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In this paper we consider the problem of planning
motions of a system of multiple vehicles moving in a
plane� Each vehicle is modelled as a kinematic system
with velocity constraints and curvature bounds� Vehi�
cles can not get closer to each other than a prede�ned
safety distance� For such system of multiple vehicles�
we consider the problem of planning optimal paths in
the absence of obstacles� The case when a constant
distance between vehicles is enforced �such as when co�
operative manipulation of objects is performed by the
vehicle team� is also considered�

� Introduction

In this paper we consider the problem of planning mo�
tions of a system of multiple vehicles moving in a plane�
Motion of each vehicle are subject to some constraints�
the velocity of the center of the vehicle is parallel to
an axis �xed on the vehicle� the velocity is constant
along such axis� the steering radius is bounded� Also�
a minimum distance between vehicles must be enforced
along trajectories�

The task of each vehicle is to reach a given goal con�
�guration from a given start con�guration� Optimal
solutions in the sense of minimizing total time will be
considered�

The literature on optimal path planning for vehicles
of this type is rather rich� The seminal work of Dubins
��	 and the extension to vehicles that can back
up due
to Reeds and Shepp ��	� solved the single vehicle case
by exploiting rather specialized tools� Later on� Suss�
mann and Tang ��	� and Boissonnat et al� �	� reinter�
preted these results as an application of Pontryagin�s
minimum principle ��	� Using these tools� Bui et al� ��	
performed a complete optimal path synthesis for Du�
bins robots� The minimum principle framework is also
fundamental in the developments presented here�

The paper is organized as follows� In section  we
describe the problem and introduce some notation� In
section �� a formulation of the problem in a form
amenable to application of optimal control theory is
presented� Section � is devoted to the study of nec�
essary conditions for extremal arcs� Finally� section �
describes a numeric algorithm to �nd solutions� which
applies under some restrictions�

� Problem Statement

ConsiderN vehicles in the plane� whose individual con�
�guration is described by qi � �xi� yi� �i� � R�R�S��
with �xi� yi� coordinates in a �xed reference frame
�o� x� y� in the plane and �i the heading angle of the
vehicle with respect to the x axis� Each vehicle is
assigned a task� in order to compute its task a vehi�
cle starts in a con�guration qi�s and move in a �nal
con�guration qi�g� we call this two particular con�gu�
rations way
points� The initial way
point time is as�
signed and denoted by T s

i � Assume vehicles are ordered
such that T s

� � T s
� � � � � � T s

N � We denote by T g
i the

time at which the i
th vehicle reaches its goal� and let

Ti
def
� T g

i � T s
i � Motions of the i
th vehicle before T s

i

and after T g
i are not of interest�

The i
th vehicle motion is subject to the constraint
that its transverse velocity is zero� �xi sin �i� �yi cos �i �
�� i � �� � � � � N � Equivalently� this motion is described
by the control system �qi � fi�qi� ui� �i�� explicitly

�
� �xi

�yi
��i

�
A �

�
� ui cos �i

ui sin �i
�i

�
A � ���

where ui and �i are the linear and angular velocity
of the i
th vehicle� respectively� All vehicles are also
supposed to be subject to the following additional con�
straints�



 A� Bicchi� L� Pallottino

i� the linear velocity is constant� ui � �ui�

ii� the path curvature is bounded� j�ij � �i� where
�i �

�ui
Ri

and Ri � � denotes the minimum turning
radius of the i
th vehicle�

iii� the distance between two vehicles must remain
larger than� or equal to� a given separation limit�
Dij�t� � �xj�t��xi�t��

���yj�t��yi�t��
��d�ij � ��

at all times t �dii � �� i � �� � � � � N��

We will consider problems in which the goal is to
minimize the total execution time�

������
�����

min
PN

i�� Ti
�qi � fi�qi� �ui� �i� i � �� � � � � N
j�ij �

�ui
Ri

i � �� � � � � N

Dij�t� � �� �t� i� j � �� � � � � N
qi�T

s
i � � qi�s� qi�T

g
i � � qi�g �

��

If separation constraints are disregarded� the mini�
mum total time problem is clearly equivalent to N in�
dependent minimum length problems under the above
constraints� i�e� to N classical Dubins� problems�
for which solutions are well known in the literature
���� �� 	�� It should be noted that computation of
the Dubins solution for any two given con�gurations is
computationally very e�cient�

��� Formulation as an Optimal Control Prob�
lem

Notice that the cost for the total time problem� J �PN
i�� Ti �

PN
i��

R T g

i

T s
i

dt� is not in the standard Bolza

form� In order to use powerful results from optimal
control theory� we rewrite the problem as follows� Let
h�t� denote the Heavyside function� i�e�

h�t� �

�
� t � �
� t � �

�

and de�ne the window function wi�t� � h�t�T s
i ��h�t�

T g
i �� Then the minimum total time cost is written as

J �

Z
�

�

NX
i��

wi�t�dt ���

Using the notation colNi�� �vi� �
	
vT� � � � � � v

T
N


T
�

de�ne the aggregated state q � colNi�� �qi�� controls

u � colNi�� ��ui� and � � colNi�� ��i�� and de�ne the ad�
missible control sets � accordingly� Also de�ne the sep�
aration vector D � �D��� � � � � D�N � D��� � � � � DN���N 	�

and de�ne the vector �eld f�q� u� �� � colNi�� �fiwi��

Finally introduce matrices �i � colNj�� ��ij �� � �	
T
��

with �ij � � if i � j� else �ij � �� and functions
�i�q�t�� �q� � �i �q�t�� �q�� Our optimal control prob�
lem is then formulated as

Problem �� Minimize J subject to �q � f�q� u� ���
� � �� D � �� and to the two sets of N interior�point
constraints

�i�q�t�� q
s
i � � �� t � T s

i

�i�q�t�� q
g
i � � �� t � T g

i �unspeci�ed�

� Necessary conditions

Necessary conditions for problem � can be studied by
adjoining the cost function with the constraints multi�
plied by unspeci�ed Lagrange covectors� Omitting to
write explicitly the extents of iterative operations when
extending from � to N� let

�J �
P

i 	
s
i �i�q�T

s
i �� qsi �

�
P

i 	
g
i �i�q�T

g
i �� qgi �

�
R
�

�

P
i wi � 
T � �q � f� � �TDdt�

���

with 
 and � costates of suitable dimension� and with
�i � � if Di � �� �i � � if Di � �� Let the Hamiltonian
be de�ned as

H �
X
i

wi � 
T f � �TD ���

Substituting � in �� integrating by parts� and comput�
ing the variation of the cost� one gets�

� �J �
P

i

h

T �T s�

i �� 
T �T s�
i � � 	si

��i
�q�T s

i
	

i
d q�T s

i �

�
P

i

h

T �T g�

i �� 
T �T g�
i � � 	gi

��i
�q�T g

i
	

i
d q�T g

i �

�
P

i

h
H�T g�

i ��H�T g�
i � � 	gi

��i
�T

g

i

i
dT g

i

�
R
�

�

h�
�
T � �H

�q

�
�q � �H

��
��
i
dt

���
�recall that dT s

i � ��� Therefore� we have the following
necessary conditions for an extremal solution�


i�T
s�
i � � 
i�T

s�
i � � �Ti 	

s
i ���


i�T
g�
i � � 
i�T

g�
i � � �Ti 	

g
i ���
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H�T g�
i � � H�T g�

i � ���

�
T � �
H

q
����

H

�
�� � � ���admiss� ����

Extremal trajectories for the i
th vehicle will be com�
prised in general of unconstrained arcs �with Dij � ��
�j 	� i� and of constrained arcs� where the constraint
is marginally satis�ed �
j � Dij � ��� We will proceed
the discussion of necessary conditions by distinguishing
constrained and unconstrained arcs�

