Any Time Control!

Daniele Fontanelli, Luca Greco
Interdepartmental Research Center ”E. Piaggio”, Pisa University

March 31, 2006

! This research has been partially supported by EC contract HYCON and RUNES

Chapter 1

Any Time Control

It is widely accepted in the control community that the Computer Controlled Systems (briefly, CCSs),
have a lot of advantages based primarily on the high reconfigurability of the controller platform and
the ability of making complex yet fast decisions. Such positive features make the CCS a useful
platform for multitasking control, i.e. using only one single-processor platform to control several
plants. Within this framework, the computer has to share its computational time to solve several
critical tasks, each one with its priority. Taking into account schedulability and real time operating
systems problems, it is just a step forward to realize that tasks with low priority could be interrupted
any time, with unpredictable distributions, and it is just a logical intuition that not all the tasks can
be at the highest priority.

i From a control point of view, each control task should compute a control input to the controlled
system to prevent instability or to ensure the performances. This field seems to be at the border
between the control community and the computer science community and it has not been widely
investigated. Some work has been carried out by [1] introducing more general scheduling models and
methods for control systems, where control design methodology takes the availability of computing
resources into account and allows the trade—offs between control performance and computer resources
utilization, and also introducing the idea of any time CCS without solutions. In [2], the Control
Server is introduced, allowing the separation between scheduling and control design by treating the
controllers as scalable real-time components. Jitter and latency is included in the model and cannot
be taken over. Furthermore, the interrupt time, the I/O operations and the overrun handling are not
taken into account, simply imposing only soft real time control tasks. Useful tools for the analysis
of real time control performance are the Jitterbug ([3]) and the True Time ([4]) that analyze the
control performance once the control tasks are implemented as soft real time tasks.

1.1 Basic Idea

The underlying idea of the Any Time Control paradigm is the ability to improve the computation
accuracy as the available time increases. This concept has been widely studied in literature, both
from computer scientists [5], introducing the concept of imprecise computation, and from filter design
theory [6], improving the desired filter result as the number of polynomial terms is increased.

In what follows, each discrete time controller, implementable on a generic digital machine, is
described and computed on its state space representation. Improving the computation accuracy as
the available computation time increases implies the definition of a “scalable” controller. Albeit the
concept of imprecise computation can be moved to the imprecise control and although a necessary
minimum control calculation burden can be fixed as the minimum computational time guaranteeing
the stability control, a fundamental question is what should be considered as a correct “accuracy
improvement” in the control computation. Assuming that a given target, discrete controller K(z) can
be decomposed into a set of discrete controllers K;(z), with ¢ = 1,..., N, the accuracy improvement

can be addressed in two ways:
Model reduction. The approximation index for the accuracy improvement is the closed loop
behavior as a whole. The discrete target controller K (z) is approximated using model reductions:

e Balanced reduction: the state space model is reduced by weakly observable or controllable
modes cancellations;

e Modal reduction: the state space model is reduced separating the modes set by their relative
velocities;

e Generic reduction: the state space model is reduced following some generic reduction index,
for instance the terms of the Partial Fraction Expansion.

The model reduction approach has two main drawbacks: its meaningful interpretation is in open
loop, while the closed loop effects or the performance satisfaction are not so evident; the minimum
controller obtained with this technique could be computationally (and dimensionally) more complex
than the relative minimum controller obtained with a performance reduction.

Performance reduction. The approximation index for the accuracy improvement is the per-
formance. The set of performances 15, that the target controller K (z) satisfies, are separated into
N — 1 parts

P:{PlaPQa"'aPNfl}a

that are incrementally implemented by each controller. K;(z) satisfies the most important requi-
site: the stability. For each i = 2,..., N — 1, if K;(z) satisfies the performances {]31, .. ,]32;1}, the
controller K; ,(z) satisfies {Py,...,P;}. It is straightforward that Ky (z) satisfies the entire set P,
such that Ky (z) = K(z). The most important feature of this architecture is that each controller is
designed as a stand-alone controller and the controllers are related each other only by the perfor-
mances. In fact, a target controller is not strictly necessary, remembering that only the definition of
the set of performances P is needed.

