
Robust Almost Sure Stability for Uncertain Stochastically Scheduled

Anytime Controllers

Luca Greco, Daniele Fontanelli and Antonio Bicchi

Abstract— In this paper we consider closed loop stability of a
number of different software tasks implementing a hierarchy of
real-time controllers for a given plant, i.e. “anytime controllers”.
The execution of the control tasks are driven by the available
computational time of an embedded platform under stringent
real-time constraints. Hence, preemptive scheduling schemes
are considered, under which the maximum execution time
allowed for control software tasks is not a–priori known.
A stochastic description of the scheduler accounting for the
presence of some uncertainties in the model, is provided. An
anytime control hierarchy of controllers for the same plant, in
which higher controllers in the hierarchy provide better closed–
loop performance but require larger worst-case execution times,
is assumed to be given. Since the ensuing switching system is
prone to instability, the presented method allows to robustly
condition the partially known stochastic scheduler so as to
obtain a better exploitation of computing capabilities, while
guaranteeing almost sure stability of the resulting switching
system.

I. INTRODUCTION

In the implementation of controllers on an embedded
programmable processor, it is often the case that real-time
tasks have to concurrently share computational resources
with several other tasks, thus reducing the overall HW cost
and development time. Among such tasks, those imple-
menting control algorithms are usually highly time critical,
and have traditionally imposed very conservative scheduling
approaches, whereby execution time is allotted statically,
which makes the overall architecture extremely rigid, hardly
reconfigurable for additions or changes of components, and
often underperforming. In modern applications, the available
computational time is scheduled dynamically, using preemp-
tive scheme to adapt to varying load conditions and Quality
of Service requirements. Representative examples of such
scheduling algorithms are Rate Monotonic (RM) and Earliest
Deadline First (EDF) [1], [2], [3], whose schedulability
guarantee is provided based on estimates of the Worst-Case
Execution Time (WCET) of tasks. Nevertheless, as stated
for example in [1] where it is shown that RM scheduling
can meet all deadlines if the CPU utilization is not larger
than 69.3%, conservative assumptions on the computational
power budget, control tasks complexity and costs are usually

D. Fontanelli and A. Bicchi are with the Interdept. Research Center “E.
Piaggio”, University of Pisa, Italy. This work was supported by the EC
under contract IST 511368 (NoE) "HYCON - Hybrid Control: Taming
Heterogeneity and Complexity of Networked Embedded Systems” and
contract IST 045359 "PHRIENDS” - Physical Human-Robot Interaction:
Dependability and Safety"

L. Greco is with the University of Salerno, Italy. This work has been
(partially) supported by Cassa di Risparmio di Pisa, Lucca e Livorno within
the project "Progetto di Ricerca 2006" of the University of Pisa.

needed to make a given set of tasks schedulable and to limit
the number of deadline misses.

Substantial performance improvement would be gained if
less conservative assumptions could be made on the CPU
utilization. In particular, it is often the case that, for most
of the CPU cycles, a time τ could be made available for a
control task which is substantially longer than τmin, although
only the latter can be guaranteed in the worst case. In [4]
the authors proposed a synthesis methodology to design
controllers, referred to as anytime controllers, capable to
guarantee a useful result whenever the algorithm is run
for at least τmin and to provide better results if longer
times are allowed. The key idea is borrowed from so-called
anytime algorithms, that have been proposed in real-time
computation ([5]). The characteristic of anytime algorithms
(or of imprecise computation, as they are sometimes referred
to) is to always return an answer on demand; however, the
longer they are allowed to compute, the better (e.g. more
precise) an answer they will return. In digital filter design
[6], this philosophy has been pursued by decomposing the
full-order filter in a cascade of lower order filters whose
execution is prioritized.

In the control theory domain, a periodic task is split
in a mandatory part, schedulable in τmin, and in one or
more optional parts ([4]). Therefore, a classical monolithic
control task is replaced by a hierarchy of control tasks
of increasing complexity, each providing a correspondingly
increasing “quality of control”. The ensuing closed loop
system is then switching, where the switches are driven
by the preemptive events of the scheduler. The substantial
literature on switching system stability (see e.g. [7], [8], [9]
and references therein) provides much inspiration and ideas
for the problem at hand, but few results can be used directly.
For instance, [10] provides a method to design controllers
ensuring stability under arbitrary switching sequence, but the
computational complexity of each controller and the neces-
sity of reset maps at any switching instant make its method
not suited for the anytime approach. By the same practicality
argument, algorithms for switched system stabilization (such
as e.g. [11], [12], [13]) requiring the computation of complex
functions of the state to ascertain which subsystem can be
activated next time, are not applicable to anytime control.

