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Abstract— Component-based techniques revolve around com-
posable, reusable software objects that shield the application
level software from the details of the hardware and low-
level software implementation and vice versa. Components
provide many benefits that have led to their wide adoption
in software and middleware developed for embedded systems:
They are well-defined entities that can be replaced without
affecting the rest of the systems, they can be developed and
tested separately and integrated later, and they are reusable.
Clearly such features are important for the design of large-scale
complex systems more generally, beyond software architectures.
We propose the use of a component approach to address
embedded control problems. We outline a general component-
based framework to embedded control and show how it can
be instantiated in specific problems that arise in the control
over/of sensor networks. Building on the middleware compo-
nent framework developed under the European project RUNES,
we develop a number of control-oriented components necessary
for the implementation of control applications and design their
integration. The paper provides the overview of the approach,
discusses a real life application where the approach has been
tested and outlines a number of specific control problems that
arise in this application.

I. I NTRODUCTION

Networked embedded systems play an increasingly impor-
tant role and affect many aspects of our lives. By enabling
embedded systems to communicate, new applications are
being developed in areas such as health-care, industrial
automation, power distribution, rescue operations and smart
buildings. Many of these applications will result in a more
efficient, accurate and cost effective solution than previous
ones. The European Integrated Project Reconfigurable Ubiq-
uitous Networked Embedded Systems (RUNES) [8] brings
together 21 industrial and academic teams in an attempt to
enable the creation of large scale, widely distributed, hetero-
geneous networked embedded systems that inter-operate and
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adapt to their environments. The inherent complexity of such
systems must be simplified if the full potential for networked
embedded systems is to be realized. The RUNES project
aims to develop technologies (system architecture, middle-
ware, networking, control etc.) to assist in this direction,
primarily from a software and communications standpoint.

Networked control systems impose additional require-
ments that arise from the need to manipulate the environment
in which the networked systems are embedded. Timing and
predictability constraints inherent in control applications are
difficult to meet in general, due to the variations and un-
certainties introduced by the communication system: delays,
jitter, data rate limitations, packet losses etc. For example, if
a control loop is closed over a wireless link, it should tolerate
lost packets and be able to run in open loop over periods of
time. Resource limitations of wireless networks also have
important implications for the control design process, since
limitations such as energy constraints for network nodes
need to be integrated into the design specifications. The
added complexity and need for re-usability in the design of
control over wireless networks suggests a modular design
framework.

In this paper, we propose a component-based approach
to handle the software complexity of networked control
systems. A general framework is presented and it is shown
how it can be instantiated in specific problems that arise in
control over wireless sensor networks as well as in control
of network and communication resources. The proposed
component framework hides network programming details
from the control system designer. The components are well-
defined entities that can be replaced without affecting the
rest of the systems. It is shown how they can be developed
and tested separately and integrated later. Building on the
middleware component framework of RUNES, we develop
a number of control-oriented components necessary for the
implementation of control applications and design their in-
tegration. The paper provides the overview of the approach,
discusses a real life application where the approach can be
used and outlines a number of specific control problems that
arise in this application. Companion papers [27], [12], [14],
[15] provide the details of the implementation of specific
components to address these control problems, as well as
experimental validation results.

The paper starts by presenting a brief overview of mid-
dleware and component frameworks in general, and those
targeted to networked embedded systems in particular (Sec-
tion II). The RUNES tunnel disaster relief scenario that



serves to focus our work is then described in Section III. An
overview of control problems that arise in the scenario is also
given in the same section: maintaining the connectivity of a
wireless sensor network in an adverse environment, utilizing
the resources of the network itself (e.g., wireless transmission
power control) and those of mobile robots (e.g., to replace
missing nodes). In Section IV we discuss the components
that need to be implemented to address the specific control
problems in the task on physical network reconfiguration; the
details of the development of these components and their ex-
perimental testing are given in the companion papers. Some
examples of general purpose, low-level control components
are also presented in the section. Section V details a security
component framework, which provides an interface to protect
communications among nodes. The hardware and software
integration for the demonstration of the physical network
reconfiguration is given in Section VI. Its validation is shown
in Section VII, which describes both a computer simulation
of the scenario and some preliminary experimental results.
Some concluding remarks are given in Section VIII.

II. M IDDLEWARE AND COMPONENTS

A. Middleware

In a component-based software system, a component is
a system element offering a predefined service and able to
communicate with other components. A component is a unit
of independent deployment and versioning. It is encapsulated
and non-context specific. It follows that components can
interact with other components without knowing much of
their internal structure or their execution environment (for ex-
ample, their operating system or network protocols). Clearly,
devising such an abstract level of interaction is a non-trivial
effort. In many cases, an effective solution can be found
by the judicious application of a software abstraction layer,
known as middleware. Middleware mediates the interactions
of a component with its environment by providing a program-
ming interface transparent to the operating systems and to
the network protocols underneath. A comprehensive survey
of middleware concepts (motivated primarily for networked
embedded systems) can be found in [9]. Important examples
of middleware currently in use are Java Remote Method
Invocation (Java RMI) [5], Microsoft Component Object
Model (COM) [6], and Common Object Request Broker
Architecture (CORBA) [2]. These frameworks, however, are
not specifically targeted to embedded systems or distributed
control systems. The resource constrained implementation
platforms common in embedded and distributed control
systems imply additional, severe requirements on the middle-
ware. To meet these requirements, extensions of general pur-
pose middleware have been developed. One such example is
real-time CORBA [30], which features prioritized scheduling
policies for threads and export some control parameters in the
communication protocols. Even real-time CORBA, however,
has several shortcomings that make its use on demanding
embedded system applications problematic [9].

Several application domains have emphasized the im-
portance of developing software infrastructures specifically

tailored to the needs of the domain. For example, the
automotive industry has formed the development partnership
AUTOSAR [1], to achieve modularity, scalability, transfer-
ability and re-usability of software functions in vehicles.
AUTOSAR strives to provide an open system architecture
for automotive systems based on standardized interfaces for
the different system layers. A precise component definition
and an appropriate composition framework are essential to
answer a variety of questions on system architectures, e.g.,
on synchronization and network protocols [25].

