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Abstract— The problem of accurate localization using only
measurements from a LIDAR sensor is analyzed in this paper.
The sensor is rigidly fixed on a generic moving platform, whit
moves on a plane. Practical on-line applications of localaion
algorithms impose constraints on the execution time, prol@m
that is addressed in this paper and compared with other existg
solutions.

Due to the nature of the sensor adopted, the localization
algorithm is based on a fast and accurateegistration algorithm,
which is able to deal with noisy measurements, outliers and
dynamic environments. The proposed solution relies on the
RANSAC algorithm in combination with a Huber kernel in
order to cope with typical nuisances in LIDAR measurements.
The robust registration is successively used in combinatio
with an Extended Kalman Filter to track the trajectory of the
LIDAR over time, hence to solve the localization problem.

Simulations and experimental results are reported to show
the feasibility of the proposed approach.

. INTRODUCTION

frame is fixed to the environment and coincident with the
initial position of the moving robot, customary in the SLAM
literature). To maintain positions information over tirrsn
Extended Kalman Filter (EKF) is proposed and compared to
an existing particle filter approach, originally presented
face tracking.

A. Algorithm Components

The measurements collected from the laser scanner are
generically referred in literature g®oint clouds or range
images collections of three—dimensional points that belong
to the scene in view. An effective localization algorithm
that profitably uses a laser scanner has to retrieve motion
information from the sensed point clouds, in other words it
has to solve theoint registration (or absolute orientation
problen). The registration is generically defined for two point
clouds and reconstructs the relative positions from whiat t

One of the main concerns for autonomous mobile robotseasurements of the same “scene” are taken (localization)
is their ability to localize w.r.t. a fixed reference frame as and/or the geometry of the scene in view (SFM or mapping

they travel in an environment. In literature, thoealization

problem).

problem is related to the robot’s position estimation in a In literature a lot of registration algorithms have been
mapped environment, problem also referred in literaturpresented (e.g. see [6] or tHdaximum Likelihood Esti-
as kidnapped robot problenf[1]), and to the maintenance mation Sample ConsensyMLESAC), proposed in [7]).
of positions information over time. Since the localizationA distinction among the proposed algorithms is related to
problem is a sensor related estimation problem, we aim the features adopted: surfaces, lines ([8]) or points. Most

solve it usingonly the information retrieved from #aser
range findey or Light Detection And Ranginf_IDAR).

often, the point-based algorithms are used, like the well-
known Iterative Closest Poin{ICP) algorithm ([9]) and its

The problem has been widely investigated in literaturepbust variants ([10]). Instead of computing a point—tdapo
for example fusing a LIDAR with a vision system ([2], [3]), association, like the ICP does, and then minimizing over the
or using independently moving platforms for laser scannesuum of association errors, other authors propose the use of
([4], [B]). Our framework comprises a mobile platformglobal cost indices over the point distributions using letérn

equippedonly with a rigidly fixed LIDAR whose plane of

correlation ([11]) or Gaussian mixture densities alignten

measurements is parallel to the plane of motion. Such (f12]).

choice is motivated by the intrinsic mechanical robustness All the approaches presented in literature solve the reg-
(since one of its application is related to the DARPA Grandgktration problem between two set of points, dealing with
Challenge competition) and by the limited computationgbartially overlapping scenes or noise or outliers. Newerth
time constraint (a moving LIDAR frame has several plane dess, for the best of the author's knowledge, there is not yet
measurements that should be processed at each time stepjobust solution with a particular attention to the exemuti

Moreover, a slightly different definition of localizatiors i

time for an on-line feasible robotic application. Hencés th

considered here, since the agent does not have an a—prigsiper presents a very simple solution to the registration
map of the environment, and it is not a proper SLAMproblem based on tieANdom SAmple Consensigorithm
problem, since a complete map of the surroundings is NGRANSAC, [13]) and on théduber kernel([14]) that is both
needed. Therefore, the problem we are trying to solve is thgiite accurate and fast.