On the other hand, in [14] a framework for the stability
analysis of anytime control algorithms, based on a stochastic
model for the scheduler, is presented and a switching policy
capable of conditioning the stochastic properties of the
scheduler was designed, such that overall stability (in the
probabilistic sense of “almost sure” stability [15], [16]) of

16th Mediterranean Conference on Control and Automation
Congress Centre, Ajaccio, France
June 25-27, 2008

978-1-4244-2505-1/08/$20.00 ©2008 IEEE 249

the resulting Markov Jump Linear System (MJLS) can be
guaranteed. This paper extends the results of [14] allowing
a stabilizing stochastic switching policy to be provided even
when scheduler’s features are fixed but not perfectly known.
In this case, the scheduler can be considered affected by
some uncertainties. If they affect directly the steady-state
probability distribution of the scheduler and are bounded by
a polytopic set, the linear programming problem, looking
for a stabilizing policy, can be easily extended. Instead,
when it is the transition probability matrix to be uncertain,
the robust problem formulation is more complex. Indeed,
a polytopic set including the set of steady-state probability
distributions is not directly available and must be computed.
We provide an iterative algorithm capable of yielding such a
polytopic approximation, which has some similarities with
the algorithm used in the construction of the polytopic
invariant set for a polytope of Schur matrices ([17], [18]).
The algorithm starts with the entire set of the probability
distributions and refines its approximation at each step, thus
providing a valid set for which solving the robust stability
problem. The effectiveness of the proposed approach is
shown with a regulation example on a Furuta pendulum
([19]).

II. SCHEDULING PROBLEM FORMULATION AND

CONTROLLER DESIGN

Let Σ � (A,B,C) be the given strictly proper linear,
discrete time, invariant plant to be controlled, and let Γi �
(Fi, Gi,Hi, Li), i ∈ I � {1, 2, . . . , n} be a family of
feedback controllers for Σ. Assume that all controllers Γi
stabilize Σ and are ordered by increasing computational time
complexity, i.e.WCETi > WCETj if i > j. Let the closed-
loop systems thus obtained be Σi � (Âi, B̂i, Ĉi), where

Âi =

[
A+BLiC BHi
GiC Fi

]
;

B̂ =

[
Bi
0

]
; Ĉi =

[
Ci 0

]
.

Problems related to jitter and delay are not considered in this
work since they can be tackled in the design of the single
controllers ([20]). Therefore, we assume that measurements
are acquired and control inputs are released at every sampling
instant tTg, t ∈ N, where Tg is a fixed sampling time. Let
γt ∈ [τmin, τmax], τmax < Tg, denote the time allotted
to the control task during the t-th sampling interval. By
hypothesis, WCET1 ≤ τmin and WCETn ≤ τmax.

Define an event set Lτ � {τ1, . . . , τn}, and a map

T : [τmin, τmax] → Lτ
γt �→ τ(t)

where

τ(t) =





τ1, if γt ∈ [τmin,WCET2)
τ2, if γt ∈ [WCET2,WCET3)
... if

...
τn, if γt ∈ [WCETn, τmax]

Assume a stochastic description of the scheduling process to
be given by

Pr {τ(t) = τ i} = πτi , 0 < πτ i < 1,
∑

i∈I

πτ i = 1,

where πτ i denotes the probability associated to the event that
the time slot γt is such that all controllers Γj , j ≤ i, but no
controller Γk, k > i, can be executed. The distribution πτ =
[πτ1 , πτ2 , · · · , πτn]

T can be regarded simply as an i.i.d.
process, or, in a slightly more complex but general way, as
the invariant probability distribution of a finite state discrete-
time homogeneous irreducible aperiodic Markov chain given
by

π(t+ 1) = PTπ(t), π(0) = π0.

where P = (pij)n×n is the transition probability matrix and
pij is the transition probability from state i to state j of the
Markov chain (e.g. from controller Γi to Γj). Under these
hypotheses, the switching process generates a discrete-time
Markov Jump Linear System (MJLS)

xt+1 = Âτtxt (1)

Definition 1: [16] The MJLS (1) is said almost surely
stable (AS-stable) if there exists µ > 0 such that, for any
x0 ∈ RN and any initial distribution π0, the following
condition holds

Pr

{
lim sup
t→∞

1

t
ln ‖xt‖ ≤ −µ

}
= 1.