Furthermore, the performance guided model reduction can be further extended adding a “scal-

ability” constraint. If the controller K;(z) ensures the performances {F,...,P;_;} satisfaction and
has the set of poles p; and zeros z;, it is possible to construct a controller K;.(z) that satisfies the
performances {Pi, ..., P;} and has a set of poles p; = {pj,p;} and zeros z; = {Z;, z;}. In some sense

that will be clearer in the subsequent sections, if the additional scalability constraint is satisfied,
the controller Kjy1(z) has to compute only the additional singularities effects, i.e. p; and Z;. How-
ever, there is a trade—off between the performance and the scalability constraint, both with respect
to the controller design and the state space implementation. Nevertheless, in general applications,
Ky (z) # K(z) with the dimension of Kx(z) greater than K(z) (i.e. with a larger number of poles).

In order to explain the two main approaches, consider the continuous time transfer function of
an unstable, non—-minimum phase plant

s—2
(s +10)(s +5)(s +2)(s — 1)

G(s) =

and he resulting discrete transfer function, sampled with a frequency of 100H z

1.5935 107 (2 + 3.568)(z — 1.02)(z + 0.2561)
(z — 1.01)(z — 0.9802) (z — 0.9512)(z — 0.9048) "

G(z) =
Using a systematic control approach to stabilize the system and to ensure an approximate first order
step response (i.e.LQR design method) the controller

K(z) = —1136.1395(z — 0.9827)(z — 0.9509)(z — 0.905)
" (2 — 0.7408)(z — 0.7047) (2% — 1.719z + 0.7408)’

(1.1)

12 ! ! !

10

0 500 1000 1500 2000
Time steps

Figure 1.1: Step response of the system G(z) closed in loop with the controller K (z).

is determined (see figure 1.1).
A balanced state space representation of the controller K(z) is

0.4328 0.2974 0.1114 0.01632 33.88
Ay = —0.2974 0.936 —0.0354 —0.004747 B, — —4.615

0.1114 0.0354 0.904 —0.02812 |’ —3.108|’

—0.01632 —0.004747 0.02812 0.892 0.3606

Cp = [-33.88 —4.615 3.108 0.3606], Dy = 0.

for which the state space x = [z1, T2, 73, z4])7 is organized in descendent order of controllability and
observability, i.e. x4 is the weakly controllable and observable mode of the system.

Applying a reduction by suppressing z4, amounts in removing the last column and row of Ay
and related elements in the By and C}, arrays. This way, the second order step response, reported in
figure 1.2, is obtained. The system has poor performances, but is still stable.

As shown by this simple SISO example, the model reduction acts on the system performances
in an unpredictable way, because of the closed loop behavior. Moreover, if a further reduction is
performed by removing the variable x3, the resulting closed loop system turns out to be unstable.
Therefore, the minimum controller order, using the balanced model reduction, is three.

To accomplish a modal reduction, the system is firstly transformed in Jordan form and then a
modal removal is attempted. Unfortunately, the proposed example does not permit a modal reduction
and the resulting closed loop system is unstable regardless of what z; is removed.

It is evident that, while adding or removing stable poles has not impact on the open loop stability,
this is not true for closed loop stability. This explain why minimum controllers produced by model

0 500 1000 1500 2000
Time steps

Figure 1.2: Step response of the system G(z) closed in loop with the reduced controller obtained by
suppressing the x4 state space variable.

reduction may have large dimension.
Consider now the obvious requirement of stability and the additional performance P; of first

order step response. A minimum controller (of order one)
z —0.9827
Ki(z) = 900 —————
1(2) 2 — 0.7408

can ensure the stability (see figure 1.3).
Let C;(z) be a generic controller and let Cy(z) = Ki(z). Let now the controller

(z — 0.9509) (z — 0.905)
(z — 0.7047) (2% — 1.719z + 0.7408)

Co(z) = 1.2624

be such that the series (regardless of the order for SISO systems) Ca(2)Ci(z) = K2(z) ensures the
performance P;. The controller Ky(z) is exactly the target controller (1.1), with the step response
depicted in figure 1.1.

