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In this paper we consider the problem of planning
motions of a system of multiple vehicles moving in a
plane. Each vehicle is modelled as a kinematic system
with velocity constraints and curvature bounds. Vehi-
cles can not get closer to each other than a predefined
safety distance. For such system of multiple vehicles,
we consider the problem of planning optimal paths in
the absence of obstacles. The case when a constant
distance between vehicles is enforced (such as when co-
operative manipulation of objects is performed by the
vehicle team) is also considered.

1 Introduction

In this paper we consider the problem of planning mo-
tions of a system of multiple vehicles moving in a plane.
Motion of each vehicle are subject to some constraints:
the velocity of the center of the vehicle is parallel to
an axis fixed on the vehicle; the velocity is constant
along such axis; the steering radius is bounded. Also,
a minimum distance between vehicles must be enforced
along trajectories.

The task of each vehicle is to reach a given goal con-
figuration from a given start configuration. Optimal
solutions in the sense of minimizing total time will be
considered.

The literature on optimal path planning for vehicles
of this type is rather rich. The seminal work of Dubins
[4] and the extension to vehicles that can back—up due
to Reeds and Shepp [6], solved the single vehicle case
by exploiting rather specialized tools. Later on, Suss-
mann and Tang [7], and Boissonnat et al. [2], reinter-
preted these results as an application of Pontryagin’s
minimum principle [5]. Using these tools, Bui et al. [3]
performed a complete optimal path synthesis for Du-
bins robots. The minimum principle framework is also
fundamental in the developments presented here.

The paper is organized as follows. In section 2 we
describe the problem and introduce some notation. In
section 2.1 a formulation of the problem in a form
amenable to application of optimal control theory is
presented. Section 3 is devoted to the study of nec-
essary conditions for extremal arcs. Finally, section 4
describes a numeric algorithm to find solutions, which
applies under some restrictions.

2 Problem Statement

Consider N vehicles in the plane, whose individual con-
figuration is described by ¢; = (z;,;,60;) € RxR xS,
with (z;,y;) coordinates in a fixed reference frame
(0,z,y) in the plane and 6; the heading angle of the
vehicle with respect to the = axis. FEach vehicle is
assigned a task, in order to compute its task a vehi-
cle starts in a configuration ¢; s and move in a final
configuration g; 4, we call this two particular configu-
rations way—points. The initial way—point time is as-
signed and denoted by 7). Assume vehicles are ordered
such that TF < T§ < --- < TX. We denote by T/ the
time at which the i—th vehicle reaches its goal, and let

T; s T/ — TF. Motions of the i—th vehicle before T
and after Tig are not of interest.

The i—th vehicle motion is subject to the constraint
that its transverse velocity is zero, &; sin8; —y; cos6; =
0,7=1,...,N. Equivalently, this motion is described
by the control system ¢; = f;(q;, ui,w;), explicitly

T; u; cos b;
yz = Uj sin 0l y (1)
0; Wi

where u; and w; are the linear and angular velocity
of the i—th vehicle, respectively. All vehicles are also
supposed to be subject to the following additional con-
straints:
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i) the linear velocity is constant: u; = ;;

ii) the path curvature is bounded: |w;| < €;, where
Q; = &+ and R; > 0 denotes the minimum turning
radius of the i—th vehicle;

iii) the distance between two vehicles must remain
larger than, or equal to, a given separation limit:
Dig(8) = (; (£) —i(0))* + (y; () — (D) — 2, > 0,
at all times ¢ (d;; =0,i=1,...,N).

We will consider problems in which the goal is to
minimize the total execution time:

mian\;1 T;

dl = fi(ﬂi,ﬂi,wi) i = 17"'5N

il < F- i=1,...,N (2)
Dij(t) >0, ¥, i,j=1,...,N

4(TF) = qiss @i(T]) = qig-

If separation constraints are disregarded, the mini-
mum total time problem is clearly equivalent to N in-
dependent minimum length problems under the above
constraints, i.e. to N classical Dubins’ problems,
for which solutions are well known in the literature
([4, 7, 2]). It should be noted that computation of
the Dubins solution for any two given configurations is
computationally very efficient.