Specific control and real-time requirements on the middle-
ware have also been investigated in recent academic software
prototypes. Etherware [16] is a middleware for networked
control that was recently proposed. This middleware focuses
on the ability to maintain communication channels during
component restarts and upgrades and to recovery from failure
situations. ControlWare [31] is a middleware that utilizes
feedback control for guaranteeing performance in software
systems. Though not specifically targeted to embedded sys-
tems, its usefulness has been demonstrated on web server and
proxy quality of service management. A tutorial overview
of software technologies for reusable and distributed control
systems is given in [23].

Finally, from a theoretical point of view, semantic frame-
works that support composition and abstraction operations
are central to the formal modeling and analysis of such
distributed systems. For embedded systems (where the logic
functions encoded in the computational elements have to
interact with a primarily analog environment) the most
relevant frameworks are those developed in the area of hybrid
systems. Several such frameworks have been proposed in
recent years, to support the modeling, verification, system
development and simulation efforts; for an overview see [29].
Some are general purpose, while others are targeted to
specific application areas [18]. Most are also supported by
simulation, verification or design computer tools. A link
between these theoretical developments and the middleware
frameworks discussed above is just emerging as an exciting
and important research area.

B. Component frameworks for networked embedded systems

The main reason for using component-based approaches
in software development is to enforce re-usability. A new
software application is built from existing well-tested com-
ponents. The components are composed (or assembled) into
applications. It is often possible to aggregate components
together, forming new components.

Component-based software engineering has been success-
fully used in several software development projects, pri-
marily for desktop and eBusiness applications. Within real-
time embedded systems, the use of component techniques
is not well-developed. For desktop applications the COM
technology is most widely used. COM components are often
relatively large in size, each component encompassing a
substantial amount of the application functionality. Another
widely used class of component models are the models that
have their basis in distributed object models. These include



the CORBA Component Model (CCM) [3], Enterprise Java
Beans (EJB) [4], and .NET [7]. The .NET model can be
viewed as an distributed evolution from COM that is espe-
cially interesting due to Common Language Runtime (CLR).
CLR is a virtual machine technology that can be compared to
Java’s Virtual Machine. It is Microsoft’s implementation of
the Common Language Infrastructure (CLI) standard, which
defines an execution environment for program code. The
CLR executes a bytecode format into which several lan-
guages can be compiled, e.g., C# and Visual C++. Through
this it is possible to integrate software components developed
in different programming languages. The drawback with the
approach, compared to, e.g., Java-based approaches, is that
it is operating system dependent, i.e., it is only supported
for Windows-based systems. Components are viewed as
extended objects that can be distributed. However, each indi-
vidual object still resides on a single node in the network. In
these types of component models object-oriented concepts,
such as classes and inheritance, are integral parts.

In component technologies for embedded systems, non-
functional properties such as safety, timeliness, memory
footprint, and dependability are of particular interest. Com-
pared to the desktop component approaches described above
the component models here are much more limited in
functionality. Often the component models are intended for
applications of an algorithmic nature. These applicationsare
commonly modeled as data- or signal-driven block diagrams.
Another name for this is a pipe and filter architecture.
The individual components are typically smaller than in the
previous component models, and the emphasis on component
aggregation is larger. These component technologies are
frequently inspired by the block diagram approach in Mat-
lab/Simulink, the function block diagrams in the automation
language standard IEC 61131-3, and by ordinary discrete
logic gates. There are still no good examples of commercially
successful component technologies for embedded systems.
However, it is an area where considerable research currently
is being performed.

For sensor network and mobile ad-hoc network applica-
tions, all the component technologies above are, in principle,
applicable. Sensor networks are an example of a severely
resource-constrained distributed implementation platform. If
they are to host sensor fusion and control applications, it is
quite clear that the component technologies developed for
embedded systems are a natural option. Embedded control
systems and sensor network applications, furthermore, have
many similarities. In both cases, a component model centered
around data flows is more natural than the focus on com-
ponent function calls found in desktop component models.
Following this path a possibility would be to develop a set of
generic sensor, data fusion, control and actuator components
or component types; examples along these lines are outlined
in Section IV. The limited battery resources make power-
awareness an important attribute of component models for
sensor networks.

The different characteristics of desktop applications and
sensor/actuator networks do, however, not necessarily imply
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Fig. 1. Comparison of embedded networked component technologies.

that it is not possible to base a component model for
sensor/actuator networks on more conventional component
technologies; the development effort only becomes consider-
ably larger. Rather than having built in support for data flows
in the middleware, it has to be explicitly realized through
component function calls. This is the approach that has been
taken in the RUNES project.

In mobile ad-hoc network applications the resource con-
straints are normally less severe than in wireless sensor net-
works. More powerful CPUs with more memory and battery
resources are often used. Hence, here the desktop-type of
component technologies can be applied. The components of
this type are often more application-oriented than the simpler
and more generic sensor-controller-actuator components.In
a mobile robot setting we may decompose the application
into components for localization, path planning, collision
avoidance, etc. These are the types of components of main
interest the work presented here.

The table in Figure 1 summarizes embedded networked
component technologies by listing their characteristics to-
gether with some advantages and disadvantages.

C. RUNES middleware components

Central to our efforts in developing a component-based
framework for networked control is the RUNES middleware
component model [10]. Even though sensor networks (and
other ad hoc networks) are of central interest to RUNES, the
RUNES middleware component model is closer in spirit to
the desktop model discussed above, than to the embedded
model. One reason for this is that the RUNES components
are not only intended for the sensor nodes, but should also
reside on the gateways and on the back-end computers.
Another reason is that the RUNES components are also
intended as a means for structuring parts of the RUNES
middleware itself.

A component-based framework for networked control
should enable quality of service definitions and negotiation
between the designer of the control application and the



middleware. The solution should combine the appropriate
level of abstraction needed by control applications with a
lightweight and scalable architecture. The middleware should
provide the appropriate support for a wide variety of control
applications, ranging from sensor networks to distributed
control systems. To this end, it is of utmost importance to
keep track of the level of introduced complexity. Memory
consumption and communication latency are examples of
fundamental parameters in the design. Our conclusion is that,
even if some existing proposals attempt to cope with some
of these issues, a middleware based on a comprehensive
evaluation of the multifaceted requirements of networked
control applications is still to come.