Let ‖ · ‖ be a matrix norm induced by some vector
norm. The following sufficient condition for AS-stability was
proved in [15]:

Theorem 1 (1–step average contractivity): [15] If

ξ1 =
∏

i∈I

‖Âτi‖
πτi < 1 (2)

then the MJLS (1) is AS-stable.

A. Design of a Control Algorithm Hierarchy

In this section we briefly resume a bottom-up design
technique, based on classical cascade design, to determine
an ordered set of control algorithms providing increasing
closed-loop performance (see [4] for a more comprehensive
discussion on controller design in the anytime framework).
Consider the two design stages illustrated in fig. 1, in which
controllers are designed to ensure increasing performance by
any classical synthesis technique. The scheme in fig. 1 cannot
be implemented as a composable anytime control, because
after computation of the a) scheme, the input to the F1(z)
block needs to be recomputed completely if the b) scheme
is to be applied. However, by simple block manipulations,
the scheme in fig. 2 can be obtained, where we set

Ĉ2(z) = F1(z)C2(z).

The scheme in fig. 2 is suitable for anytime implementation.
Indeed the series of F1(z) and F2(z) is in open-loop (hence
equivalent to an anytime filter), while the parallel connection
in the feedback loop is simply obtained by summing the new
result by Ĉ2(z) to the previous one by C1(z).

250

yr +

)(1 zC

)(1 zF
-

)(zG

a)
yr +

)(1 zC

)(1 zF
-

)(zG

)(2 zC

)(2 zF
-

+

b)

Fig. 1. Two stages of a classical cascade design procedure

)(1 zΓ

)(2 zΓ

)(1 zΦ

y+

)(1 zC

-

)(zG

)(ˆ
2 zC

)(2 zF
r

)(1 zF

)(2 zΦ

2=i

2=i 2=i

1=i 1=i
+

+

Fig. 2. A switched control scheme suitable for anytime control implemen-
tation. The scheme is equivalent to fig. 1-a when the switches are in the
i = 1 position, and to fig. 1-b for i = 2.

III. STOCHASTIC SCHEDULE CONDITIONING

We define a switching policy to be a map s : N → I,
t �→ s(t), which determines an upper bound to the index
i of the controller to be executed at time t, i.e. i ≤ s(t).
In other terms, at time tTg, the system starts computing the
controller algorithm until it can provide the output of Γs(t),
unless a preemption event occurs forcing it to provide only
Γτ(t), i.e. the highest controller computed before preemption.
Application of a switching policy s to a set of feedback
systems Σi, i ∈ I under a scheduler τ generates a switching
linear system (Σi, τ , s) which, under suitable hypotheses, is
also a MJLS. The stochastic characterization of the chain
τ is assumed to be a-priori known. Furthermore, in a real
application (e.g. automotive domain) different working con-
ditions lead to different stochastic descriptions, thus different
Markov chains for the scheduler can be considered.

As an example, the most conservative policy is to set
s(t) ≡ 1, i.e. forcing always the execution of the simplest
controller Γ1, regardless of the probable availability of more
computational time. By assumption, this (non-switching) pol-
icy guarantees stability of the resulting closed loop system.

On the opposite, a “greedy” strategy would set s(t) ≡ n,
which leads to providing Γτ(t) for all t. Although this policy
attempts at maximizing the utilization of the most performing
controller, it is well known that switching arbitrarily among
asymptotically stable systems Σi may easily result in an
unstable behavior [21].

A sufficient condition for the greedy switching policy to
provide an AS-stable system is provided by Theorem 1.
This condition however is rarely satisfied. Indeed, the fact
that each matrix Âτi is Schur guarantees the existence of a

specific norm ‖ · ‖wi such that ‖Âτi‖wi < 1, but no single
norm ‖ · ‖w exist in general such that ‖Âτi‖w < 1 ∀τ i

1.
The AS stability condition of theorem 1 would require that,
for a chosen norm, for all controllers with ‖Âτi‖w > 1
πτ i is sufficiently small, i.e. they are scheduled by the OS
sufficiently rarely.