2.1 Formulation as an Optimal Control Prob-
lem

Notice that the cost for the total time problem, J =
SN =YY, fTTg dt, is not in the standard Bolza
form. In order to use powerful results from optimal
control theory, we rewrite the problem as follows. Let
h(t) denote the Heavyside function, i.e.

0 t<0
h(t):{ 1 t>0"

and define the window function w;(t) = h(t—TF)—h(t—
T/). Then the minimum total time cost is written as

© N
J= > wi(t)dt (3)

0 =1
. . N T 71T
Using the notation colii; (v;) = [vf,...,v%] ,

define the aggregated state ¢ = col, (¢;), controls
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u = collY, (@;) and w = colY, (w;), and define the ad-
missible control sets 2 accordingly. Also define the sep-
aration vector D = [Dlg, v ,DlN,D23, s ,DN_LN],
and define the vector field f(g,u,w) = coll | (fiw;).
Finally introduce matrices I'; = colévzl (oi11 117,
with 05 = 1 if ¢ = j, else 045 = 0, and functions
7i(q(t),qd) = Ti(q(t) —G). Our optimal control prob-
lem is then formulated as

Problem 1. Minimize J subject to ¢ = f(q,u,w),
w € Q, D >0, and to the two sets of N interior—point
constraints

3 Necessary conditions

Necessary conditions for problem 1 can be studied by
adjoining the cost function with the constraints multi-
plied by unspecified Lagrange covectors. Omitting to
write explicitly the extents of iterative operations when
extending from 1 to N, let

J= 3 mv(T?) - q4f)
+ Zl Wg'Yi(‘I(Tig) - Q?) (4)
+Jo Xiwi + AT (G~ f) +v"Dat,

with A and v costates of suitable dimension, and with
v; =0if D; > 0, v; > 0if D; = 0. Let the Hamiltonian
be defined as

H:Zwi+/\Tf+uTD (5)

Substituting 5 in 4, integrating by parts, and comput-
ing the variation of the cost, one gets:

A~

5J = S NUTET) = W) + i g | da(Ty)
+Y, [AT(T;’ ) = XT(TPH) + mf 520 )] dq(T?)
+ 5, [HTPT) — HTPY) + nf 225 | ar?

+ [0 [(}\T + %—g’) 5q + %—féw] dt

(6)
(recall that dT} = 0). Therefore, we have the following
necessary conditions for an extremal solution:

N(TP7) = N(TFF) +Tfx (7)
N(TPTY = MN(TPT) + 177! (8)
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H(T!") = H(T") 9)
: OH
T — -
AT = 94 (10)
0H .
%&u = 0 Véwadmiss. (11)

Extremal trajectories for the i—th vehicle will be com-
prised in general of unconstrained arcs (with D;; > 0,
Vj # i) and of constrained arcs, where the constraint
is marginally satisfied (3j : D;; = 0). We will proceed
the discussion of necessary conditions by distinguishing
constrained and unconstrained arcs.

3.1 Unconstrained arcs

Suppose that, for the i—th vehicle, the separation con-
straints are not active in the interior of an interval
[to, 2], TF < t¢ <t < TY, ie. Dy(t) >0, j =

1,...,N, t € (t2,t?). Expanding 10, one gets
|:>.\i1 R j\i2; >\13j| = [0, 0, Ai,lﬂi sin @; — Aj2@; cos 91] . (12)