The RUNES middleware [10] is illustrated in Figure 2.
The middleware acts as a glue between the sensor, actuator,
gateway and routing devices, operating systems, network
stacks, and applications. It defines standards for implement-
ing software interfaces and functionalities that allow the
development of well-defined and reusable software. The
basic building block of the middleware developed in RUNES
is a software component. From an abstract point of view, a
component is an autonomous software module with well-
defined functionalities that can interact with other compo-
nents only through interfaces and receptacles. Interfacesare
sets of functions, variables and associated data types thatare
accessible by other components. Receptacles are required
interfaces by a component and make explicit the inter-
component dependencies. The connection of two components
occurs between a single interface and a single receptacle.
Such association is called binding and is shown in more
detail in Figure 6. Part of the RUNES middleware has
been demonstrated to work well together with the oper-
ating system Contiki [22], which was developed for low-
memory low-computation devices. The implementation of
the component model for Contiki is known as the component
runtime kernel (CRTK). This component framework provides
for instance dynamic run-time bindings of components, i.e.,
during execution it allows components to be substituted with
other components with the same interface.

III. M OTIVATING SCENARIO

This section describes the RUNES tunnel disaster relief
scenario and gives an overview of some of the control
problems that arise within the scenario.

A. Disaster relief scenario

One of the major aims of the RUNES project is to create
a component-based middleware that is capable of reducing
the complexity of application construction for networked
embedded systems of all types. Versions of the component
runtime kernel, which forms the basis of the middleware,
are available for a range of different hardware platforms.
However, the task is a complex one, since the plausible
set of sensing modalities, environmental conditions, and
interaction patterns is very rich. To illustrate one potential
application in greater detail, the project selected a disaster
relief scenario, in which a fire occurs within a tunnel, much

Fig. 2. Overview of the RUNES middleware platform. The component-
based middleware resides between the application and the operating systems
of the individual network nodes.

as happened in the Mont Blanc tunnel in 1999. In this,
the rescue services require information about the developing
scenario both before arrival and during rescue operations,
and such information is provided by a network of sensors,
placed within the tunnel, on robots, and on rescue personnel
themselves. We explore the scenario in more detail below,
but it should be noted this is intended to be representative
of a class of applications in which system robustness is
important and the provision of timely information is crucial.
So, for example, much the same considerations apply in the
prevention of, or response to, Chemical, Biological, Radi-
ological, Nuclear or Explosive (CBRNE) attacks; likewise,
search and rescue operations, and even industrial automation
systems form application domains with similar requirements
for predictability of response given challenging external
conditions.

The fire-in-a-tunnel scenario deals with disaster relief
activities in response to a fire in a road tunnel caused
by an accident, as illustrated in Figure 3. For example,
in the case of Mont Blanc, a very severe fire was caused
as the result of the ignition of a lorry carrying margarine
and flour. The resulting fire burned for two days, trapping
around 40 vehicles in dense, poisonous, smoke, with a death
toll of 37 people. Communications, lighting, and sprinkler
systems failed within minutes of the fire starting with the
result that Christian Comte, fire brigade chief at Chamonix,
is reported to have said:Sur le moment, on n’avait pas
d’informations pŕecises—on ne savait pas ce qui brûlait, ni
à quel endroit, s’il y avait du mondèa l’int érieur ou pas.
In other words, there was no precise information about what
was happening: it was not clear what was burning, nor where
it was, nor whether there were people inside the tunnel or
not. As a consequence, firefighters entered the tunnel long
past the time at which they could have made a difference,
and themselves became trapped.

In the RUNES scenario, we project what might happen
in a similar situation if the vision of the US Department
of Homeland Security’s SAFECOM programme becomes



Fig. 3. Illustration of the RUNES tunnel disaster relief scenario.

a reality. The scenario is based around a storyline that
sets out a sequence of events and the desired response of
the system, part of which is as follows. Initially, traffic
flows normally through the road tunnel; then an accident
results in a fire. This is detected by a wired system, which
is part of the tunnel infrastructure, and is reported back
to the Tunnel Control Room. The emergency services are
summoned by Tunnel Control Room personnel. As a result
of the fire, the wired infrastructure is damaged and the link
is lost between fire detection nodes (much as happened in
Mont Blanc). However, using wireless communication as
a backup, information from (for example) fire and smoke
sensors continues to be delivered to the Tunnel Control
Room seamlessly. The first response team arrives from the
fire brigade and rapidly deploys search and rescue robots,
following on foot behind. Each robot and firefighter carries
a wireless communication gateway node, sensors for environ-
mental temperature, chemical and smoke monitoring, and the
robots carry light detectors that help them identify the seat
of the blaze.

The role of the robots in this scenario is twofold: to
help identify hazards and people that need attention, without
exposing the firefighters to danger; and to augment the
communications infrastructure to ensure that both tunnel
sensor nodes and those on firefighters remain in contact
with the command and control systems that the situation
commander uses to make informed decisions about how
best to respond. To accomplish this, the robots are moving
autonomously in the tunnel taking into account information
from tunnel sensors about the state of the environment,
from a human controller about overall mission objectives,
and from received signal strength measurements from the
wireless systems of various nodes about the communication
quality. The robots coordinate their activity with each other
through communication over wireless links. Local backup

controllers allow the robots to behave reasonably in the event
that communication is lost.

B. Overview of control problems

The RUNES work in general and the disaster relief
scenario in particular offer a number of interesting and
challenging problems where control methods can make a
key contribution. One can envision control algorithms being
developed to control infrastructure resources; such as fans
or fire extinguishing devices, control robot motion in order
to localize hazards or localize injured humans and assist
in removing them from the disaster area, and, last but not
least, control network resources to ensure connectivity and
timely delivery of crucial information. Here we will focus
our attention to this last type of control problem, namely
controlling network resources.

The control problem of interest is sketched in Figure 4.
A set of nodes with wireless communication capabilities
are deployed inside the tunnel for monitoring purposes.
As soon as an emergency situation occurs, for example an
accident involving many cars, the nodes need to transmit
data regarding the tunnel conditions to a base station. In
such a scenario, accurate and comprehensive information
must be provided to the base station so that correct counter
measures can be taken. It is of fundamental importance that
the network would maintain connectivity, so that the flow of
critical data to the base station is guaranteed. However, the
network could be partitioned because of a malfunction of the
nodes, caused by a fire, or because the presence of obstacles
that deteriorate or even nullifies metrics of the Quality of
Service.

In such a critical situation, the control application is
responsible for restoring the network connectivity. This is
done by sending a mobile autonomous robot inside the
tunnel, see Figure 4. The robot is equipped with a radio
transmitter–receiver so that it can maintain connectivitywith
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Fig. 4. Road tunnel scenario in which part of the deployed wireless
network is disconnected due to two damaged network nodes. A mobile
robot moves into the region of the damaged nodes to relay information
from the unreachable nodes towards the base station.

the base station directly or through the deployed network.
Once the base station determines the network break area, a
target position for the mobile robot is computed. This is done
by the network reconfiguration component. The robot then
needs to navigate inside the tunnel until either it reaches the
target position or it determines that the target position isout
of reach because of obstacles.