It is worthwhile to note that with the performance reduction approach, the designer has much
more degrees of freedom, may produce minimum controller of lesser dimension and it is sometimes
able to satisfy the performance by preserving already placed poles.

1.2 Feasibility of the Any Time Controller

In a multitasking system a single Central Processor Unit (CPU) has to satisfy a set of different
tasks. Within the executable set of tasks, control tasks are of major interest. The computational

10 ! ! !

0 500 1000 1500 2000
time steps

Figure 1.3: Step response of the system G(z) closed in loop with the controller K;(z) (stability
requirement).

environment is assumed to be real time, i.e. the correctness of the control tasks depends both on the
logical computation and on the time by which the results are available.

According to real time operating systems literature and scheduler policies, tasks are separated
into three major classes: hard real time, soft real time and non real time. The idea underlying this
taxonomy is the time criticalness of each class of task: hard real time tasks must finish their work
within their deadline, soft real time tasks should finish their work within their deadline, while non
real time have no time constraint at all.

Tasks are also classified, according to their time constraints, as periodic or aperiodic. As defined
in [7], a periodic task executes its computations or transmissions at fixed periodic intervals and may
be both hard or soft real time, while an aperiodic task has irregular time intervals between two
consecutive activations and it has soft deadlines, e.g. a human operator that interacts with the
system. For completeness, a sporadic task is an aperiodic task with a hard deadline, e.g. critical
fault tolerance system.

The digital controllers design for physical systems involves classical problems such as choosing the
sampling time, ensuring stability and performance. On the other hand, any actual implementation
of a set of controllers must fulfil further logical and temporal constraints dealing with no zero-
time execution of the control law, shared resources (the most important of which is the CPU),
dependencies, numerical sensitivity, etc.

Usually a CCS executes regularly a set, possibly time dependent, of periodic control tasks and
is endowed with an interrupt mechanism to manage external events. In response to these events
aperiodic or sporadic tasks are activated with respect to their hardness.

The first concern of a real time system is to guarantee that each hard real time task executes within

its deadline. This is a strong requirement, significantly limiting the complexity of the implementable
control laws. A way to recover partially the freedom in control design, still satisfying the time
constraints, is to split any periodic control task in a mandatory part and one or more optional (thus
skippable) parts. A sporadic task is considered now as being mandatory only and an aperiodic
task as optional only. The criticalness of hard tasks is preserved ensuring that only the mandatory
parts satisfy the time constraints. Strictly speaking, if all the mandatory parts of a set of tasks are
schedulable for every time instant, the scheduler satisfies the feasible mandatory constraint [5].

This approach has been used for imprecise computation [5], where a complex algorithm is divided
in a mandatory part and a certain number of optional parts progressively refining their results. If
all the optional parts are completed, the exact result is provided. The previous method relies on
the hypothesis of algorithm monotonicity. An algorithm is said monotone if the imprecise results,
produced by terminating it before complete execution, grow in precision.

Any time controllers, hence, must be designed such that any termination of their execution
produces a valid control law (at least a minimal one computed in the mandatory part) performing
better than the previous intermediate laws.

In the proposed multitasking architecture, four main architectural factors are taken into account:

1. The periodic task 7; has a period #;. The computational time left by mandatory parts is
assigned dynamically to the optional parts according to the tasks’ priorities p;.

2. The period t; of some tasks may be variable depending on external events. A change in the
period can be managed as a change of task in the set (time dependent set).