The characterization of optimal solutions in the uncon-
strained case proceeds along the lines of the classical
Dubins solution (see [4, 7, 2]). We report some results
here for reader’s convenience. By integrating 12 one
gets Ail(t? <t< tf) = 5‘1:17 )\ig(t? <t< tf) = 5\1'2, and
i3 (t? <t< tf) = S\ilyi(t) — /_\igl‘i(t) + /_\i3; with con-
stant /_\i,j, j = 1,2,3. In light of these relationships,
conditions 7 and 8 state that the costate components
Ai1 and \;o are piecewise constant, with jumps possibly
at the start and arrival time of the i—th vehicle. The
addend in the Hamiltonian relative to the i—th vehicle

can be written as H; = 1+ @;p; cos(8; — ¥;) + Ais@;w;,
\/ A2 + A% and ¢; = atan2 (\i2, Aj1). From
Pontryagin’s Minimum Principle (PMP), we know that
H;(t) = const. < 0 along extremal unconstrained arcs
and, being by assumption the way-points configura-
tions unconstrained, it follows from 9 that H;(¢) is also
continuous at t =T}

where p; =

Extremals of H; within the open segment {|w;| <

@;/R} can only obtain if
0H;
&ui

=A\i3 = j\ilyi(t) — j\igxi(t) + 5‘1’3 =0. (13)

If the condition holds on a time interval of non-
zero measure, then ;3 = 0 on the interval: this im-
plies p;u;sin(f; — ;) = 0, hence 6; = ; mod 7= and

w; = 0. In such an interval, the vehicle moves on the
straight route (the supporting line) in the horizontal
x,y plane described in 13. Other extremals of H; occur
at w = +4;/R. The sign of the minimizing yaw rate w;
is opposite to that of A;3; in other words, the support-
ing line also represent the switching locus for the yaw
rate input. Trajectories corresponding to w; = +@;/R
correspond to circles of minimum radius R followed
counterclockwise or clockwise, respectively. It is im-
portant for our further developments to notice that,
along extremal arcs, also the costates are completely
determined by boundary configurations up to a multi-
plicative constant p # 0, which remains undetermined.

For each vehicle, extremal unconstrained arcs are
concatenations of only two types of elementary arcs:
line segments of the supporting line (denoted as “S”),
and circular arcs of minimum radius (denoted by “C”).
The latter type can be further distinguished between
“R” clockwise arcs (w; = %;/R), and “L” counterclock-
wise arcs (w; = —u;/R). According to the widespread
usage, subscripts will be used to denote the length of
rectilinear segments, and the angular span of circular
arcs.

Switchings of w; among 0, @;/ R, and —;/R can only
occur when the vehicle center is on the supporting line.
As a consequence, all extremal unconstrained paths of
each vehicle are written as Cy, Sq,CuySas -+ Sa, Cu,, ,
with u; = 2k7, k integer, i =2,...,n — 1.

In the case of a single vehicle, the discussion of opti-
mal unconstrained arcs can be further refined by sev-
eral geometric arguments, for which the reader is re-
ferred directly to the literature [4, 7, 2]. Optimal paths
necessarily belong to either of two path types in the
Dubins’ sufficient family:

{C.CyC, , CLS4Cy} (14)
with the restriction that
b€ (rR,27R); a,e €[0,b], u,v €[0,2wR), d >0 (15)

A complete synthesis of optimal paths for a single
Dubins vehicle is reported in [3]. The length of Du-
bins paths between two configurations, denoted by
Lp(&,&7), is then unique and defines a metric on
IR?> x S'. One simply has Lp(-,-) = R(|a] + |b] + |c|)
for a C,C,C, path, and Lp(-,-) = R(Ju| + |v|) + d for
a C,S4C, path.



In our multivehicle problem, however, other ex-
tremal paths may turn out to be optimal, and there-
fore have to be considered. This may happen for in-
stance for a path of type CySyCorrSeC if (and only
if) the corresponding Dubins’ path C,Sp+.Cy, which
is shorter, is not collision free. Arcs of type Cyp, can
be interpreted as waiting—in—circles maneuver for an-
other vehicle to pass by and avoid collision (compare
e.g. with current practice in conflict resolution for
air traffic control). Notice explicitly that the length
of two subpaths of type ---Cy; SaCokr S3Cu;y, - - - and
T Cui SA/C2kﬂ'S§Cu

- are equivalent as far as a +
B=v+9.