Control applications impose additional requirements on
the RUNES platform that arise from the need to manipulate
the networked systems and/or the environment in which they
are embedded. In the rest of the paper we present the orga-
nization of the control system components that need to be
implemented in order to guarantee that network connectivity
is reestablished. The core are the four components: network
reconfiguration, localization, collision avoidance and power
control. Details of the development of these components are
given in the companion papers.

IV. CONTROL COMPONENTS FOR MAINTAINING

NETWORK CONNECTIVITY IN ADVERSE ENVIRONMENTS

This section describes the software architecture for the
control components used for maintaining network connectiv-
ity, together with the functionality of each component. The
control components outlined below follow the RUNES com-
ponent model [10]. The four main control components deal
with network reconfiguration, localization, collision avoid-
ance and power control. Their integration is demonstrated
through the network reconfiguration scenario described next.
The section concludes with a discussion of the low-level
component library containing sensor, data fusion, controller
and actuator components; the higher level components of net-
work reconfiguration, localization, collision avoidance and
power control invoke the low level components in this library
to accomplice their goals. Communication security issues are
addressed by a specialized security component (which in turn
comprises a number of subcomponents); this component is
dealt with separately in Section V.

A. Physical network reconfiguration scenario

Mobile autonomous robots are sent inside the tunnel to
restore connectivity, see Figure 4. The navigation of a robot
inside the tunnel is made possible by two components. The
first is the localization component, that provides the position
and orientation of the robot inside the tunnel and information
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Fig. 5. Flow chart showing the actions taken in order to reestablish
network connectivity. The acronyms to the left indicate theactive control
components.

about the presence of obstacles. The second is the collision
avoidance component that ensures that the robot does not
collide with obstacles or other robots. Once the mobile
robot is in a suitable position it attempts to reconnect the
network, by acting as a relaying node between the nodes
in the disconnected parts of the network. At this stage, a
third component, the power control component, is invoked, to
reduce the energy consumption and lower the packet collision
probability of the nodes at the boundary of the network.
In case the network is not reconnected with the first robot,
additional robots could be deployed in a similar fashion.

The flowchart in Figure 5 details the sequence of tasks in
the reconfiguration scenario. The acronyms in the column to
the left indicate the control component primarily responsible
for the action. The scenario starts by the detection of that the
network is disconnected. The network reconfiguration com-
ponent (NetReC) then makes the decision that the first robot
should be deployed. The robot moves autonomously to the
destination using localization information about its position
provided by the localization component (LoC). In parallel,it
also uses the collision avoidance component (CAC) to avoid
colliding with stationary objects or other moving agents.
When the network reconfiguration component detects that
the robot has reached a suitable goal position (possibly
by adjusting the original destination point based on local
information at the scene), it initializes the power control
component (PCC). The radio transmission power is adjusted
in the robot node and in its neighboring network nodes, in
order to not only preserve battery power but also minimize
interference among nodes. If the network is still disconnected
after the power has been adjusted, the algorithm starts over
and a new robot is deployed.



Fig. 6. Component framework layout for the control components used for
maintaining network connectivity.

The interrelations between the control components and the
overall application, robot actuation platform, and communi-
cation network are indicated in the component framework
layout shown in Figure 6. The components are encapsulated
software units of functionality and deployment that interact
with other components exclusively through interfaces and
receptacles [10]. The figure shows that the main application,
which initializes the restoration of the network connectivity,
interacts with the network reconfiguration component. This
component supervises activity through its coupling to the
collision avoidance and the power control components. The
collision avoidance component is responsible for the physical
actuation of the commands, i.e., for moving the robot. It
bases its decisions on information from the localization
component, which is divided into one part handling the
localization of neighboring robots and other potential ob-
stacles, and another part providing localization information
about the robot itself. As indicated in the figure, the control
components rely heavily on the network communication.

B. Network reconfiguration component

The network reconfiguration component is responsible
to position the mobile robot at a point that ensures the
restoration of the communication along the network. The
network reconfiguration component is activated as soon as
information about that the network is disconnected and the
localization of the malfunctioning network nodes has been
obtained. The functionality of the component is based on
a beacon, which tests the operational capabilities of each
node near the network break area through handshaking. The
connectivity of the mobile robot with the operational part of
the network is rather critical, because commands may be sent
from the base station to the robot and information from the
robot can be requested. The locations of the (static) network
nodes are assumed to be known a priori.

The network reconfiguration component provides the goal
coordinates to the collision avoidance component, which

ensures that the robot safely moves to the vicinity of the
furthest known operational node of the network. The com-
ponent computes the area, within which the final positioning
of the robot is possible. This area is important in the case
obstacles have occupied the damaged node’s position or do
not allow for a closer visit. From the obtained position,
the robot tries to establish communication with both the
network connected to the base station and the network that
has been disconnected. The former action is performed in
order to check the functionality of the specific node, but
also to ensure that the communication failure has not been
due to debris or other kinds of communication blocks. If
the functionality of the node is verified, the robot moves
on to the next node, etc., until the non-operational node
is accurately located. As soon as this node is located, the
network reconfiguration component provides the necessary
inputs for the initialization of the power control component.
If the non-operational node cannot be located through an
exhaustive search, there is a change in mode of operation
into finding a sub-optimal position within the lattice of the
sensor nodes. If even this approach fails, the mobile robot is
positioned near the edge of the previously described region
and sends a message to the base station for the deployment
of a second mobile robot. The algorithm terminates as soon
as the communication coverage of the region of interest is
completed. The network reconfiguration component is further
described in [27].

C. Localization component

The localization component provides interfaces to localize
mobile agents or robots. It also provides interfaces to detect
obstacles in front of the mobile robot. Each mobile robot
is required to contain one instance of this component. Addi-
tionally, each of the stationary sensor motes within the tunnel
are required to contain one instance of the complementary
distance sensor component.