3. The activation of aperiodic and sporadic tasks is unpredictable.

4. The scheduler satisfies the feasible mandatory constraint.

Two main scheduler scenarios can be considered depending on the a—priori knowledge of the
available computational time for the next execution of each task:

A) A-priori knowledge with high confidence level. The mandatory part is executed and then the
whole optional time is devoted to the computation of the controller as greater as possible for
the available time.

B) No a—priori knowledge. The computation of the controller can be interrupted at anytime after
the mandatory part, therefore scalable controllers are progressively computed in the optional
time (pure any time).

It is worth noting that these two scenarios lead to very different implementations of the any time
paradigm and convey different problems. The first scenario is closer to the idea of multi—version
tasks. In fact, the optional parts can be considered as mutually exclusive versions of the same task,
having different computational times and guaranteeing different performances. Once a version is
chosen it cannot be changed in favor of a less demanding one and if it terminates prematurely, that
is no more time can be given to its execution by the scheduler, the unique valid control law is given
by the mandatory part.

The second scenario provides a greater flexibility as it allows a task to be interrupted anytime,
but its implementation is more complex. The optional parts are executed in order of complexity and
the computations performed previously (or at least a part of them) are “recycled” and constitute the
basis for the computation of the following parts. Therefore, when the execution is terminated, the last
optional part completed provides the valid control law. This approach, however, requires a special
design of the optional parts. They cannot be designed independently as for the first scenario, since
they should reuse the previously computed parts. The controller has, therefore, a nested structure
where the optional parts are like “Chinese Boxes” each including the previous ones.

The Any Time Controller is an attempt to provide more flexibility to the multitasking control
problem, but requires a more complex design phase as many trade—offs have to be taken into account.
Summing up, the previous four assumptions on tasks and scheduler characteristics have to be fulfilled
along with the following:

5) The controller is split into several elementary controllers in order to break the control compu-
tation into several phases. The first elementary piece must guarantee the stability of the plant
(mandatory part). As the CPU has time, the control computation is further performed, better
approximating the final desired control (optional parts).

6) Monotonicity: the performances must increase as the available time increases.

7) The minimal controller must be computationally simpler than the full controller. This hy-
pothesis is relative to the implementation of the minimal controller as the mandatory part of
an any time scalable controller compared with the full controller implemented as the classical,
monolithic controller. Therefore, it is not an obvious requirement, because the method used to
reduce the full controller may impose a state space representation for the minimal one which
is more expensive to be computed than an ad—hoc representation for the full controller. This
assertion will become more evident in section 1.3.

Remark 1 In the literature of CCS, the problem of the “time—to—control” and its variability (jitter)
is often taken into account. For instance, in [3] a dedicated “jitterbug” software is developed. It is
customary the attempt of the designer to reduce the time-to-control, in order to provide the control
as close as possible to the instant the inputs were read. In the anytime paradigm, the available
computational time between the end of the mandatory part and the task deadline is used to compute
the optional parts, consistently with the feasible mandatory constraint. It is, therefore, evident that
each control is computed and furnished to the system near its deadline, thus mazximizing the time—to—
control. A way to reduce the delay between reading input and writing output is to fiz a deadline d; for
the task T; not coinciding with the task period t; (see figure 1.4). The reading operation is supposed to
be performed via hardware at each step of any new period. We will not go further into this problem in
the rest of the paper, because it is not relevant for the analysis of the any time controller framework.

1.3 Single controller digital implementation

The implementation of a digital controller on a PC, DSP or any dedicated hardware requires the
designer to cope with many issues related to computational complexity and numerical reliability. Use
of finite precision mathematics leads to problems of quantization, round—off and numerical sensitivity
to coefficient perturbation. Moreover, controllers may be also ill-conditioned. All these problems
may yield controllers significantly deviating from ideal behavior, with poor performances or even
unstable. These problems have many solutions ranging from the design of an ad-hoc hardware to
the choice of an appropriate representation for the controller (see for instance [8] and [9]).