By “extremal trajectory” (Dubins’ trajectory, re-
spectively) we indicate henceforth a map R™ — R’
defined by (zP(t),yP(t)), denoting the position of the
i—th vehicle at time ¢ along an extremal (Dubins’) path
connecting ¢f to ¢7.

R

Remark 1. If a set of non—colliding Dubins’ tra-
jectories exists, then this is obviously a solution of the
minimum total time problem. More interestingly, if
with all combinations of possible independent Dubins
trajectories a collision results, then the optimal solu-
tion will contain at least a constrained arc or at least
one wait circle.

3.2 Constrained arcs

Some further manipulation of the cost function is in-
strumental to deal with constrained arcs, i.e. arcs in
which at least two vehicles are exactly at the critical
separation (D;; = 0, i # j). To fix some ideas, let
us consider a constrained arc involving only vehicles 1
and 2. Along a constrained arc, the derivatives of the
constraint must vanish:

D12
N: . =
D12 )
[ ($2—$1)2+(yz—y1)2—d2 -0
2(w2 — 1) (F2 — 1) + 2(y2 — y1) (W2 — 1)

(16)
with d = dj5 Let ¢ be the direction of the segment
joining the two vehicles, so that

To — o1 = d Cos @,

. 17
yQ—ylzdS1n¢, ( )

From the second equation in 16, one gets

(22 — 1) (T2 cos by — @y cosbr) + (y2 — y1) (T2 sinfy — Gy sinby) =0

(18)
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Figure 1: Possible constrained arcs for two vehicles with
the same velocity

and, using 17,
@y cos(¢p — 01) — 1z cos(¢p — 6) = 0. (19)

When the constraint is active, the two vehicle envelopes
are in contact, and the relative orientation of the two
vehicles must satisfy 19, which defines (for given @1, 42)
two manifolds of solutions in the space {(1,62,¢) €
St x St x St} described as

a) 03 = ¢+ arccos (% cos(¢ — 01)> ; (20)
2

b) 6% = ¢ —arccos (% cos(¢ — 01)> . (21)
2

The two solutions correspond to two different types
(“a” and “b”) of relative configurations in contact. For
instance, for @, = s, one has:

a) 0y = 0 (22)
b) 05 = 2¢—6. (23)
In case a) the two vehicles have the same direction,

while in case b) directions are symmetric with respect
to the segment joining the vehicles (see 1).

The two solutions 20, 21 coincide for

¢ = 0y £ arccos (2) , (24)

Ui
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such a ¢ exists only if g—f < 1. If we find the solution

of 19 in # and #?, the solutions coincide for

¢ = b5 + arccos (Z—;) ) (25)

¢ exists if g—; < 1. Hence, from 24 and 25, ¢ exists if
41 = U2 and in this case the solutions of 19 is

b =0, = 0,.

In order to study constrained arcs of extremal solu-
tions, it is useful to rewrite the cost function 4 as

J= pTN
+ 3 (TP — ¢f)
+ 3 wa(T) —qf) (26)
+ fo Xiwi + AT(§ = f) + pDhodt,

with p > 0 along a constrained arc. The jump condi-
tions at the entry point of a constrained arc, occurring
at time 7, are now

ON

X(tT) = () B0 (27)
H(t™) = H(t") (28)
(29)

where H =", w; + AT f + v D1, and

(1 —x2) Uy cosby — s cosby
(yl — y2) Uy sin 01 — Us sin 02
<6_N>T_2 0 diy sin(¢ — ;)
8q o (.772 — 561) U oS By — 1y cos Oy
(yQ — y1) U Sin B — wy sin 6
0 —dﬂz sin(¢) — 92)

A further distinction among constrained arcs of zero
and nonzero length should be done at this point.