The localization method is based on ultrasound. Each
mobile robot is equipped with an ultrasound sender unit and
each stationary sensor mote is equipped with an ultrasound
receiver unit. The mobile robot periodically broadcasts a
radio message shortly followed by an ultrasound pulse. Each
stationary node measures the difference in time of arrival
between the radio message and the ultrasound pulse, and
uses this to calculate its distance to the mobile robot. After
a predetermined time to avoid contention, a radio packet
containing the distance is sent to the mobile robot. After
emitting the ultrasound pulse, the mobile robot spends a
predetermined time collecting distance measurements from
the sensor nodes. After that, data fusion is applied to the
collected distance measurements. Different alternativeshave
been evaluated. One possibility is to use triangulation. In
this approach as many triangular sensor cells as possible are
formed, and a position estimate is calculated for each cell.
Finally, the individual position estimates are combined into
a single estimate using outliers removal and averaging. Once
a position estimate is available this is used as an input to the
corrector part of an extended Kalman filter. The predictor



part of the filter uses the encoder information from the robot
wheels to predict its current position. Alternatively, it is
possible to directly use the estimated distances as inputs to
the extended Kalman filter. Both approaches require that each
mobile robot knows the position of every stationary sensor
node.

The above approach runs the risk of not working when
multiple robots simultaneously try to determine their lo-
cations. In order to avoid this problem the mobile robots
also listen to the radio messages associated with ultrasound
messages. If a mobile robot hears this type of message it will
wait, or back off, a certain time, before attempting again to
emit its combined radio and ultrasound pulse.

Once the self-localization is performed, i.e., the filtered
position and orientation estimates are available, a radio
packet containing this information together with a time-
stamp is multi-casted to the other mobile robots. Thus each
mobile robot obtains information about the current location
of its neighboring mobile robots.

The ultrasound localization can only be used to detect the
position of known mobile robots. In order to detect unknown
obstacles, the mobile robots need to be equipped with one or
several forward pointing proximity or distance sensors. One
possibility is to use an IR sensor, e.g., a SHARP GP2D12
sensor. Either one or two fixed sensors are used, or a sensor is
mounted on a simple RC servo, which then sweeps a certain
angular region in front of the mobile robot. The localization
component is further described in [12].

D. Collision avoidance component

The collision avoidance component provides an interface
to steer, in a safe way, a mobile robot to a desired final
position with an assigned heading. The collision avoidance
strategy is based on areserved diskassociated to each robot.
The disk contains all the positions that can be reached if the
vehicle performs a maximum curvature turn in clockwise
direction.

The motion strategy of the robot is based on four distinct
modes of operation, each assigning a suitable value to the
curvature rate of the robot. Figure 7 shows these modes
along with the corresponding switching conditions. The robot
enters thestraight mode if is possible to move in the same
direction as the robot is heading, i.e., if its reserved disk
does not overlap with other reserved disks. When the robot
is in this mode, its curvature rate is set to zero. Whenever its
reserved disk becomes tangent to the one of another robot,
a test is made based on the current motion headingθ . If
a further movement in the direction specified byθ causes
an overlap, then the robot enters thehold mode. Otherwise,
the robot is able to proceed, and remains in thestraight
mode. When thehold mode is entered, the robot’s curvature
rate is set to the minimum allowable, and the motion of its
reserved disk is stopped. As soon as the robot motion in the
heading direction is permitted but not directed towards the
target destination, the robot enters theroll mode, and tries
to go around the reserved disk of the other robot. This is
achieved by selecting a suitable value for the curvature rate

Fig. 7. Finite state automaton that summarizes the collision avoidance
protocol implemented by the collision avoidance component.

of the robot such that the two disks never overlap. During
roll, the tangency of the two disks can unexpectedly be lost.
In such circumstances, the robot enters theroll2 mode, and
the curvature rate is set to the maximum allowable in order
to restore the contact. Theroll2 mode can only be entered if
the previous mode wasroll. When the tangency is restored,
the robot switches back to thehold mode and possibly from
there to theroll mode again.

The decentralized characteristic of the collision avoidance
protocol allows the collision avoidance component to be
implemented on-board the robots. Each robot is able to
make a safe decision about its motion, based only on
locally available information. This information consistsof
the position and orientation of robots that are within a certain
sensing or communication radius. For this reason, each robot
is not required to explicitly declare its positioning goal.The
collision avoidance component is further described in [12].

E. Power control component

The power control component provides an interface for
regulating the transmission power of nodes at the boundary
of a disconnected area of the wireless network of the tunnel.
The main functionality of this component is to provide a
power control algorithm that adjust the power such that the
network is reconnected. A fine tuning of the output power is
essential to preserve the battery of the nodes and to minimize
interference among network nodes.

The power control algorithms are based on radio models
for the network nodes, i.e., the Telos motes. Communication
quality is characterized through the received signal strength
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Fig. 8. The transmission powers of the network nodes are controlled by the
power control component residing in the mobile robot. Each power control
loop consists of a transmitter node (on the left) and a receiver node (on
the right). The receiver node executes the control algorithm and sends the
command to the transmitter.

indicator (RSSI), which is related to the signal to noise
plus interference ratio (SINR) for the radio devices mounted
on the nodes. The power control mechanism reacts to the
fluctuations of the SINR by controlling the level of power
that the transmitter uses in order to ensure a desired packet
error probability. The power control command is computed
in the receiver and then communicated to the transmitter,
which transmits packets using the updated power level. The
feedback control loop for a single transmitter–receiver pair
is shown in Figure 8.

Two power control mechanisms have been developed
and tested: one scheme based on a multiplicative-increase
additive-decrease (MIAD) updated of the power, and one
scheme that is based on a model of the average packet error
rate (PER). The MIAD power control, which is inspired
by [11], implements the following simple algorithm: each
correctly received packet imposes a decrease of the transmit
power by ∆, where ∆ is the step size; whereas when an
erroneous packet is detected, the transmission power is in-
creased byd∆, whered is a positive integer. The parameters
d and∆ influence performance (packet error rate and power
consumption), and thus need to be tuned. The PER power
control adjust the transmission power according to a model
of what power is needed for a desired SINR given the current
SINR and power. Accurate estimates of SINR and RSSI are
obtained through online filters. The power control component
is further described in [14].

F. Low-level control component library

The components defined above build on and make use
of lower-level components developed to perform tasks such
as polling sensors, sending commands to actuators, etc. We
conclude this section by providing a brief overview of some
examples of this type of components.

