environment are relevant for
the registration problem, since it involves pure geometric
information. Hence, the geometry of the environment needs
to be explicitly analyzed to better understand its impact on
the accuracy of the algorithm. For simplicity’s sake, the sur-
rounding ambient is considered as consisting of generically
oriented planes.

Consider two successive measurements of the same sur-
face taken from different positions. Since the LIDAR mea-
sures the three–dimensional points using a single source for
the laser beam, but with different orientationθi ∈ [0,π ], the
measurement process is equivalent to map the surrounding
ambient using a polar–distributed grid. Hence, the sensed
points (i.e. points on the grid) from two successive mea-
surements of the same surface have no correspondence in
general, in fact each point “slides” on the surface of an
amount that depends both on the proximity of the sensed
surface from the emitter and on the trajectory of the sensor.
Furthermore, from geometric observations, also the density



of the measured points depends on the relative distance of
the emitter from the surface.

Due to the simplicity of the presented RANSAC–based
registration algorithm, it is possible to introduce some
constraint in the randomized point selection to reduce the
effect of the noise and the absence of a reliable correspon-
dence in the measurements. Let us consider the LIDAR
measurements at timet generated according to the model
pi(t)= f (α(t),n(t)), whereα(t) is the parameter vector (that
comprises the position of the LIDAR and the position of the
surfaces in the world) andn(t) is the measurement noise.
Without loss of generality, assume that the uncertainty on
the measurements can be expressed, according to the Gauss
Error Theory Model ([18]), as an additive noisepi(t) =
f (α(t))+n(t), where f (α(t)) is the ideal data measurement
function. Let’s assume the Central Limit Theorem is valid
in this contest and that the instrument is not affected by
systematic errors. Then we can think thatn(t) is normally
distributed with zero mean andΣ variance,n(t) ∼ N (0,Σ)
where

Σ =

[

σ2
ρ σρθ

σθρ σ2
θ

]

Furthermore, assume that the error along the beam’s direction
ρ is independent from the error along the angleθ and that
σρ >> σθ (assumed quite often in the LIDAR technical
references). Assuming that three points are measured from
the same plane in the space, recalling that the uncertainty is
given byσρ anddsin(θ̃d)≈ 2σρ , whereθ̃d is the orientation
of the surface w.r.t. to the laser scanner reference frame and
d is the distance between two points, the more the distance
d is increased the more the orientation error is decreased.
Therefore, the RANSAC–based algorithm will firstly try
to select far apart points to improve the accuracy of the
orientation estimate.

Notice that, in the case of a single measured plane whose
dimension is bigger thanρmax, all the measured points lie
on a single lines for two successive measurements. Hence,
only the translations that are perpendicular to the plane are
recovered, while the translations parallel to the plane are
arbitrary. This observation holds also in the case of parallel
planes.

Due to the aforementioned surface point sliding, a correct
correspondence does not exist in general. Since our algo-
rithm is related to the point–to–point association, the voting
function of the RANSAC algorithm is modified adopting
a Huber kernel, a robust kernel usually used for unknown
density estimations. Using the voting schema of RANSAC
but applying the Huber loss functionLh

Lh(ei)
2 =

{ 1
2e2

i ‖ei‖ ≤ te
1
2te(2‖ei‖− te) ‖ei‖ > te

where ei = si − mj is the error of the hypothesized cor-
respondencei ↔ j and te is a user defined threshold (i.e.
the allowable error distance for an inlier), the computational
burden is basically unmodified while a sort of smoothing in
the correspondence problem is applied to the data.
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Fig. 2. Left: world configuration of the measured setM . Right: world seg-
mentation and reconstruction using the proposed algorithm. The distances
are reported in millimeters.

For space limits, the comparisons between the Huber–
modified algorithm and the previously presented comparative
algorithms is not reported for the case of measurements with
nuisances, even though our solution performs better in this
case as well.