3.2.1 Constrained arcs of zero length

Consider first a constrained arc of zero length occur-
ring at a generic contact configuration, which is com-
pletely described by the configuration of one vehicle
(e.g., ¢ = q1), by the angle ¢. = ¢, and by the con-
tact type. Assume for the moment that there is only
one constrained arc of zero length in the optimal path
between way-points of the two vehicles. Equation 27,
taking into account that costates of each vehicle are

Figure 2: A numerically computed solution to a two-—
vehicles minimum total time problem. Vehicles are repre-
sented as aircraft. Minimum curvature circles are reported
at the start and goal configurations, along with safety discs
of radius d/2 (dashed). The unconstrained Dubins’ paths
(thin lines) would achieve a cost of 88.75 units, but collide
in this case (collisions are marked by “+7 signs). The op-
timal solution consists of two unconstrained arcs for each
vehicle, pieced together with a zero—length constrained arc

of type b. Total cost is 92.25 units.

determined (once the way-points and contact configu-
rations are fixed) up to constants p;(77), p;(r7), pro-
vides a system of 6 equations in 6 unknowns of the

form
-

p1(

o1 (r+

A(Qc ) ¢c) E:Jr
B
B2

where the explicit expression of matrix A(g., ¢.), for
each contact type, can be easily evaluated in terms of
a;, qi, 5, q5, and is omitted here for space limitations.
Non-triviality of costates implies that (g., ¢.) must sat-
isfy det(A) = 0. A further constraint on contact con-
figurations is implied by the equality of deplacement
times from start to contact for the vehicles, which is
expressed in terms of Dubins distances as

LD(&f)EC)/al = LD(E;)ED/UZ)

where &/ denotes the configuration of vehicle 2 at con-
tact, which is uniquely determined for each contact
type. If m constrained arcs of zero length are present

-)
)
)
)
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in an optimal solution, similar conditions apply (with
way-points configurations suitably replaced by previ-
ous or successive contact configurations), yielding 2m
equations in 4m unknowns.

3.2.2 Constrained arcs of nonzero length

From this point on, we will make the assumption
that forward velocity of all vehicles are equal to 1
(@; = 1). Consider an interval [T}, T»] during which the
constraint Di» = 0. ' A configuration of the two vehi-
cles along such constrained arcs can be completely de-
scribed by using only four parameters, for instance the
configuration (z1,y1,60:) of one vehicle and the value
of ¢. In fact, due to the tangency conditions on the
constraint, one has 17 and either 22 or 23. Moreover,
differentiating 17, one finds

&y =& — dsin ¢,
Y2 = Y1 + dpcos @,

and 1
b= E[Sin(t‘)g — ¢) —sin(h;, — ¢)). (31)

Differentiating twice D » we obtain:

ijl?(q7w7t) =0=
4 —4cos(f1 — 02) + 2widsin(f1 — @) — 2wadsin(f2 — @).
(32)

Constrained arcs of nonzero length that are part
of an optimal solution must themselves satisfy neces-
sary conditions, which can be deduced by rewriting the
problem in terms of the reduced set of variables.

min 2(T2 — Tl)

Z; = cosb;
yi =sin 0@
éi = Wj (33)

¢ = glsin(6> — ¢) —sin(6 — ¢)]

w1 € Ql,w2 S Qz

for i = 1 or i = 2, and for some initial and final spec-
ification of the variables (z;,y;,8;,¢) and of the con-
strained arc type (a or b). Recall that 6, = 6, (arcs of
type a), or 6 = 2¢ — 0 (type b).