��� Unconstrained arcs

Suppose that� for the i
th vehicle� the separation con�
straints are not active in the interior of an interval
�tai � t

b
i 	� T

s
i � tai � tbi � T g

i � i�e� Dij�t� � �� j �
�� � � � � N� t � �tai � t

b
i �� Expanding ��� one gets

h
�
i�� �
i�� �
i�

i
� ��� �� 
i���ui sin �i � 
i��ui cos �i	 � ���

The characterization of optimal solutions in the uncon�
strained case proceeds along the lines of the classical
Dubins solution �see ��� �� 	�� We report some results
here for reader�s convenience� By integrating � one
gets 
i��t

a
i � t � tbi � �

�
i�� 
i��t
a
i � t � tbi � �

�
i�� and

i��t

a
i � t � tbi � �

�
i�yi�t� � �
i�xi�t� � �
i�� with con�
stant �
i�j � j � �� � �� In light of these relationships�
conditions � and � state that the costate components

i� and 
i� are piecewise constant� with jumps possibly
at the start and arrival time of the i
th vehicle� The
addend in the Hamiltonian relative to the i
th vehicle
can be written as Hi � �� �ui�i cos��i ��i� � 
i��ui�i�

where �i �
q

�
�i� �
�
�i� and �i � atan ��
i�� �
i��� From

Pontryagin�s Minimum Principle �PMP�� we know that
Hi�t� � const� � � along extremal unconstrained arcs
and� being by assumption the way�points con�gura�
tions unconstrained� it follows from � that Hi�t� is also
continuous at t � T g

i �

Extremals of Hi within the open segment fj�ij �
�ui�Rg can only obtain if

Hi

�i
� 
i� � �
i�yi�t�� �
i�xi�t� � �
i� � �� ����

If the condition holds on a time interval of non�
zero measure� then �
i�� � � on the interval� this im�
plies �i�ui sin��i � �i� � �� hence �i � �i mod 	 and

�i � �� In such an interval� the vehicle moves on the
straight route �the supporting line� in the horizontal
x� y plane described in ��� Other extremals of Hi occur
at � � ��ui�R� The sign of the minimizing yaw rate �i
is opposite to that of 
i�� in other words� the support�
ing line also represent the switching locus for the yaw
rate input� Trajectories corresponding to �i � ��ui�R
correspond to circles of minimum radius R followed
counterclockwise or clockwise� respectively� It is im�
portant for our further developments to notice that�
along extremal arcs� also the costates are completely
determined by boundary con�gurations up to a multi�
plicative constant � 	� �� which remains undetermined�

For each vehicle� extremal unconstrained arcs are
concatenations of only two types of elementary arcs�
line segments of the supporting line �denoted as �S ��
and circular arcs of minimum radius �denoted by �C ��
The latter type can be further distinguished between
�R clockwise arcs ��i � �ui�R�� and �L counterclock�
wise arcs ��i � ��ui�R�� According to the widespread
usage� subscripts will be used to denote the length of
rectilinear segments� and the angular span of circular
arcs�

Switchings of �i among �� �ui�R� and ��ui�R can only
occur when the vehicle center is on the supporting line�
As a consequence� all extremal unconstrained paths of
each vehicle are written as Cu�Sd�Cu�Sd� � � �SdnCun �
with ui � k	� k integer� i � � � � � � n� ��

In the case of a single vehicle� the discussion of opti�
mal unconstrained arcs can be further re�ned by sev�
eral geometric arguments� for which the reader is re�
ferred directly to the literature ��� �� 	� Optimal paths
necessarily belong to either of two path types in the
Dubins� su�cient family�

fCaCbCe � CuSdCvg ����

with the restriction that

b � ��R� ��R�� a� e � ��� b�� u� v � ��� ��R�� d � � ��	�

A complete synthesis of optimal paths for a single
Dubins vehicle is reported in ��	� The length of Du�
bins paths between two con�gurations� denoted by
LD��

s
i � �

g
i �� is then unique and de�nes a metric on

IR� � S�� One simply has LD��� �� � R�jaj � jbj � jcj�
for a CaCbCe path� and LD��� �� � R�juj� jvj� � d for
a CuSdCv path�
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In our multivehicle problem� however� other ex�
tremal paths may turn out to be optimal� and there�
fore have to be considered� This may happen for in�
stance for a path of type CaSbC�k�SeCf if �and only
if� the corresponding Dubins� path CaSb�eCf � which
is shorter� is not collision free� Arcs of type C�k� can
be interpreted as waiting
in
circles maneuver for an�
other vehicle to pass by and avoid collision �compare
e�g� with current practice in con!ict resolution for
air tra�c control�� Notice explicitly that the length
of two subpaths of type � � �CuiS�C�k�S�Cui�� � � � and
� � �CuiS�C�k�S�Cui�� � � � are equivalent as far as � �
� � � � ��

By �extremal trajectory �Dubins� trajectory� re�
spectively� we indicate henceforth a map IR� � IR�

de�ned by

xDi �t�� y

D
i �t�

�
� denoting the position of the

i
th vehicle at time t along an extremal �Dubins�� path
connecting qsi to qgi �

Remark �� If a set of non
colliding Dubins� tra�
jectories exists� then this is obviously a solution of the
minimum total time problem� More interestingly� if
with all combinations of possible independent Dubins
trajectories a collision results� then the optimal solu�
tion will contain at least a constrained arc or at least
one wait circle�

��� Constrained arcs

Some further manipulation of the cost function is in�
strumental to deal with constrained arcs� i�e� arcs in
which at least two vehicles are exactly at the critical
separation �Dij � �� i 	� j�� To �x some ideas� let
us consider a constrained arc involving only vehicles �
and � Along a constrained arc� the derivatives of the
constraint must vanish�

N �

�
D��

�D��

�
��

�x� � x��
� � �y� � y��

� � d�

�x� � x��� �x� � �x�� � �y� � y��� �y� � �y��

�
� �

����
with d � d�� Let � be the direction of the segment
joining the two vehicles� so that

x� � x� � d cos��
y� � y� � d sin��

����

From the second equation in ��� one gets

�x� � x����u� cos �� � �u� cos ��� � �y� � y����u� sin �� � �u� sin ��� � �

����

Figure �� Possible constrained arcs for two vehicles with

the same velocity

and� using ���

�u� cos��� ���� �u� cos��� ��� � �� ����

When the constraint is active� the two vehicle envelopes
are in contact� and the relative orientation of the two
vehicles must satisfy ��� which de�nes �for given �u�� �u��
two manifolds of solutions in the space f���� ��� �� �
S� � S� � S�g described as

a� �a� � �� arccos

�
�u�
�u�

cos��� ���

�
� ���

b� �b� � �� arccos

�
�u�
�u�

cos��� ���

�
� ���

The two solutions correspond to two di"erent types
��a and �b � of relative con�gurations in contact� For
instance� for �u� � �u�� one has�

a� �a� � ��� ��

b� �b� � �� ��� ���

In case a� the two vehicles have the same direction�
while in case b� directions are symmetric with respect
to the segment joining the vehicles �see ���

The two solutions �� � coincide for

� � �� � arccos

�
�u�
�u�

�
� ���
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such a � exists only if �u�
�u�
� �� If we �nd the solution

of �� in �a� and �b�� the solutions coincide for

� � �� � arccos

�
�u�
�u�

�
� ���

� exists if �u�
�u�
� �� Hence� from � and �� � exists if

�u� � �u� and in this case the solutions of �� is

� � �� � ���

In order to study constrained arcs of extremal solu�
tions� it is useful to rewrite the cost function � as

�J � �TN
�
P

i 	
s
i �i�q�T

s
i �� qsi �

�
P

i 	
g
i �i�q�T

g
i �� qgi �

�
R
�

�

P
i wi � 
T � �q � f� � � #D��dt�

���

with � � � along a constrained arc� The jump condi�
tions at the entry point of a constrained arc� occurring
at time � � are now


i��
�� � 
i��

�� � �
N

q

����
	

���

H���� � H���� ���

���

where H �
P

i wi � 
T f � �T #D��� and

�
N

q

�T

� 

�
�������

�x� � x�� �u� cos �� � �u� cos ��
�y� � y�� �u� sin �� � �u� sin ��

� d�u� sin��� ���
�x� � x�� �u� cos �� � �u� cos ��
�y� � y�� �u� sin �� � �u� sin ��

� �d�u� sin��� ���

�
�������
�

A further distinction among constrained arcs of zero
and nonzero length should be done at this point�

����� Constrained arcs of zero length

Consider �rst a constrained arc of zero length occur�
ring at a generic contact con�guration� which is com�
pletely described by the con�guration of one vehicle
�e�g�� qc � q��� by the angle �c � �� and by the con�
tact type� Assume for the moment that there is only
one constrained arc of zero length in the optimal path
between way�points of the two vehicles� Equation ��
taking into account that costates of each vehicle are

Figure �� A numerically computed solution to a two�

vehicles minimum total time problem� Vehicles are repre�

sented as aircraft� Minimum curvature circles are reported

at the start and goal con�gurations� along with safety discs

of radius d�� �dashed�� The unconstrained Dubins� paths

�thin lines� would achieve a cost of 		�
� units� but collide

in this case �collisions are marked by �� signs�� The op�

timal solution consists of two unconstrained arcs for each

vehicle� pieced together with a zero�length constrained arc

of type b� Total cost is ����� units�

determined �once the way�points and contact con�gu�
rations are �xed� up to constants �i��

��� �i��
��� pro�

vides a system of � equations in � unknowns of the
form

A�qc� �c�

�
�������

����
��

����
��

����
��

����
��

��
��

�
�������
� ��

where the explicit expression of matrix A�qc� �c�� for
each contact type� can be easily evaluated in terms of
qs�� q

g
� � q

s
�� q

g
� � and is omitted here for space limitations�

Non
triviality of costates implies that �qc� �c� must sat�
isfy det�A� � �� A further constraint on contact con�
�gurations is implied by the equality of deplacement
times from start to contact for the vehicles� which is
expressed in terms of Dubins distances as

LD��
s
� � �c���u� � LD��

s
�� �

�

c��u��

where ��c denotes the con�guration of vehicle  at con�
tact� which is uniquely determined for each contact
type� If m constrained arcs of zero length are present
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in an optimal solution� similar conditions apply �with
way�points con�gurations suitably replaced by previ�
ous or successive contact con�gurations�� yielding m
equations in �m unknowns�

����� Constrained arcs of nonzero length

From this point on� we will make the assumption
that forward velocity of all vehicles are equal to �
��ui � ��� Consider an interval �T�� T�	 during which the
constraint D�� � �� � A con�guration of the two vehi�
cles along such constrained arcs can be completely de�
scribed by using only four parameters� for instance the
con�guration �x�� y�� ��� of one vehicle and the value
of �� In fact� due to the tangency conditions on the
constraint� one has �� and either  or �� Moreover�
di"erentiating ��� one �nds

�x� � �x� � d �� sin��

�y� � �y� � d �� cos��
����

and
�� �

�

d
�sin��� � ��� sin��� � ��	� ����

Di"erentiating twice D��� we obtain�


D���q� �� t� � � �
�� � cos��� � ���  ���d sin��� � ��� ���d sin��� � ���

����

Constrained arcs of nonzero length that are part
of an optimal solution must themselves satisfy neces�
sary conditions� which can be deduced by rewriting the
problem in terms of the reduced set of variables���������

�������

min �T� � T��
�xi � cos �i
�yi � sin �i
��i � �i
�� � �

d
�sin��� � ��� sin��� � ��	

�� � ��� �� � ��

����

for i � � or i � � and for some initial and �nal spec�
i�cation of the variables �xi� yi� �i� �� and of the con�
strained arc type �a or b�� Recall that �� � �� �arcs of
type a�� or �� � �� �� �type b��

�It should be pointed out that the study of constrained
arcs of nonzero length is also useful to model cooperative
manipulation of object by multiple vehicles� assuming that
each vehicle supports the common load through a hinge
joint�

−4 −3 −2 −1 0 1 2 3 4 5
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Figure �� Extremal constrained arcs of type a consist of

two copies of a Dubins� path

Let us consider the two types of constrained arcs sep�
arately� Notice that two extremal constrained arcs of
di"erent type may be pieced together through a con�g�
uration with �� � �� � �� which is both of type a and

b� Type a�� From ��� ��t� � �� � arctan y���	�y���	
x���	�x���	

�

hence
�x� � �x�
�y� � �y�
�� � ��

����

Extremal constrained arcs of type a consist of a Dubins
path for vehicle �� and of a copy of the same path
translated in the plane by �d cos��� d sin��	

T for the
other vehicle �see ���

Type b�� In this case� using �� one obtains �� �
�
� ��� � ��� in ��� Introduce $ � �
�� 
�� 
�� 

�� and
H �  � 
� cos �� � 
� sin �� � 
��� � 

��� � �����
Necessary conditions for optimality of solutions of ��
are

�$ � �$

�
BB�

� � � sin �� �
� � cos �� �
� � � �
� � � �

�
CCA � ����

Hence� 
�� 
� and 

 are constant� Letting 
� � � cos�
and 
� � � sin�� from �� one gets

�
� � � sin��� � ��� ����

From P�M�P one also gets that� when j��j � �� and
j��j � ��� it is necessary for an optimal arc that �H

���
�

�H
���

� �� which implies 
� � 

 � �� In this case� from
�
� � � one easily gets �� � ��	� �� � �� The direction
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Figure �� Singular extremals in a constrained arc of type

b�

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Figure �� An extremal constrained arc of type b�

of the segment joining the two vehicles varies as

�� � �
d
sin�� � ���

���� � ��
����

Equilibria of �� at � � �� and � � �� � 	 are re�
spectively unstable and asymptotically stable� Hence�
along a singular constrained arc of type b� one vehicle
will be moving on a straight line� while the other will
be trailing behind �see ���

Extremal constrained arcs may also obtain when a
control variable is on the border of its domain� e�g�
�� � ���� In this case the motion of the two vehicles
result in arcs such as those represented in �gure ��

Notice that along such an arc� the steering velocity
of vehicle  is uniquely determined by �� Hence� being
j��j bounded by ��� an arc of maximum curvature for
vehicle one will be possible only until the limit curva�
ture for vehicle two is reached� In other words� letting

m��q� � maxf��� �
�

d
sin��� � ������g�

and

M��q� � minf�� �
�

d
sin��� � �����g�

we have that along constrained arcs of type b we must
have m� � �� � M�� Control �� may equal M� if
�� � �� or if �� � �� �



d
sin��� � ��� In the latter

case� �� � ���� A similar reasoning applies to vehicle
two� for which we get m� � �� � M�� In conclusion�
along a nonsingular extremal constrained arc of type
b� one of the vehicles moves along a circle of minimum
radius� while the other follows a curve such as that
described in �gure ��

� Numerical computation of solutions

The necessary conditions studied in this paper provide
useful hints in the search for an optimal solution to
the problem of planning trajectories of N vehicles in
a common workspace� Although a complete synthesis
has not been obtained so far� we will describe in this
section an algorithm that �nds e�cient solutions to the
optimal planning problem in a reasonably short time�

Based on the discussion above� the optimal con!ict
resolution paths for multiple vehicles may include mul�
tiple waiting circles and constrained arcs of both zero
and nonzero length� The algorithm to be described
shortly was developed to solve air tra�c control prob�
lems ��	� and is based on a few simplifying assumptions
motivated by the particular application� Namely� we
asssume henceforth that

h� all vehicles have equal geometric characteristics
and equal �constant� speed�

h� constrained arcs of nonzero length are not consid�
ered�

h� multiple zero
length constrained arcs among the
same vehicles are ruled out�

h� the initial con�gurations of the vehicles are su��
ciently separated�

With assumption h� we mean that for each vehicle�
the initial con�guration are collision free and guarantee
that wait circles at the initial con�guration are colli�
sion free �this holds for instance if the distance between
the initial position of vehicles i and j is larger than
	R