A switching policy that suitably conditions the sched-
uler to provide AS-stability was studied in [14], which
is illustrated below. Introduce a homogeneous irreducible
aperiodic Markov chain σ with the same number n of states
as the scheduler chain τ . The states are labelled as σi,
with the meaning that if the associated process form σ(t)
is equal to σi, then s(t) = i, i.e. in the next sampling
interval tTg at most the i–th controller is computed (this
will actually happen if no preemption occurs). We will refer
to σ as the conditioning Markov chain. The synthesis of
such a conditioning Markov chain can be formulated as the
following Linear Programming problem:

Find a vector πσ =
[
πσ1 · · · πσn

]T
such that

1) (Mcπτ)
T πσ < 0

2) 0 < πσi < 1

3)
n∑

i=1

πσi = 1,
(3)

where

Mc =




ln
(∥∥∥Âmin(τ1,σ1)

∥∥∥
)

· · · ln
(∥∥∥Âmin(τn,σ1)

∥∥∥
)

... · · ·
...

ln
(∥∥∥Âmin(τ1,σn)

∥∥∥
)

· · · ln
(∥∥∥Âmin(τn,σn)

∥∥∥
)


 .

Should this problem not have a feasible solution, multi–step
switching policies can be considered, whereby the condition-
ing Markov chain suggests the sequence of controllers to be
executed in the next m steps (see [14] for details). This way,
some control patterns, i.e. substrings of symbols in I, are
preferentially used with respect to others.

IV. ROBUSTNESS (1-STEP)

To start with the robustness problem, let us assume uncer-
tainties affect the steady-state vector πτ . A description for
uncertain but fixed parameters is often provided in terms of
a polytopic set with a finite number of vertices. In this case
the unknown πτ can be considered belonging to the vector
polytopeπ = conv

{
π1τ , . . . , π

r
τ

}
. This description provides

a simple way to manage the robustness problem. Indeed, the
problem (3) is linear, hence convex, w.r.t. πτh , therefore, a
πσ solution of the stability problem for every πτ ∈π can
be found simply by replacing the first inequality in (3) with
r inequalities, one for each vertex πiτ .

If the uncertainties are considered affecting directly the
transition probability matrix P of the scheduler, the ro-
bustness problem needs a more complex formulation. We
can consider the unknown but fixed matrix P to belong to

1When this happens, such norm is a common Lyapunov function and the
system remains stable for all switching sequences. It is well known that this
is rarely the case.

251

a stochastic matrix polytope P = conv {P1, . . . , Pm}. In
order to solve the robustness linear programming problem,
however, we must define the set of uncertain steady-state
probability distributions πτ generated by P. Unfortunately,
the equation πTτ (P − I) = 0 relating P and its steady-state
probability distribution πτ , is not convex, hence even the set

L =





πTτ (P − I) = 0, P ∈ P
0 < πτ i < 1∑

i
πτ i = 1

is, in general, not convex too. This fact implies that we
cannot describe the uncertainty set π by means of steady-
state vectors πiτ of the vertex matrices Pi, since, in general,
conv

{
π1τ , . . . , π

m
τ

}
� L.

A possible way of addressing this problem is to build a
finite vector polytope π such that π ⊇ L.

Before proceeding in the construction of π, it is worth
noting that such a polytope exists. In fact the simplex

S =

{
0 ≤ πτi ≤ 1∑

i
πτi = 1

is, obviously, a finite polytope including L, as it defines the
overall probability distribution set.

Consider now any set W ⊆ S and its mapping along P

PW = conv {P1W, . . . , PmW} .

As a consequence of the linearity of the mapping, if W is a
polytope given by W = conv

{
w1, . . . , wr

}
, then PW is a

polytope given by

PW = conv
i=1,...,m
j=1,...,r

{
Piw

j
}

.

The set L is made up of all the fixed points for the mapping
P , that is ∀πτ ∈ L, ∃P ∈ P such that πTτ P = πTτ . Hence,
by the definition of L, we have that PL ⊇ L. For the same
reason, if W is a polytope such that W ⊇ L, then PW ⊇
L. It is worth noting that in general PW � W , but being
W ⊇ L and PW ⊇ L, it is apparent that PW ∩W ⊇ L.
This fact suggests the following iterative algorithm to build
a tight polytope π ⊇ L:

π0 � S

πk+1 = Pπk ∩πk.

The greater is k the tighter is the polytope πk, and any
πk ⊇ L.