A. Extension to Dynamic Environments

One of the most common assumption for registration
algorithms regards the absence of portion of the scene that
moves independently to each other. Relaxing this assumption
opens a lot of new problems that are closely related to
the sensor used, since highly identifiable objects in the
sensor readings allow a more efficient solution in dynamic
environments (e.g. segmentation).

One way to tackle the problem is to exploit the geometric
information read from the sensor. Consider a scene sensed
from two different positions 1 and 2 and the relative point
setsM andS and suppose thatga is the hypothesis with the
larger supportSa. The transformationga is then considered
as the relation between< L1 > and< L2 >, or, equivalently,
that the rigid scene pointsSa are static. Suppose #Sb⋆ =
#[S /Sa] ≥ tmin (tmin > 2 is the minimum number of points
for a valid set, depending on the sensor granularity) and
#Mb⋆ = #[M /(g−1

a Sa)] ≥ tmin: a new hypothesisgb1 is
generated by the RANSAC–based algorithm, identifying the
new inliers scene setSb1. This step is iterated until #Sb⋆ =
#[S /(Sa

⋃n
i=1Sbi )] < tmin. Hence, the relative motionsga−

gbi are computed (Sbi is often referred as apseudo–outliers
set). It is worthwhile to note that this algorithm works quite
well if the configuration of the space and the noise amount
allows a well defined separation between the two regions,
otherwise two measurements are not informative enough to
segment without any prior on the point distribution.

In figure 2 a simulation result with the Huber kernel
RANSAC algorithm has been reported, using two planes
corrupted by noise (whose standard deviation is 100 mm)
and with 20% of outliers.

V. EXTENDED KALMAN FILTER

The registration algorithm presented so far is not sufficient
to efficiently track the LIDAR trajectory over time. In fact,
it only robustly computes the registrationg(R,T) between
two measurement sets. Hence, using the proposed algorithm
alone it is only possible to integrate over time the various
transformation estimates, with trivial problems of solution



drifts (this is the same problem that arises using only
odometric data for mobile robots). A solution in this case
is to use a Bayesian based probabilistic description using
the laser measurements, implementing the estimation process
with an EKF and maintaining a rough point based map for
both inliers and outliers (basically, the measured points in a
position).

The EKF is a wide popular way to estimate the internal
state of a system given the motion prior and noisy measure-
ments. As a matter of fact, since the Kalman filter is not com-
pletely resilient to outliers (due to its iterative strategy based
on the Maximum A Posteriori), even in its robust version
([19]), we apply RANSAC directly on the measurements to
avoid outliers. Indeed, the multi–modality of the conditional
density is only due to the output statistics: assuming that
the posterior density of the hidden variables (the state of
the system related to the registration) is unimodal, the EKF
with RANSAC attempts to estimate the principal mode of
the dynamic evolution.

A rather similar approach is the KALMANSAC ([20]),
where an explicit estimation of the process related to the
outliers is added. Nevertheless, in the absolute orientation
problem we are not interested in an explicit estimation of
the range data but in the localization (or “relocation”) of the
LIDAR. Hence, an explicit estimation of the range data is
not necessary and saves computational time.

More precisely, the continuous time dynamic of the system
is easily expressed as







wẊ = wη
wη̇ = wα
wṗ = 0

wherewX = [x,y,φ ]T represents the actual position of the LI-
DAR in < W >, wη = [ηx,ηy,ηφ ]T represents the velocities
of the LIDAR, wα = [αx,αy,αφ ]T are the input accelerations
(supposed to be unknown in the filter). The vectorp∈ IR2n,
wp= [x1,y1, . . . ,yn]

T is the vector of all the features measured
at the first time instant. The measurement functionshi,
∀i = 1, . . . ,n, are represented by the inlier positions given
by the RANSAC–based registration algorithm

lt pi(t) = hi(X,η , p(0)) = g(R(φ),T(x,y))wpi(0)

(i.e. < L0 >≡< W >). Using element of nonlinear control
theory ([21]), the complete observability of such simple
model has been demonstrated if the initial position of the
LIDAR w.r.t. the fixed frame< W > is known.