pure localization in an unknown environment, starting from With very little increment in complexity, the ability of

a well defined initial position (usually the global referenc the RANSAC algorithm to generate hypotheses and then
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Ur]ivoting them is also used for dynamic environments. Indeed,
when portions of the scene in view have relative motions but

there is a lack of highly identifiable features in the sensor



readings, it is very difficult to uniquely identify each port is the set of measurable points in tketh position taking
of the scene without using multiple hypotheses (see [15]into account the limited angle of the LIDARB(€ [0, 1] =
In the presented paper, since the RANSAC-based algorithp- X, > 0) and its limited rangep; (01 < Pmax=" || pill2 <

is used to detect rigidity, it is iterated to estimate all thepmay. Moreover,Yy, should be further modified taking into
possible rigid transformations in the sensed environmerdccount the visibility constraint

with minimal changes in the implementation, in order to

preserve its robustness and its efficiency. Yy = {P € Ym|VY € Ymst.Y =0, +d("R - O,), d > 1}

IIl. THE ABSOLUTE ORIENTATION PROBLEM With this model, the problem of registration between two

The measured data acquired by sampling the same sc&ig@nS can be defined f@'Ve” the set of points"R € R®,
at different time instants and from different perspecties With i€ I\|N’ such that tm; =1 ("R), with jel;,"R €
expressed in different coordinate frames. Registratiahas Yvi» @nd 25 =T2("R), with ke 1;,,"R € Yy,, find the
process of coherently expressing the different sets of da@nsformation g(R,T) € SE(2) between the setsvm, =

into one coordinate system, hence it is a basic component{ﬂ‘J'vV_j €y} anq Vmp = {va_lf €y} )
a localization algorithm. Notice that with the additional assumption of plane of

The sensor adopted in this paper, a laser scanner, emit§'§asurements constantly parallel to the plane of motion of
laser beam at angle and measures the time—of—flight of thethe LIDAR (assumption easily verified for indoor environ-
beam till it hits a surface in the environment and returns tg1ents or factory floors, as well as the majority of the urban
the source. From the wave length of the laser beam and tfRads) and solving the registration problem for transforma
time—offlight it is possible to reconstruct the distancehef tion in SE(2), the robot is localized in the three—dimensional,
surface hit. Hence the measurements available are the anglgtion—less world frame:W > further assuming that in the
of emission of the bearfl and the distance to the surface. first position the rigid transformatiog(‘"R,,*T1) is known
Each beam of the LIDAR is generated from the origin ofin Practice.g(™R,,,"T1) = g(l5,(0,0,0]7)).
the LIDAR frameO, with an angle values, € [0, ], where
the angle is measured from th¢ axis (hence, the beam 1. RANSAC BASED REGISTRATION

at angle6 = 0 lies on theY; axis with the same versus, The first problem we are trying to solve in this paper is
the beam at anglé} = 11/2 lies on theX, axis with the to find an accurate transformation between two point sets in
same versus). With this assumptions, each measurement i@ presence of noise and outliers, preserving convergence
point pi = [ yi]" € R? in the plane of measuremen%Y{, efficiency. The very basic idea of our solution relies on the
hence expressed in the LIDAR frameL > with i > 0. RANSAC algorithm, which fits a model to the randomly—
Each measured point has a three-dimensional representatéampled experimental data and interprets/smooths measure
R € R® wherePR € XY{. More precisely, consider a fixed ments containing a significance percentage of gross errors.
world frame < W > and two generic LIDAR’s positions, Since we are interested in the sensor localization rather
which correspond to two frames L; > and <L >. Let  than in the environment mapping, we try to robustly search
the coordinates of the world poing, Vi =1,...,ny, W.r.t. <  for “rigidity” in the available data (see [16] for a similar
Ly > and<L, > be'iR = ET(IJRW,WT{)VXR. where the generic approach). More precisely, given the model sét and the
g(RT) € SE(3). Therefore2R = g(2R,'1T,)"1R. scene set” of measured points taken respectively from
Let us now define the mapping functién Yy C R® - R?  frame positions< L; > and < L, >, RANSAC tries to
of each point in the 3—dimensional wortR € R® onto the  robustly estimate the rigid transformatigiR, T) € SE(2)
LIDAR measurement space with reference framéy > that relates the two positions.
|kIOi —Tw("R) Our algor_ithm is very s_imple and itis d_epic_ted in details in
_ _ Table I. Notice that the rigid transformation is used to dete
where the setry = {"R € R3*Ry ("R —"Ty) - [004T =0}  mine theinliers, i.e. the points that verify the hypothesis. In
and"Ty is the translation vector that connects the origin ofn ideal case where there is no noise, no outliers and the poin
<W >, Oy, with Oy, expressed ik W >. Hence correspondence is correct, this rigid transformation & al
| S We W 3 the actual rigid transformation that connects the two point
‘P =M*Ra("R—"Th), YREVCR clouds. In the presence of nuisances, robustness is added
wherell is the canonical projection matrix from 3—D to 2—-D.computing the registration using a least squared estintate o
Consider now the set of 3—D poitf € Y1 andVP, € Y,, the inliers (see point 4 c in Table 1).
with i € ly is the index of a sensed point that is mapped Following [13], the algorithm is applied for a fixed number
both onto< L; > and< L, >. Hence\Vi € |,, there exists a of iterationsk that depends on the expected level of noise and
jel, and ake |, such thaﬂlmj =T1("R) (m; stands for outliers percentage and guarantees to select a valid couple
the j—th model point and'2s, = I'>("R) (s stands for the More preciselyk is function of the desired probability to
k—th scene point Therefore, #, =#l, = #l,, andVj €1,  select correctiyr data points, the minimum number of points
there existsk € ), (i.e. correspondence problensuch that to estimate the model. In our case= 4, 2 points for each
25 = g("?R,,""T2)"xm;, whereg(R, T) € SE(2). In practical measured set. The numHeis estimated experimentally. For
applications the seYy should be substituted withyy, , that instance, in the presence of noise with 30% of outliers and