Tt should be pointed out that the study of constrained
arcs of nonzero length is also useful to model cooperative
manipulation of object by multiple vehicles, assuming that
each vehicle supports the common load through a hinge
joint.
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Figure 3: Extremal constrained arcs of type a consist of
two copies of a Dubins’ path

Let us consider the two types of constrained arcs sep-
arately. Notice that two extremal constrained arcs of
different type may be pieced together through a config-
uration with 81 = 6y = ¢, which is both of type a and
b. Type a). From 31, ¢(t) = ¢y = arctan %,
hence

T1 = Xy
U1 =92 (34)
W1 = Wy

Extremal constrained arcs of type a consist of a Dubins
path for vehicle 1, and of a copy of the same path
translated in the plane by [dcos ¢o, dsin ¢o]? for the
other vehicle (see 3).

Type b). In this case, using 32, one obtains ¢ =
(w1 + w2) in 33. Introduce A = (A1, A2, A3, A4), and
H =2+ A\ cosfy + Aasinfy + Azwy + )\4(&}1 + w2)/2.
Necessary conditions for optimality of solutions of 33

are

0 0 —sinf; O

_ 0 0 «cosB; O
A==Al g g 0 0|’ (35)

0 0 0 0

Hence, A1, A2 and A4 are constant. Letting Ay = pcosv
and Ay = psin, from 35 one gets

X5 = psin(6y — ). (36)

From P.M.P one also gets that, when |w;| < ©; and

lwa| < 2, it is necessary for an optimal arc that g—ﬁ =
3_52 = 0, which implies A3 = Ay = 0. In this case, from

A3 = 0 one easily gets #; = ¢+7, w; = 0. The direction
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Figure 4: Singular extremals in a constrained arc of type
b.

Figure 5: An extremal constrained arc of type b.

of the segment joining the two vehicles varies as

¢ = 2sin(¢ — 6:)
5(0) = do (37)

Equilibria of 37 at ¢ = 6, and ¢ = 6, — 7 are re-
spectively unstable and asymptotically stable. Hence,
along a singular constrained arc of type b, one vehicle
will be moving on a straight line, while the other will
be trailing behind (see 4).

Extremal constrained arcs may also obtain when a
control variable is on the border of its domain, e.g.
w1 = £Q;. In this case the motion of the two vehicles
result in arcs such as those represented in figure 5.

Notice that along such an arc, the steering velocity
of vehicle 2 is uniquely determined by 32. Hence, being
|w2| bounded by 2, an arc of maximum curvature for
vehicle one will be possible only until the limit curva-
ture for vehicle two is reached. In other words, letting

my(q) = max{—Qs — 3 sin(6y — ¢), = },

and
. 4 .
Mi(q) = min{Qs — p sin(61 — ¢), Q1 },

we have that along constrained arcs of type b we must
have m; < w; < M;. Control w; may equal M; if
wi = Qy orif wy = — §sin(fy — ¢). In the latter
case, wy = —{. A similar reasoning applies to vehicle
two, for which we get mo < ws < Ms. In conclusion,
along a nonsingular extremal constrained arc of type
b, one of the vehicles moves along a circle of minimum
radius, while the other follows a curve such as that
described in figure 5.

4 Numerical computation of solutions

The necessary conditions studied in this paper provide
useful hints in the search for an optimal solution to
the problem of planning trajectories of N vehicles in
a common workspace. Although a complete synthesis
has not been obtained so far, we will describe in this
section an algorithm that finds efficient solutions to the
optimal planning problem in a reasonably short time.

Based on the discussion above, the optimal conflict
resolution paths for multiple vehicles may include mul-
tiple waiting circles and constrained arcs of both zero
and nonzero length. The algorithm to be described
shortly was developed to solve air traffic control prob-
lems [1], and is based on a few simplifying assumptions
motivated by the particular application. Namely, we
asssume henceforth that

h1 all vehicles have equal geometric characteristics
and equal (constant) speed;

h2 constrained arcs of nonzero length are not consid-
ered;

h3 multiple zero—length constrained arcs among the
same vehicles are ruled out;

h4 the initial configurations of the vehicles are suffi-
ciently separated.