A major drawback of this solution is the filter hacking
as soon as there are not enough common points between
the current and the initial measurement sets. More in depth,
suppose that at timēt there are not enough inliers given
by the registration algorithm: the point stored from the
initial position wp(0) are substituted byl t̄−1 p(t̄−1), and the
measurements will be

l t̄ pi(t̄ −1) = hi(X,η , p(t̄)) = g(R(φ),T(x,y))
ĝ−1(R(φ̂ ),T(x̂, ŷ))l t̄−1 pi(t̄ −1)
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Fig. 3. Accuracy on theXw and Yw axis (in millimeters, upper row),
accuracy of the orientation angle (in degrees, bottom row, left) and the
execution time (in seconds, bottom row, right). The effect of both noise
(drawn from a Gaussian distribution with increasing standard deviation
from 0mm to 40mm) and outliers (with a percentage from 0% to 40%)
are reported.

whereĝ is the transformation between<W > and< Lt̄−1 >,
and hencewX̂ = [x̂, ŷ, φ̂ ]T is the estimate till timēt −1, not
further updated (unless a closed loop is detected).

The computational burden of this approach needs some
more considerations to be qualitatively evaluated. Indeed, the
Kalman–state update step is critically related to the dimen-
sion of the state space to estimate, that is 6+2n. In practice,
the number of inliers stored in the state space is just a portion
(typically the 60%) of the total number of measurements
(usually in the magnitude order of few hundreds), so the
overhead introduced is negligible on modern computers.

A. Simulation Comparisons with RANSAC–PF

Among the robust algorithms for robot localization, the
solution proposed by [22] has been chosen for comparison,
a particle filter approach for face tracking (that can be easily
extended to localization). In this approach, called RANSAC-
PF, the feature correspondences (or the registration itself) is
used to generate state hypotheses using RANSAC for the
estimates. Strictly speaking, in the EKF approach presented
above, the RANSAC algorithm is used to generate a mea-
surement of the inliers that, weighted with the Kalman gain,
corrects the prediction, that is equivalent to the generation of
a new particle in the RANSAC–PF, but with clear advantages
in the accuracy of the measurement model involved. Indeed,
in RANSAC–PF only a subset of the measurements, strictly
necessary to the new state generation, is used and, further-
more, it is assumed that the model is completely observable
in one step.

The simulation results reported in figure 3 are referred to a
generic point cloud measured from several different positions
assuming an ideal sensor. The simulation parameters are the
same of the previously presented results in section III-A.
Even though the accuracy is quite similar between the two



Fig. 4. Left: two consecutive scans of the corridor experiments. Right:
correctly registered scans.

Fig. 5. Final registered map.

estimation processes presented (nearly 5% of the travelled
path, both for position and orientation), the KALMAN and
RANSAC algorithm, in combination with the Huber Kernel,
shows an evident improvement with respect to the execution
time, salient characteristic for on–line applications.

VI. EXPERIMENTAL RESULTS

In this final section some experimental results that vali-
date the feasibility of the presented approach are presented.
Five measurements along the Computer Science Department
corridor at UCLA has been collected with a LMS 291 SICK
laser scanner mounted on a moving platform. In figure 4
are shown the single registration results for two consecutive
measurements while the figure 5 depicts the overall result
of the map reconstruction by composition of the registered
inliers measurements and of the robot pose estimate after
five sequential scans.

VII. CONCLUSIONS

In the presented paper the problem of accurate localization
for a moving LIDAR sensor has been presented. Particular
attention has been devoted to the execution time of the
algorithm since it can limits its on–line application. A fast
and accurate registration algorithm is presented, which is
able to deal with noisy measurements and large amounts
of outliers. The main idea of this work is to make the most
of the well known RANSAC algorithm in combination with
a Huber kernel. To show the effectiveness of the proposed
algorithm, a comparison with some of the solutions presented
in literature for robust registration has been presented.

For a practical application of the algorithm, a combination
with an Extended Kalman Filter is also presented in order to
continuously estimate the trajectory followed by the LIDAR,
without using odometry for generality.
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