In both cases – uncertainties that affect directly the steady-
state probabilities πτ or the transition probability matrix P
– the synthesis of the robust conditioning Markov chain can
then be formulated as the following Linear Programming
problem:

Find a vector πσ =
[
πσ1 · · · πσn

]T
such that

1) (McMπτ)
T
πσ < 0

2) 0 < πσi < 1

3)
n∑

i=1

πσi = 1,
(4)

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Example of polytopic approximation π for the uncertain set L.
The simplex S is also depicted.

where
Mπτ =

[
π1τ π2τ · · · πrτ

]

and r is the number of vertices of the polytopic approxima-
tion of the uncertain steady-state scheduler probabilities.

Example 1: Let us consider the following stochastic ma-
trices as vertices of the matrix polytope P

P1 =



0.36 0.28 0.36
0.43 0.16 0.41
0.38 0.41 0.20


 , P2 =



0.59 0.15 0.26
0.35 0.33 0.32
0.11 0.52 0.37


 ,

P3 =



0.29 0.09 0.62
0.06 0.86 0.08
0.19 0.43 0.38


 .

The set of allowable probability distribution vectors S is
given by the simplex having as vertices the canonical vectors
eT1 , eT2 and eT3 (see fig. 3). In the same figure the non convex
set L is represented by means of some points randomly
extracted by it. After 10 iterations of the previous algorithm,
the polytopic approximation

π10 = conv
{
π1τ , . . . , π

6
τ

}

π1τ =
[
0.2024 0.3851 0.4125

]T

π2τ =
[
0.4009 0.2805 0.3186

]T

π3τ =
[
0.3993 0.2875 0.3132

]T

π4τ =
[
0.4142 0.2233 0.3625

]T

π5τ =
[
0.1116 0.6883 0.2001

]T

π6τ =
[
0.1926 0.4179 0.3895

]T

for L is obtained.π10 is depicted in fig. 3 as the red polytope
enclosing the set of points representing L.

V. EXAMPLES

The control of a Furuta pendulum with zero offset ([19]),
depicted in fig. 4, will be used to illustrate the application of

252

Fig. 4. Mechanical system adopted for the anytime controller simulations:
a Furuta pendulum with zero offset ([19]).

the robust switching policy. The nonlinear dynamic equations
are

ml2α̈−
1

2
ml2 sin 2α ω2 +mgl sinα = 0

(I +ml2 sin2 α)ω̇ +ml2 sin 2α α̇ = τ ,

where m = 1 kg is the hanging mass, l = 1 m is total
length of the rigid vertical bar and of the rigid bar that hangs
the mass, I = 10−3 kg/m2 is the inertia of the rotating
vertical bar and g = 9.8 m/s2 is the gravity acceleration.
Let α be the measured orientation angle between the rigid
vertical bar and the hanging bar and ω be the angular velocity
of the vertical bar. The Furuta pendulum is actuated by the
torque control τ applied at the structure basement. Let x =
[x1, x2, x3]

T = [α, ω, α̇]T be the state space vector. Consider
the linearized system with respect to the equilibrium point

x̄ =

[
π/4,

√
g
√
2
l
, 0

]T
, with τ = 0. Sampling the linearized

system with an adequate sample time, the open loop unstable,
discretized transfer function of the system will be

G(z) =
0.0012178(z + 3.657)(z + 0.2734)

(z − 1)(z2 − 1.664z + 1)
.

Three controllers are designed

C1(z) =
31.6(z2 − 1.8z + 1.1)

(z − 0.1)(z − 0.5)

C2(z) =
117.7(z − 1.3)(z − 4.7 10−3)(z2 − 1.4z + 0.7)

(z − 0.5)(z + 0.2)(z − 0.1)(z2 + 0.4z + 0.9)

C3(z) =
1370.9(z − 0.4)(z − 0.6)(z − 0.2)(z + 0.2)

(z − 0.5)2(z + 0.3)2(z − 0.1)2
×

(z − 4.7 10−3)(z2 − 0.7z + 0.2)(z2 − 0.4z + 0.3)

(z2 + 0.6z + 0.8)(z2 + 3.4z + 4.7)
.

The controller C1(z) is designed to ensure the stability
requirement, while C2(z) and C3(z) are obtained applying
twice in cascade an LQG design technique, thus resulting
in a quite large number of states for a state space realiza-
tion (see [4] for a detailed discussion on the hierarchical
controllers implementation for the anytime controllers). Pre-
filters Fi(z) for the reference signal (see figure 2) are

0
0.5

1

0
0.5

1

0

0.2

0.4

0.6

0.8

1

a) b)

Fig. 5. Convex set of the steady-state probabilities generated by the
uncertainties on the transition probability matrix Pτ .

assumed to be constants mainly used to adapt the steady-
state gain and ensure static requirements, whose values are

F1(z) = 21.28, F2(z) = 0.54 and F3(z) = 2.73.