Sensor components:Two types of sensor components
can be distinguished. A passive sensor component returns a
physical measurement, e.g., temperature, light intensity, etc,

through the use of some hardware device, as the response to a
call to an interface function, e.g.,getValue() from either
another component on the same node, from the application
code in the node, or from a component or application
on some other node via the radio interface. Hence, from
a passive sensor component, measurement values must be
pulled by the users of the component

An active sensor, on the contrary, is realized by a separate
execution thread that provides a new measurement value
on its own initiative. This value is then forwarded to, e.g.,
another component by a call to the corresponding interface
function of that component. Hence, the active sensor pushes
new values to the users of the component.

Another distinguishing characteristic of sensor compo-
nents is whether they are time-driven or event-driven. In
a time-driven sensor the measurement is performed pe-
riodically. In an event-driven sensor the measurement is
performed when an event occurs. This event could be the
call to somegetValue interface function. However, we
could also think of an event-driven active sensor that, e.g.,
only generates a new output if its current value has changed
sufficiently much from the old value. Also, it is not necessary
for a passive sensor to be event-driven. A passive sensor
could be realized as an execution thread that performs the
sampling periodically, but where the users of the component
still must pull out a value, in this case typically the latest
value, by calling an interface function.

A sensor component could also contain other functionality.
Instead of generating only a value it could associate the value
with a time stamp indicating when the value was generated.
The sensor may perform filtering, e.g., low-pass filtering.
For an event-based sensor several different event types are
plausible, together with the associated threshold values.

Data fusion components:In sensor network application
data fusion or aggregation is important. A major reason for
this is a desire to reduce the communication traffic in the
network.

Because of the spatial distribution of the sensors, data
fusion can be performed both in the time and space domain.
An example of data fusion in the time-domain is down-
sampling; for example, an active sensor may elect to only
forward a reduced number of data values. This can be
done periodically, e.g., removing every second data value,
or be event-driven. In the latter case one could think of a
data fusion component that only forwards data values that
correspond to significant changes in the value. Other types
of time-domain data fusion are various sorts of averaging and
windowing. Data fusion in the space-domain shares several
similarities with the time-domain. Spatial averaging is one
example.

Another distinguishing characteristic of data fusion com-
ponents is whether they are signal-based or model-based.
A signal-based data-fusion component performs the ag-
gregation using the signal values as the only information
source. In model-based data fusion there is a model, e.g.,
a differential equation, that describes the spatial or temporal
relationship between one or several measurements. Using this



it is possible to refine the data aggregation. Techniques based
on, e.g., Kalman filtering, can be used to estimate signals that
are not measured.

A relevant technique for redundancy reduction in the
information flow generated by the nodes of wireless sensor
networks is distributed source data compression, e.g., [24],
[19]. This technique compresses data based on the (usually
significant) spatial and temporal correlation of the sensor
measurements.

Controller components:A controller component realizes a
dynamical system and comprises the actual control algorithm
of the component. A distinguishing characteristic is whether
the component operates on a single measured signal and
generates a single controller output (SISO controller), or
whether either or both the input and output consist of
multiple signals (MIMO controller).

Another distinguishing feature is whether the controller is
linear or non-linear. A general non-linear controller can be
represented as

xk+1 = f (xk,yk, rk)

uk = g(xk,yk, rk),

where x is a vector representing the internal state of the
controller,y is the measurement,r is the reference or setpoint
for y, andu is the output of the controller. The subscriptk
indicates time step. If the functionsf andg are linear, then
the controller is linear and can be represented as

xk+1 = Axk +Byk +Grk

uk = Cxk +Dyk +Erk

where A,B,C,D,E, and G are matrices of suitable sizes.
These general forms can be one possible starting point for
a controller component library. Another possibility is to
focus on commonly used special forms of the above. Some
examples are PID controllers, state feedback controllers,
observer-based controllers, and lead-lag controllers.

Actuator components:An actuator component determines
the action the system takes on the physical environment. It
shares some of the characteristics of the sensor component:
it can be based on push, namely, the component provides at
the interface a function, e.g.,setValue(val), which sets
the valueval to the actuator; or it can be based on pull,
namely, the actuator itself requests the value. Furthermore,
the actuation can be time-driven or event-driven. In the first
case, the actuator component is accessed at precise time
instances, whereas in the second case it is accessed when
a predefined event is detected. The actuator component may
include some filtering, such as a zero-order hold, or nonlinear
filters, e.g., saturation.

V. SECURITY

In a system like the one under consideration, protecting
communication among mobile robots and sensor nodes poses
unique challenges. First of all, unlike traditional wired net-
works, in a wireless network, an adversary with a simple
radio receiver/transmitter can easily eavesdrop as well as

Fig. 9. The Security Component Framework.

inject or modify packets. Second, in order to make the
system economically viable, nodes are limited in their en-
ergy, computation, storage, and communication capabilities.
Furthermore, they typically lack adequate support for making
them tamper-resistant. Therefore, the fact that nodes can be
deployed over a large, unattended, possibly hostile area ex-
poses each individual node to the risk of being compromised.

In this wireless network, security hinges on a group
communication model. This means that authorized nodes in
the network share a symmetric group key that is used to
encrypt communication messages. Anyone that is not part of
the group can neither access nor inject or modify messages.
This implies that when a node leaves the group, the current
group key must be revoked and a new one distributed to
all nodes except the one that is leaving (forward security).
A node may leave the group either because it has finished
its task or because it is considered malicious and thus it
must be evicted. Failure to provide the correct group key
can be interpreted as an alarm by the system, which triggers
countermeasures. It follows that the ability to revoke keys
translates into the ability to logically remove compromised
nodes from the network.

The Security Component Framework provides an inter-
face to protect communications among nodes and guarantee
forward security. Figure 9 shows the architecture of the
Security Component Framework in terms of components and
their interrelations. TheCryptographic componentprovides
an interface for the basic cryptographic primitives such as
symmetric ciphers (e.g., Skipjack and RC5) and hash func-
tions (e.g., SHA-1). TheRekeying componentprovides and
interface for key distribution and revocation. This component
implements cryptographic network protocols and, therefore,
uses the services offered by the Network Communication
component and the Cryptographic component. Finally, the
Adaptor componentimplements the communication security
policy by properly encrypting/decrypting messages. For that
purpose, it uses the services offered by the Cryptographic
component and the Rekeying component. The Adaptor com-
ponent provides application components with the same inter-
face as the Network Communication components. It is pos-
sible to transparently insert and remove the whole Security



Fig. 10. The rekeying tree.

Component Framework without affecting the functionality of
the other components.