1) Selection of thescene control points -
(@) Randomly select a couple of poirgsands; in the set -

. and compute their distanaby, = ||s; — S| “

2) Selection of themodel control points g
(a) Randomly select in# a couple of points(my,ny) g
with the constraintl , = d(m,m) ~d (i.e. such that £

|ds —d 4| < din, whered, is a user defined threshold

e,

If such a couple does not exist, go back to the step|1.
3) Model Parameter Estimation
(@) Find the transformation parametd®sand T using the
selected couplesp = £(s1 — ) — Z(my/mp) and T =
1/2(s1+ 52 — R(@) (M +my)).
(b) Apply the estimated transformation to the sét .7 = ‘
g(RT)S. ¢’
4) Model Verification b
(a) Count the numbeN;, of points in.#’ consistent with A H
the model.Z (inliers).

(b) Go back to step 1 until a maximum number of iteratigns ket
is reached.
(c) - Select the hypothesis with the largest number| of . L .
inliers and solve the least mean square problem Fig. 1. A}f‘ih‘racy, orl ihé(w anld Y\(/y a()j(ls (in mlltl)mt]taers,e;?frdr?x\l)’
. ; Nin -~ accuracy of the orientation angle (in degrees, bottom r n e
t(r?ész;quairr%irg:gRa})dz}E%JLn(.; Tg)iR’T)SH only on execution time (in seconds, bottom row, right). The effettboth noise
> (drawn from a Gaussian distribution with increasing stadddeviation
from Omm to 40mm) and outliers (with a percentage from 0% to 40%)
are reported.

- If Nin < Nmin, return with no results.

TABLE |
A SUMMARY OF THE STAGES OF THERANSAC-BASED ALGORITHM

FOR A 2—D TRANSEORMATION. reported in the upper row (in millimeters), while in the

bottom row the accuracy of the orientation angle (reported
in degrees) and the execution time (in seconds) are depicted
The effect of both noise (drawn from a Gaussian distribution
a rotation anglep = 71/8, we might expect to find a correct With increasing standard deviation from 0 mm to 40 mm)
correspondence ik~ 53 selections. and outliers percentage (from 0% to 40%) are reported. In
It is worthwhile to note that similarly to our robust solutio the graphs, the mean error and its standard deviations are
of successive measurements association (via rigidityj] [1reported for the accuracy and for the execution time. Notice
use an effective hypotheses and validation scheme for ddf@t a percentage of 40% of outliers both in the scene and in
association, although robustness is achieved if an aecuréiié model point clouds represent a total percentage of 80%
sensor location and an a—priori map of landmarks are avail the worst case. As it can be easily seen, the RANSAC—
able. Furthermore, the outliers are explicitly consideired based algorithm performs better than the other algorithms i
that work only in the scene” but not in the model (map) accuracy and is considerably faster to be executed.
A IV. STRUCTURED ENVIRONMENTS
The characteristics of the environment are relevant for
The RANSAC-based algorithm presented in the previhe registration problem, since it involves pure geometric
ous section is compared with some of the more efficienibformation. Hence, the geometry of the environment needs
registration algorithms presented in literature. To maie t to be explicitly analyzed to better understand its impact on
comparison more fair (the algorithms in literature are nothe accuracy of the algorithm. For simplicity’s sake, the su
explicitly thought for LIDAR measurements but for genericrounding ambient is considered as consisting of geneyicall
point clouds), an ideal sensor is used in this section, vasereoriented planes.
there is no angle limitatio® € (—, 7, the angle distance  Consider two successive measurements of the same sur-
between two consecutive bearis; — 6 = € > 0 is little  face taken from different positions. Since the LIDAR mea-
as desired, the range measurements are theoreticallyténfirsures the three—dimensional points using a single source fo
Pmax= —+0c and there is no occlusions in the measurementthe laser beam, but with different orientatiéne [0, 11}, the
Therefore, considering a set & LIDAR positions w.r.t. measurement process is equivalent to map the surrounding
the reference framecW >, Yy, = Y, = Y holdsvk € K. ambient using a polar—distributed grid. Hence, the sensed
Moreover, each of the measured point is isolated, that oints (i.e. points on the grid) from two successive mea-
given two measured points, pj € R?, |pi— pjll > &, where surements of the same surface have no correspondence in
0 is the standard deviation of the Gaussian distributed noisgeneral, in fact each point “slides” on the surface of an
The algorithms used for the comparisons are the IZ®,( amount that depends both on the proximity of the sensed
the Kernel Correlation ([11]), and th€oherent Point Drift surface from the emitter and on the trajectory of the sensor.
([22]). In figure 1 the accuracy on th&, andY,, axis are Furthermore, from geometric observations, also the densit