Assuming a Markov description for the scheduler, the nomi-
nal steady-state probability distribution is roughly known to
be πτ = [1/20, 5/20, 14/20], with a transition probability
matrix

Pτ =



0.2744 0.342 0.3836
0.0881 0.3443 0.5676
0.0204 0.2097 0.7699


 .

Assuming the nominal scheduler stochastic description,
solving the Linear Programming problem 3 leads to a
steady-state conditioning probability distribution πσ =
[0.017, 0.98, 0.003]. The resulting conditioned distribution
πd = [0.058, 0.94, 0.002] thus satisfies the 1-step average
contractivity condition (2), hence AS-stability is guaranteed.

Let us now consider an uncertainty of the scheduler
Markov chain transition probability matrix Pτ of the kind

P̃τ = Pτ +∆Pτ = Pτ +



ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33


 ,

where ρij are uncertainties such that ρ1j ∈ [−0.025, 0.025],
ρ2j ∈ [−0.02, 0.02] and ρ3j ∈ [−0.01, 0.01]. It is worth
noting that P̃τ may be not a stochastic matrix, since ∆Pτ is
a “box shaped” uncertainty. The valid matrix polytope is the
result of the intersection of the set of the perturbed matrices
P̃τ with the set of stochastic matrices. This operation can
be easily performed as the intersection of two polytopes of
suitable dimensions. The matrix polytope P for this example
has 216 vertices and it is not explicitly reported. Using the
algorithm presented in Section IV, an approximating poly-
tope of the steady-state probability set L is obtained, with
30 vertices. The figure 5-a depicts the uncertain steady-state
probabilities of the scheduler π8 = conv

{
π1τ , . . . , π

30
τ

}
. In

figure 5-b, the polytopic approximation is magnified together
with with randomly chosen points from the set L.

Solving the Linear Programming problem 4, a polytope
C of conditioned steady-state probabilities and the stochas-
tic description of the conditioning Markov chain πσ =
[0.0003, 0.9996, 0.0001] are obtained.

In fig. 6, the Root Mean Squares (RMS) of the regulation
error for different closed loop controllers is shown, corre-
sponding to perturbed initial conditions x0 = [0, π/10, 0]T .

253

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

Time Periods

R
M

S

RMS comparison

0 10 20 30 40 50
0

1

2

3

4
x 10

11

Markov

Γ
1

Γ
2

Γ
3

Greedy

Fig. 6. Regulation results for the Furuta pendulum example: mean value
of the RMS errors (for one thousand runs) of the closed loop system with
different control schedules.

The RMS regulation error is obtained as the mean of the
RMS errors for one thousand simulations, whereby the
scheduler stochastic description is obtained by randomly
choose a transition probability matrix P̃tau ∈ P. Plots
labelled Γ1, Γ2, and Γ3, corresponding to results obtained
without switching, are reported for reference (due to the
bottom-up design, the performance increase using more
complex controllers). Furthermore, it is worthwhile to note
that the RMS obtained by the greedy switching policy, i.e.
the policy that executes the maximum scheduled controller,
shows instability: the axis labels on the right apply to this
plot. On the same figure 6, the plot labelled “Markov”
shows the RMS errors mean obtained by the stochastically
conditioned scheduler.

The example shows how the proposed stochastic switching
policy ensures the AS-stability of the closed loop system
(which is not guaranteed by the greedy policy), while it
obtains a definite performance increase (of the order of 50%)
with respect to the conservative scheduler (corresponding to
using only Controller 1, see fig. 6) even in the presence of
a stochastic uncertain description of the scheduler.

VI. CONCLUSIONS

We considered the problem of robustly scheduling the
execution of different, hierarchically ordered tasks designed
for anytime control of a linear plant. Given an uncertain
stochastic model of the scheduler, and the set of controllers,
we are able to provide a switching policy that conditions
the partially known scheduler so that the resulting switching
system is stable in a probabilistic sense.