However, when a certain precision has been chosen, (word length, fixed or floating or mixed fixed—
floating point numbers, etc.) the designer has to trade between complexity and numerical reliability.
Since the implementation of linear digital controllers is usually performed in state space form, in this
paper we do not deal with quantization issues, focusing on the choice of an appropriate state space
realization. In fact, it can affect significantly the complexity and the numerical sensitivity of the
digital controller.

For our purpose, the complexity of a controller is related to the time required to compute a step
and provide the output. A controller is considered more complex than another if it requires more
time to be computed. This is not a rigorous definition as it depends on the hardware used to perform

d d d

Periodic |
Task T. yMandatory| optional | | Mandatory | optional &
\ v
~
t,
Sporadic A |
Task Mandatory ¢
Max Jitter
g NG \di
.. di
Periodic |
Task TI Mandatory| Optional ¢ Mandatory
N _
~
t,
Sporadic A |
Task Mandatory *

Figure 1.4: Example of two different scheduler execution, with both periodic and sporadic hard real
time tasks. In the bottom part of the figure, a maximum allowed jitter constraint is added.

computations, but remarks our interest on the time needed to compute a controller, which is the
most important parameter from an any time point of view.

Any mathematical operation requires a certain number of clocks to be executed, which varies
for different operations and different hardware. Since real time systems do not use cache devices,
the time spent to compute a controller does not vary on a fixed hardware. This allows us to relate
complexity to the number of operations. As aforementioned, however, different operations require
different number of clocks. Therefore, considering a generic hardware platform and recalling that
it is widely accepted in literature that multiplications require much more clocks than additions, we
assume that the complexity of a controller is given by the number of multiplications involved.

For comparison purpose we will analyze three state space realizations:

1. Full matrices;
2. Companion form (such as for instance Controllable form);

3. Jordan canonical form.

Let us start considering the SISO case.
We want to find an irreducible state space representation { A, b, ¢, d} of the minimal proper transfer
function ¢(z). The feedthrough term d can be computed as:

d = g(o0) = lim g(2),

Z—00

then we let:
9(z) = g(z) — g(0)

be the strictly proper part of g(z). This allows us to focus only on the {A4,b,c} realization of a
strictly proper transfer function §(z) of degree n given by:

_n(2) Bu1Z" 4 Bu22" 24+ frz+ fo
2o 12" 4 oz o

where some coeflicient 3; can be zero so that the numerator may have degree m < n — 1. Recall that
§(z) being minimal, n(z) and d(z) are coprime.

A state space realization of g(z) without any particular structure is given by a full n x n real
matrix A and full n x 1 and 1 x n real vectors for inputs and outputs respectively. The numerical
robustness of this representation depends on the particular choice of the matrices, therefore it requires
a particular analysis for each individual case. Its complexity, instead, can be easily computed in terms
of number of multiplications and is given by:

Cl=n’+n+n=n(n+2).

This is not a good realization as long as the designer has the freedom to choose the representation,
but it can turn out to be a mandatory choice due to other constraints. It is the case, for instance,
when the family of scalable controllers is produced by means of model reduction techniques. Indeed,
the technique used to perform the model reduction may fix the state space realization.

When the realization of each controller can be chosen arbitrarily, then the Companion form is the
most convenient, at least for SISO systems, from a complexity point of view. Consider the Standard
Controllable form:

0 1 0 0 0
0 0 1 0 0
A= : , b=
0 0 0 1 0
—qp —Qp —Qp o Qo) 1

c=[f B Bo - Bu].