The Rekeying component guarantees forward security by
implementing a scalable rekeying protocol, which refreshes
the group key whenever a node leaves the group. The rekey-
ing protocol scales to a large number of nodes because its
communication overhead is logarithmic, and the computing
overhead is kept low by using only hash functions to verify
the authenticity of newly deployed keys.

When a node leaves, a centralized Key Distribution Server
is responsible for distributing the new group key to all nodes
except the leaving one. These nodes have only to verify the
freshness and the authenticity of the keys coming from the
server. The key authentication mechanism levers on key-
chains, a technique based on one-time passwords. A key-
chain is a set of symmetric keys, such that each key is the
hash pre-image of the previous one under a one-way hash
function. Hence, given a key in the key-chain, anybody can
compute all the previous keys, but nobody can compute any
of the next keys. Keys are revealed in the reversed order with
respect to creation. Given an authenticated key in the key-
chain, the nodes can authenticate the next keys by simply
applying a hash function.

In order to reduce the communication overhead, the server
maintains a tree structure of keys, see Figure 10. The internal
tree nodes are associated with key-chains, while each leaf is
associated with a symmetric private key, which each group
member secretly shares with the server. A group member
stores the last-revealed key for every internal tree node
belonging to the path from its leaf to the root. Hence, the key
associated to the tree root is shared by all group members
and it acts as the group-key. When a group member leaves
the group, all its keys become compromised and have to
be redistributed. For example, let us suppose that group
member D in Figure 10 leaves. The server then has to
securely broadcast a new key for each internal tree node
whose subtree contains theD leaf (e.g., nodes numbered
with 1, 2, and 5 in the figure). In case of a binary tree, the
server has to broadcast 2 log(n)−1 messages wheren is the
network size. A more detailed description of the rekeying
protocol can be found in [20].

Fig. 11. Khepera robot with a Telos mote mounted on top.

VI. H ARDWARE AND SOFTWARE INTEGRATION

Demonstration of the component-based design approach
through the network reconfiguration scenario requires inte-
gration of both hardware and software. In this section, these
efforts are described.

A. Hardware integration

The main hardware components for demonstrating the
physical network reconfiguration are mobile robots and a
wireless sensor network. A heterogeneous set of mobile
robots are used. The wireless sensor nodes are the Telos
and Tmote Sky motes, which are low power IEEE 802.15.4
compliant wireless sensor modules [26]. The Telos motes are
equipped with humidity, light and temperature sensors. As
part of the experimental validation this sensor network was
made to interact with numerous mobile robotic platforms.

Figure 11 shows the simplest configuration used in our
experiments, a Telos mote mounted on top of a Khepera
robot. In this instance, the robot and mote communicate
through their serial ports. The Telos acts both as a sensor and
a radio interface for the mobile robot. The platform shown in
Figure 11 was used for the early development of the network
reconfiguration component.

The localization component was developed and tested on
an RBbot mobile robot, shown in Figure 12. The control
computations are done both in an integrated Tmote Sky mote
and in an AVR processor. An I2C bus is used to expand
computational capabilities and to allow data exchange be-
tween components and external hardware. Localization is
done using a Tmote Sky motes with an ultrasound sender
unit, as shown to the upper right in the figure. This mote is
mounted at the top of the robot. A Tmote Sky mote with
ultrasound receiver is shown to the lower right. Such motes
are placed along the walls of the tunnel and communicate
with the robots to provide position information.

The collision avoidance component was developed on a
fleet of mobile robots like the ones shown in Figure 13. Each
robot comprises one Tmote Sky that implements the wireless
communication via 811.15.4 protocol, and part of the control



Fig. 12. RBbot robot and ultrasound equipped Tmote Sky.

Fig. 13. Robots used for the development of the collision avoidance
component.

algorithm. It also comprises three PSoC micro-controllers,
connected via I2C with one another. These micro-controllers
perform the computations necessary to drive the robot.
The mote and the micro-controllers exchange information
(encoder readings, motors actuation, execution of rest of the
control algorithm) via the RS232 serial interface.

The power control component was developed and tested
for a wireless sensor network that consists of Telos motes.
The transceiver of these nodes uses a Direct Sequence Spread
Spectrum (DSSS) technique. Data are coded according to a
DSSS operation, and then transmitted through a CSMA/CA
technique. The Telos motes provide RSSI measurements
defined as an average of the received signal power calculated
over eight symbol periods. The implemented power control
algorithms are based on these measurements and a new radio
model that was developed for the Telos motes.

B. Software integration

The connecting theme underlying the different robotic
platforms and the wireless sensor network is the component
software. This is based on the Contiki operating system,
which runs on all the mote platforms used in the experiments.
The use of a common software substrate means that compo-
nents developed by one team on one robotic platform can be
ported to other platforms. The hardware resources available
on the robot are exploited by the different components via
the use of the same interface protocol.

Contiki is a lightweight and flexible operating system for
tiny networked sensors [22]. It is built around a simple event-
driven kernel on top of which application programs are writ-
ten with stack-less threads. Thus, programs can be written
in a threaded fashion, while interprocess communication is
enabled using message passing through events. Contiki has a
dynamic structure that allows to replace programs and drivers
during runtime. Contiki provides also an implementation of
a so calledµ IP stack for TCP and UDP communication [21].
Contiki implementsµAODV, a light-weight implementation
of the AODV ad-hoc routing protocol. AODV [28] stands
for Ad-hoc On-Demand Distance Sensor Vector routing,
which, contrary to most routing mechanisms, does not rely
on periodic transmission of routing messages between the
nodes. Instead, routes are created on-demand, i.e., only when
actually needed to send traffic between a source and a
destination node. This leads to a substantial decrease in the
amount of network bandwidth consumed to establish routes.

The implementation of the component model for Contiki
is called a component runtime kernel (CRTK). It allows the
instantiation of a variety of components and the dynamic run-
time binding of them. A component can be substituted with
another component that has the same interface. Due to the
memory limitations of the Telos motes, the dynamic run-time
binding of the control components has not been explored
in the demonstrations. The hardware limitations moreover
forced the use of more powerful processors, such as AVR
processors, to be connected with the Telos motes through
I2C buses, since the computational power of the motes was
not sufficient to execute all the control components.

VII. VALIDATION

This section describes a computer simulation of the sce-
nario and some preliminary experimental results.