�uj
�ui

� R�
dij
� ��
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Figure �� Numerically computed solutions to optimal coop�

erative con�ict resolution for two vehicles� Minimum cur�

vature circles are reported at the way�point con�gurations�

along with safety discs of radius d�� �dashed�� Optimal so�

lutions consist of two unconstrained Dubins� trajectories for

each vehicle� pieced together with a zero�length constrained

arc�

Consider �rst the case of two vehicles� If the Du�
bins� trajectories joining the way�points con�gurations
do not collide �i�e�� D�t� � ���t�� this is the optimal
solution� Otherwise we compute the shortest contact

free solution with wait circles at the initial con�gura�
tions� and let its length be Lf �

Hence we look for a solution with a concatenation of
two Dubins� paths and a single constrained zero
length
arc of either type a� or b� for both vehicles� Such solu�
tion can be searched over a 
dimensional submanifold
of the contact con�guration space �IR��S��S��� The
optimal solution can be obtained by using any of sev�
eral available numerical constrained optimization rou�
tines� computation is sped up considerably by using
very e�cient algorithms made available for evaluating
Dubins� paths ���	�� The lenght Lc of such solution
is compared with Lf � and the shorter solution is re�
tained as the two
vehicle optimal con!ict management
path with at most a single constrained zero�length arc
�OCMP�� for short�� Some examples of OCMP� so�

lutions are reported in Figure ��

If N vehicles move in a shared workspace� their pos�
sible con!icts can be managed with the following mul�
tilevel policy�

Level � Consider the unconstrained Dubins paths of
all vehicles� which may be regarded as N single

vehicle� optimal con!ict management paths� or
OCMP��� If no collision occurs� the global op�
timum is achieved� and the algorithm stops� Oth�
erwise compute the shortest contact
free paths
�with wait circles� and go to next level�

Level � Consider the M � 

�
N


�
possible solu�

tions with a single contact �of either type a or b��
between two vehicles� and possibly wait circles for
other vehicles� and compute the shortest path in
this class� If this is longer than the shortest path
obtained at level �� exit� Otherwise� continue�

Level m � � Consider the M
Qm��


�� �M�
� possible
solutions involvingm zero
length constrained arcs
between di"erent pairs of vehicles and �possibly�
wait circles for other vehicles� and compute the
shortest path in this class� If this is longer than
the shortest path obtained at level m � �� exit�
Otherwise� continue�

A few three
vehicle con!ict resolution trajectories at
di"erent levels are reported in Figure �� When the
number of vehicles increases� the number of opti�
mization problems to be solved grows combinatorially�
However� in practice� it is hardly to be expected that
con!icts between more than a few vehicles at a time
have to be managed� It was also observed in our sim�
ulations that� for vehicle parameters close to those of
the kinematic model of commercial aircraft� solutions
including wait circles are very rare�

� Conclusion

In this paper� we have studied the problem of plan�
ning trajectories of multiple Dubins� vehicles in a plane�
Necessary conditions have been derived for both free
and constrained arcs� An algorithm for numerically
�nding solutions has been described�
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Figure 	� Four cases of three�vehicles con�ict resolution�

Up left� the con�ict is resolved at level �� Up�right� a level

� solution� Down left� a level � solution whereby the ve�

hicle starting in the middle contacts �rst the one arriving

on its right� and after the one arriving from left� Down

right� a level � resolution that generates a roundabout�like

maneuver�

Future work on this topic will address the problem
of �nding a complete optimal synthesis at least for the
simplest cases �N � �� Further re�nement of the al�
gorithm will be sought� that could exploit more of the
rich structure optimal solutions must satisfy� Finally�
optimal paths of multiple agents at �xed distance will
be studied in more detail� to address such problems as
cooperative manipulation of objects by robotic vehicles
and formation !ight planning�
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