A. Comparative Examples in the Ideal Case
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of the measured points depends on the relative distance of
the emitter from the surface.

Due to the simplicity of the presented RANSAC-based r .
registration algorithm, it is possible to introduce some = | o

constraint in the randomized point selection to reduce the ™| i o
effect of the noise and the absence of a reliable correspon- § ’

dence in the measurements. Let us consider the LIDAR
measurements at time generated according to the model
pi (t) = f(a(t)’ n(t)), wherea (t) is the parameter vector (that Fig. 2. _ Left: world configuration (_)f the measured s¢t Right: quld seg-
comprises the position of the LIDAR and the position of thénentatlon anq reconstruction using the proposed algoriffine distances

. . . are reported in millimeters.
surfaces in the world) and(t) is the measurement noise.
Without loss of generality, assume that the uncertainty on
the measurements can be expressed, according to the Gaugsyr space limits, the comparisons between the Huber—
Error Theory Model ([18]), as an additive noig®(t) = modified algorithm and the previously presented compagativ
f(a(t))+n(t), wheref(a(t)) is the ideal data measurementa|gorithms is not reported for the case of measurements with

function. Let's assume the Central Limit Theorem is valichyisances, even though our solution performs better in this
in this contest and that the instrument is not affected byzse as well.

systematic errors. Then we can think thmgt) is normally _ . _
distributed with zero mean and variance,n(t) ~.4/(0,%) A. Extension to Dynamic Environments

where 5 One of the most common assumption for registration
s — [Up Upe} algorithms regards the absence of portion of the scene that
Oep 05 moves independently to each other. Relaxing this assumptio

Furthermore, assume that the error along the beam’s airectiOPe"s 4@ lot of new problt_ams that are closely reIaFed 10
the sensor used, since highly identifiable objects in the

is independent from the error along the an@leand that . -~ o .
p P . ong g .__,sensor readings allow a more efficient solution in dynamic
0p >> 0g (assumed quite often in the LIDAR technical” ~ .

) . environments (e.g. segmentation).
references). Assuming that three points are measured fromOne way to tackle the problem is to exploit the geometric
the same plane in the space, recalling that the uncertainty.i : )
given byo, anddsin(éd) ~ 20, wherefy is the orientation information read from the sensor. Consider a scene sensed
p P from two different positions 1 and 2 and the relative point
of the surface w.r.t. to the laser scanner reference frarde an

d is the distance between two points, the more the distan?gtw and.7 and suppose thah is the hypothesis with the

d is increased the more the orientation error is decreasea.rgfcﬁr suFri_o rt%. tT he traLnsformgtloL@a Is then cqns||detrled
Therefore, the RANSAC-based algorithm will firstly tryflhsat tT];er? Ii(c)inchr:,éeegin%t; i\r:e<s,ta2tic>’ (S)L eqousléaggn_y,
to_seleqt far a_lpart points to improve the accuracy of thg[y/ya] >gtmm (tmin >p2 i tr?e minimurﬁ nurzrk;er of 6oi_nts
orlentgtlon est|_mate. . for a valid set, depending on the sensor granularity) and
Notice that, in the case of a single measured plane Whog% — H.4 /(0= )] > tmin: @ new hypothesi is
dimension is bigger thapmay all the measured points lie ~ - 2 Ya “a)] = tmin: yp Oy

on a single lines for two successive measurements. Hengeenerated by the RANSAC-based algorithm, identifying the