Firstly, we presented an algorithm that approximates the
non convex set of the steady-state probabilities of the uncer-
tain Markov chain modelling the scheduler. Then, we derived
a linear program that finds the robust switching policy under
the estimated scheduler uncertainties. We have also shown
that underexploitation of CPU time caused by conservative
control scheduling policies can be effectively reduced, and

control performance can be enhanced by adopting a robust
scheduling policy previously designed.

Much work remains to be done to make numerically
tractable the solution in the robust multi–step case.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the Association for

Computing Machinery, vol. 20, no. 1, 1973.
[2] J. W. S. Liu, Real–Time Systems, T. Holm, Ed. Upper Saddle River,

NJ: Prentice Hall Inc., 2000.
[3] G. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Boston: Kluwer Academic
Publishers, 1997.

[4] D. Fontanelli, L. Greco, and A. Bicchi, “Anytime control algorithms
for embedded real-time systems,” in Proc. of Hybrid Systems: Com-

putation and Control, St. Louis, MO, April 2008.
[5] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung,

“Imprecise computation,” Proceedings of the IEEE, vol. 82, no. 1,
pp. 83–93, January 1994.

[6] N. Perrin and B. Ferri, “Digital filters with adaptive length for real–
time applications,” in Proc. IEEE Real-Time and Embedded Tech-

nology and Applications Symposium, K. E. Le Royal Meridien, Ed.,
Toronto, Canada, May 2004.

[7] M. S. Branicky, “Stability of hybrid systems: State of the art,” in Proc.
36th IEEE Conf. On Decision and Control, San Diego, California,
USA, December 1997, pp. 120–125.

[8] R. A. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson,
“Perspectives and results on the stability and stabilizability of hybrid
systems,” IEEE Proceedings, vol. 88, no. 7, pp. 1069–1082, 2000.

[9] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid
dynamical systems,” IEEE Trans. Automat. Contr., vol. 43, no. 4, pp.
461–474, 1998.

[10] J. P. Hespanha and A. S. Morse, “Switching between stabilizing
controllers,” Automatica, vol. 38, no. 11, pp. 1905–1917, 2002.

[11] M. Wicks and R. DeCarlo, “Solution of coupled Lyapunov equations
for the stabilization of multimodal linear systems,” in Proc. American

Control Conf., Albuquerque, NM, June 1997, pp. 1709–1713.
[12] S. Pettersson and B. Lennartson, “Stabilization of hybrid systems using

a min-projection strategy,” in Proc. American Control Conf., Arlington,
Virginia, June 2001, pp. 223–228.

[13] X. D. Koutsoukos and P. J. Antsaklis, “Design of stabilizing switching
control laws for discrete- and contiunuous-time linear systems using
piecewise-linear Lyapunov functions,” Int. J. Control, vol. 75, no. 12,
pp. 932–945, 2002.

[14] L. Greco, D. Fontanelli, and A. Bicchi, “Almost sure stability of
anytime controllers via stochastic scheduling,” in Proc. IEEE Int. Conf.

on Decision and Control, New Orleans, LO, December 2007.
[15] Y. Fang, K. Loparo, and X. Feng, “Almost sure and δ-moment stability

of jump linear systems,” Int. J. Control, vol. 59, no. 5, pp. 1281–1307,
1994.

[16] P. Bolzern, P. Colaneri, and G. D. Nicolao, “On almost sure stability
of discrete-time Markov jump linear systems,” in Proc. 43rd IEEE

Conf. On Decision and Control, vol. 3, 2004, pp. 3204–3208.
[17] R. K. Brayton and C. H. Tong, “Stability of dynamical systems: A

constructive approach,” IEEE Trans. Circuits Syst., vol. CAS-26, no. 4,
pp. 224–234, 1979.

[18] ——, “Constructive stability and asymptotic stability of dynamical
systems,” IEEE Trans. Circuits Syst., vol. CAS-27, no. 11, pp. 1121–
1130, 1980.

[19] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of
inverted pendulum using pseudo-state feedback,” Proceedings of the

Institution of Mechanical Engineers. Pt.I. Journal of Systems and

Control Engineering, vol. 206, no. I4, pp. 263–269, 1992.
[20] A. Cervin, B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo, “The

jitter margin and its application in the design of real-time control
systems,” in Proc. 10th Int. Conf. on Real-Time and Embedded

Computing Systems and Applications, Gothenburg, Sweden, August
2004.

[21] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched
systems: A Lie-algebraic condition,” Systems & Control Letters,
vol. 37, no. 3, pp. 117–122, 1999.

254