A. TrueTime simulation

In order to validate the network reconfiguration scenario, a
simulation model has been developed. A holistic simulation
approach is crucial for this, because it should be possible
to simultaneously simulate the computations that take place
within the nodes, the wireless communication between the
nodes, the power devices (batteries) in the nodes, the sensor
and actuator dynamics, the dynamics of the mobile robots,
and the dynamics of the environment. In order to evaluate
the limited resources correctly, the simulation model mustbe
quite realistic. For example, it should be possible to simulate
the computational delays associated with the execution of the



software components. It should also be possible to simulate
the effects of collisions and contention in the wireless
medium access control (MAC) layer, the propagation of
the ultrasound pulses, as well as the effects of the limited
bandwidth of the communication bus used within the mobile
robots.

There are a number of simulation environments available
for networked control and sensor networks. However, the
majority of these only simulate the wireless communication
and the node computations. TrueTime [17], [13] is a co-
simulation tool that has been developed at Lund University
since 1999. By using TrueTime it is possible to simulate the
temporal behavior of computer nodes and communication
networks that interact with the physical environment. This
makes it possible to concurrently simulate all the aspects
described above.

TrueTime is a Matlab/Simulink-based tool that facilitates
simulation of the temporal behavior of multi-tasking and
event-based real-time kernels that execute controller tasks.
The tasks are controlling physical systems, which are mod-
eled as ordinary continuous-time Simulink blocks. TrueTime
also makes it possible to simulate simple models of wired
and wireless communication networks and their influence on
networked control loops. The kernel block of TrueTime is
event-driven and executes code that models, e.g., I/O tasks,
control algorithms, and network interfaces. The scheduling
policy of the individual kernel blocks is arbitrary and can be
decided by the user. Likewise, in the network, messages are
sent and received according to a chosen network model.

The TrueTime simulation of the tunnel scenario consists of
two parts: a Simulink diagram containing the nodes, robots,
and networks, and an 2D dynamic animation. The Simulink
diagram is shown in Figure 14.

The stationary sensor nodes are implemented as Simulink
subsystems that internally contain a TrueTime kernel mod-
eling the Tmote Sky mote and connections to the radio
network and the ultrasound communication blocks. In order
to reduce the wiring,From and To blocks are used for the
connections. The blocks handling the dynamic animation are
not shown in the figure. The mobile robots, two RBbots as
described in Section VI, are modeled as Simulink subsys-
tems. Internally, these subsystems contain a TrueTime kernel
modeling a Tmote Sky mote; a TrueTime kernel modeling an
ATMEL AVR Mega16 processor, which acts as an interface
to the ultrasound receiver and the proximity sensor used for
obstacle detection; a TrueTime kernel modeling an ATMEL
AVR Mega128 processor, which is used as a compute engine;
two TrueTime kernels modeling two ATMEL AVR Mega16
processors, which are used as interfaces to the wheel motors;
a model of the robot dynamics; and a subsystem representing
the internal I2C bus of the robot.

The ultrasound propagation is modeled by a separate net-
work block, which is implemented in a similar fashion as the
wireless network block. The components are implemented
as TrueTime tasks and interrupt handlers. The wireless radio
communication is modeled as the IEEE 802.15.4 protocol
(the radio MAC protocol used in the Tmote Sky motes).

Fig. 15. Animation workspace for the TrueTime simulation.

The routing is implemented using a simulation model of the
AODV protocol. The AODV protocol is in TrueTime imple-
mented in such a way that it stores messages to destinations
for which no valid route exists at the source node. This
means that when, eventually, the network connectivity has
been restored through the use of the mobile radio gateways,
the communication traffic will be automatically restored.

The position of the robots and status of the stationary
sensor nodes, i.e., whether they are operational or not, are
shown in a separate animation workspace, see Figure 15.

The TrueTime simulation environment is further described
in [15].

B. Experimental validation

The components outlined above were all implemented on
the various robotic and sensor platforms and their perfor-
mance was experimentally validated.

Figure 16 shows an example run of the collision avoidance
component using three robots (see also Figure 13). The top
sub-figure shows the origins and destinations of the three
robots while the bottom two show the collision avoidance
procedure with the reserved disks highlighted.

Figure 17 shows experiments for the development of
the network reconfiguration component. Four robots and a
base station (not pictured) are involved. All robots carry
Telos motes. The two Kheperas (standing on boxes, see also
Figure 11) are stationary in this experiment. The spider robot
(in the background) is trying to maintain connectivity with
the base station, multi-hopping its signals over any other
available nodes if necessary. The transmission power of all
motes is artificially reduced so that as the spider moves away
from the base station it loses its connection with the rest of
the network. The rover robot (in the middle of the picture)
then moves into the gap between the spider and the network,
to act as a relay node.

Figure 18 shows experiments for the development of the
localization component. The robot shown in the forefront
(see also Figure 12) is trying to navigate down the corridor
based on localization information collected from ultrasound
equipped Tmote Sky motes situated on either side near
the walls. The two graphs show the improvement in the
navigation if this localization information is used (right) vs.
open loop navigation (left).



Fig. 14. The Simulink model diagram. In order to reduce the use of wiresFrom and To blocks are used to connect the stationary sensor nodes to the
radio and ultrasound networks.

Figure 19 shows experimental results with the power
control component. The temporal evolution of the averaged
RSSI is presented for a situation when three transmitting
network nodes are connected to the receiver node mounted
on the robot. The power is adjusted according to the MIAD
power control algorithm discussed in Section IV. Node 1
is not within line-of-sight, whereas nodes 2 and 3 are.
Therefore, the signal strength of links 2 and 3 settle quickly
to their appropriate fixed values, while link 1 oscillates in
accordance with the MIAD control strategy.

Finally, Figure 20 shows a model of a road tunnel de-
veloped for the demonstration of the disaster relief scenario.
Trucks, cars and firefighters are indicated by lights in the tun-
nel. The position of the Telos mote shows where the wireless
nodes are positioned in this particular demonstration.

VIII. C ONCLUDING REMARKS

We outlined techniques at the heart of the design and
control of complex networked embedded systems. Even
though the work presented was motivated by a specific
tunnel disaster relief scenario, we believe that the control
components developed provide a suitable framework for
addressing control problems in a wide range of applica-
tions; possible target applications include surveillanceand
environmental monitoring, critical infrastructure protection,
transportation, agriculture, industrial automation etc.The
research presented here bridges the gap between control,
communication and computation technologies and suggests
a number of productive and interesting research directions.
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