With assumption h4 we mean that for each vehicle,
the initial configuration are collision free and guarantee
that wait circles at the initial configuration are colli-
sion free (this holds for instance if the distance between
the initial position of vehicles ¢ and j is larger than
2mRY + 2R + %),
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Figure 6: Numerically computed solutions to optimal coop-
erative conflict resolution for two vehicles. Minimum cur-
vature circles are reported at the way-point configurations,
along with safety discs of radius d/2 (dashed). Optimal so-
lutions consist of two unconstrained Dubins’ trajectories for
each vehicle, pieced together with a zero—length constrained
arc.

Consider first the case of two vehicles. If the Du-
bins’ trajectories joining the way-points configurations
do not collide (i.e., D(t) > 0,Vt), this is the optimal
solution. Otherwise we compute the shortest contact—
free solution with wait circles at the initial configura-
tions, and let its length be L.

Hence we look for a solution with a concatenation of
two Dubins’ paths and a single constrained zero—length
arc of either type a) or b) for both vehicles. Such solu-
tion can be searched over a 2—dimensional submanifold
of the contact configuration space (IR? x S' x S'). The
optimal solution can be obtained by using any of sev-
eral available numerical constrained optimization rou-
tines: computation is sped up considerably by using
very efficient algorithms made available for evaluating
Dubins’ paths ([3]). The lenght L. of such solution
is compared with Ly, and the shorter solution is re-
tained as the two—vehicle optimal conflict management
path with at most a single constrained zero-length arc
(OCMP21, for short). Some examples of OCMP21 so-
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lutions are reported in Figure 6.

If N vehicles move in a shared workspace, their pos-
sible conflicts can be managed with the following mul-
tilevel policy:

Level 0 Consider the unconstrained Dubins paths of
all vehicles, which may be regarded as N single—
vehicle, optimal conflict management paths, or
OCMP10. If no collision occurs, the global op-
timum is achieved, and the algorithm stops. Oth-
erwise compute the shortest contact—free paths
(with wait circles) and go to next level;

Level 1 Consider the M = 2 possible solu-

N
2
tions with a single contact (of either type a or b),
between two vehicles, and possibly wait circles for
other vehicles, and compute the shortest path in
this class. If this is longer than the shortest path
obtained at level 0, exit. Otherwise, continue;

Level m > 2. Consider the M [[}2," (M —2¢) possible
solutions involving m zero-length constrained arcs
between different pairs of vehicles and (possibly)
wait circles for other vehicles, and compute the
shortest path in this class. If this is longer than
the shortest path obtained at level m — 1, exit.
Otherwise, continue;

A few three—vehicle conflict resolution trajectories at
different levels are reported in Figure 7. When the
number of vehicles increases, the number of opti-
mization problems to be solved grows combinatorially.
However, in practice, it is hardly to be expected that
conflicts between more than a few vehicles at a time
have to be managed. It was also observed in our sim-
ulations that, for vehicle parameters close to those of
the kinematic model of commercial aircraft, solutions
including wait circles are very rare.

5 Conclusion

In this paper, we have studied the problem of plan-
ning trajectories of multiple Dubins’ vehicles in a plane.
Necessary conditions have been derived for both free
and constrained arcs. An algorithm for numerically
finding solutions has been described.
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Figure 7: Four cases of three—vehicles conflict resolution.
Up left: the conflict is resolved at level 0. Up-right: a level
1 solution. Down left: a level 2 solution whereby the ve-
hicle starting in the middle contacts first the one arriving
on its right, and after the one arriving from left. Down
right: a level 2 resolution that generates a roundabout—like
maneuver.

Future work on this topic will address the problem
of finding a complete optimal synthesis at least for the
simplest cases (N = 2). Further refinement of the al-
gorithm will be sought, that could exploit more of the
rich structure optimal solutions must satisfy. Finally,
optimal paths of multiple agents at fixed distance will
be studied in more detail, to address such problems as
cooperative manipulation of objects by robotic vehicles
and formation flight planning.
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