X . néw inliers scene set,,. This step is iterated until.#,, =
only the translations that are perpendicular to the plaee a b1 P B

n . i ionE —
recovered, while the translations parallel to the plane a?%y/(yau':lybi)] < tmin: Hence, the relative motiorgs

arbitrary. This observation holds also in the case of pﬁairallgbi are ¢ omputedfbi Is often referr(_ed as a'_seudo—outhers_
planes set). It is worthwhile to note that this algorithm works quit

Due to the af tioned surf int slidi well if the configuration of the space and the noise amount
ue to the aiorementioned surface point siiding, a CoITeqy,, ¢ 5 \yel defined separation between the two regions,

g(tnr:res_pon:jingtet dtohes n(.)tte;qst n ?eneral_. tSlnC(:hqur ?Ig&'herwise two measurements are not informative enough to
rithm 1S re‘ated to the point=to—point association, than® segment without any prior on the point distribution.

function of the RANSAC algorithm is modified adopting In figure 2 a simulation result with the Huber kernel

a Hu_ber kgrnel_, a robu§t kernel u§ually used for unknoW(§ANSAC algorithm has been reported, using two planes

gﬁtnzty le§t|mtr;1]tlolr_1|s.bUS|lng trf1e V‘t’.gi,?? schema of RANSA orrupted by noise (whose standard deviation is 100 mm)
pplying the Huber foss functiah and with 20% of outliers.

1
gh(a)z:{ 2¢ el <te V. EXTENDED KALMAN FILTER

Ste(2 —t >t . . . . .
pte2lall—te) flall>te The registration algorithm presented so far is not sufficien

where g = s —mj is the error of the hypothesized cor-to efficiently track the LIDAR trajectory over time. In fact,
respondence <« j andte is a user defined threshold (i.e.it only robustly computes the registratigg{R, T) between

the allowable error distance for an inlier), the computaio two measurement sets. Hence, using the proposed algorithm
burden is basically unmodified while a sort of smoothing iralone it is only possible to integrate over time the various
the correspondence problem is applied to the data. transformation estimates, with trivial problems of sajati



drifts (this is the same problem that arises using only
odometric data for mobile robots). A solution in this case
is to use a Bayesian based probabilistic description usin
the laser measurements, implementing the estimation gsoce
with an EKF and maintaining a rough point based map for
both inliers and outliers (basically, the measured pointa i
position).

The EKF is a wide popular way to estimate the internal
state of a system given the motion prior and noisy measure-
ments. As a matter of fact, since the Kalman filter is not com- |
pletely resilient to outliers (due to its iterative stratdzased
on the Maximum A Posteriori), even in its robust version
([29]), we apply RANSAC directly on the measurements to
avoid outliers. Indeed, the multi-modality of the conditib
density is only due to the output statistics: assuming that T i
the posterior density of the hidden variables (the state of
the system related to the registration) is unimodal, the EKFg. 3.  Accuracy on theX, and Y, axis (in millimeters, upper row),

; : [ ccuracy of the orientation angle (in degrees, bottom reft) nd the
with RANSAC attempts to estimate the prlnC|paI mode 0fzxecution time (in seconds, bottom row, right). The effettboth noise

the dynamic evolution. (drawn from a Gaussian distribution with increasing stadddeviation
A rather similar approach is the KALMANSAC ([20]), from Ommto 40mm) and outliers (with a percentage from 0% to 40%)

where an explicit estimation of the process related to th¥® rePorted:

outliers is added. Nevertheless, in the absolute oriemtati

problem we are not interested in an explicit estimation of . . 3

the range data but in the localization (or “relocation”) loét Wwheregis the transformation betwesaW > and <l >,

s e AT _ =

LIDAR. Hence, an explicit estimation of the range data i?nd hence’™ = [x,9,¢]" is the esUmatg till timd — 1, not
. . urther updated (unless a closed loop is detected).

not necessary and saves computational time.

. : . . The computational burden of this approach needs some
More precisely, the continuous time dynamic of the system . . L
. . more considerations to be qualitatively evaluated. Indtel
is easily expressed as

Kalman-state update step is critically related to the dimen

§ & & & 3§

wyx = wn sion of the state space to estimate, that4s2. In practice,
W = VYqg the number of inliers stored in the state space is just agiorti
Whp = 0 (typically the 60%) of the total number of measurements

(usually in the magnitude order of few hundreds), so the
where"X = [x,y, ¢|" represents the actual position of the LI-overhead introduced is negligible on modern computers.
DAR in <W >, "n = [nx,Ny,Ng|" represents the velocities
of the LIDAR, Ya = [ax, ay, ay|" are the input accelerations A. Simulation Comparisons with RANSAC-PF
(supposed to be ¥nknown in the filter). The veqpar R™", Among the robust algorithms for robot localization, the
"p=[x1,y1,---,¥n|" is the vector of all the features measuredso|ytion proposed by [22] has been chosen for comparison,
at the first time instant. The measurement functioms g particle filter approach for face tracking (that can belgasi
Vi=1,...,n, are represented by the inlier positions givensxtended to localization). In this approach, called RANSAC

by the RANSAC-based registration algorithm PF, the feature correspondences (or the registratior)itsel
PR B W used to generate state hypotheses using RANSAC for the
‘pi(t) = hi(X,n,p(0)) = 9g(R(e), T(x,y)"pi(0) estimates. Strictly speaking, in the EKF approach presente

(i.e. < Lo >=< W >). Using element of nonlinear control above, the RANSAC algorithm is used to generate a mea-

theory ([21]), the complete observability of such Simplesurement of the inliers that, weighted with the Kalman gain,

model has been demonstrated if the initial position of thgorrects th_e prgdlct|on, that is equwalenUo the genamaaf
LIDAR w.rt. the fixed frame< W > is known. a new particle in the RANSAC-PF, but with clear advantages

A major drawback of this solution is the filter hacking'n the accuracy of the measurement model involved. Indeed,

i in RANSAC-PF only a subset of the measurements, strictly
as soon as there are not enough common points between

- . necessary to the new state generation, is used and, further-
the current and the initial measurement sets. More in dept lore, it is assumed that the model is completely observable
suppose that at timé there are not enough inliers given. ' pietely

by the registration algorithm: the point stored from the" One s_tep. . -
initial positionp(0) are substituted by1p(f— 1), and the The simulation results reported in figure 3 are referred to a
measurements will be ' generic point cloud measured from several different parsdi
B 3 assuming an ideal sensor. The simulation parameters are the
tpi(t—1) = hi(X,n, p1)) = g(R(®), T(X,y)) same of the previously presented results in section IlI-A.
)

t
§LR(Q), TRy 1p(t—1 Even though the accuracy is quite similar between the two



(1]

(2]

Fig. 4. Left: two consecutive scans of the corridor experitae Right:
correctly registered scans.

(4]

(5]

(6]

(7]

Fig. 5. Final registered map.

(8]

estimation processes presented (nearly 5% of the travelleg
path, both for position and orientation), the KALMAN and
RANSAC algorithm, in combination with the Huber Kernel, 10]
shows an evident improvement with respect to the executi(gn
time, salient characteristic for on—line applications.

VI. EXPERIMENTAL RESULTS [11]

In this final section some experimental results that vali-
date the feasibility of the presented approach are preci;sent?12
Five measurements along the Computer Science Departmen!
corridor at UCLA has been collected with a LMS 291 SICK
laser scanner mounted on a moving platform. In figure
are shown the single registration results for two conseeuti
measurements while the figure 5 depicts the overall result
of the map reconstruction by composition of the registere
inliers measurements and of the robot pose estimate afigs]
five sequential scans.

VII. CONCLUSIONS [16]

In the presented paper the problem of accurate localization
for a moving LIDAR sensor has been presented. Particular
attention has been devoted to the execution time of the7)
algorithm since it can limits its on—line application. A fas
and accurate registration algorithm is presented, which ffS]
able to deal with noisy measurements and large amounts
of outliers. The main idea of this work is to make the most
of the well known RANSAC algorithm in combination with (1]
a Huber kernel. To show the effectiveness of the proposed
algorithm, a comparison with some of the solutions presenté20]
in literature for robust registration has been presented.

For a practical application of the algorithm, a combinatione1]
with an Extended Kalman Filter is also presented in order t[%z]
continuously estimate the trajectory followed by the LIDAR
without using odometry for generality.
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