It can be built directly by the polynomials n(z) and d(z). Moreover, the number of multiplications
to perform a step of this controller is very low as can be seen from the following piece of code:

y = betaO*x1 + betal*x2 + ... + betan_l*xn;

x1l = x2;

x2 = x3;

xn = -alphaO*x1l - alphal*x2 - ... - alphan l*xn + u;

The output requires n multiplications, but the A matrix requires only n multiplications for the
last row (the 1’s on the superdiagonal amounts to a shift in the state variables) and the input needs
only a sum. Therefore, the complexity of the Controllable form is:

CY=n+n=2n.
Unfortunately, this representation is affected by a great sensitivity to parameters variation as pointed
out, for instance, by [8] and, hence, should be avoided.

Finally, we introduce the Jordan canonical form, representing a good compromise between nu-
merical reliability and complexity.

The Jordan structure of the A matrix can be derived directly from the §(z), since its minimality
implies that there can be only one block for each distinct eigenvalue. The vector b can be arbitrarily
fixed (for instance with only 1 and 0 elements), provided that the full controllability is ensured,
instead the output vector becomes fixed by the choice of b. Equivalently, we can choose ¢ such that
the full observability is ensured and derive b later. The matrices can be partitioned as follows:

Jl O bl
JQ b2
A —) b — .
O I, b
Cc = [Cl cy - Ck] .

The matrices J; are r; X r; Jordan blocks and the b and ¢ vectors are partitioned accordingly. This
allows us to consider, for the purpose of complexity analysis, the single subsystem {.J;, b;, ¢;} realizing
the i-th transfer function g;(z) such that g(z) = Zle gi(2).

If J; is the block related to the real eigenvalue A;, then it has the well known structure:

A1 O
J; = A
1
O Ai
and b; can be chosen simply as:
0
b= |
0
1

to satisfy the Popov-Belevic-Hautus rank condition. The output vector ¢; can be computed in many
ways. For instance, it can be derived by the partial fraction expansion of §;(z):

. 031 di2 Oir;
9i(2) 2= N (- >\i)2 (z—\)"
as:
¢ = [Oig; Oigim1 - Oin);

or can be computed by means of the r; Markov coefficients derived by g;(z) and the Reachability
matrix R; as follows:

ci=h'R; 1,
where b1 = [hil hjo - hi,ri] is the vector of Markov coefficients. Recall that at this stage the
matrix R; is defined since J; and b; are fixed. Regardless of the method used to derive ¢;, it is

generally a full 1 x r; vector.
A piece of code implementing the subsystem {J;,b;,c;} related to a real eigenvalue, can be as

follows:
yi = cil*xil + ci2*xi 2 + ... + cirixxiri;

xi 1 = lambdai*xi 1 + xi_2;
xi_2 = lambdai*xi 2 + xi_3;

xi_ri = lambdai*xi_ri + u;

The complexity of g;(z) is then given by r; + r; = 2r;.

10

If the block J; is related to a couple of complex conjugate eigenvalues \; = o; + jw;, A\j = 0; — jw;,
then it can be written in real Jordan form as:

[0 w; 1 i
—w; o; 0 1 O
ag; wj
Ji = —w; O 1 0
0 1
O o; Wi
L Wi 0j
It can be proved that the vector:
0
b= |-
0
1

is capable of guaranteeing the full controllability of the couple (J;, b;). The vector ¢; can be computed
in a similar way as before and is generally of full dimension. If the block J; has again dimension r;
(but now necessarily even) then the complexity of §;(z) is given by 2r; + r;.

The complexity of the full canonical Jordan realization of §(z) is given by the sum of the com-
plexity of the various blocks. However, it is worth noting that the presence of 1’s in the blocks and
in the input vectors are immaterial for our complexity criterion. Therefore b does not take any part
in the complexity evaluation, ¢ requires n multiplications and each eigenvalue contributes with one
multiplication if it is real or with two if it is complex, no matter on how the matrix is partitioned in
Jordan blocks. Finally, we can consider the two extreme cases of blocks all related to real eigenvalues
and blocks all related to complex conjugate eigenvalues and provide the following bounds for the
complexity of the Jordan canonical form:

2n < C;] < 3n.

Now we can justify the requirement on the dimension of the minimal controller, implemented
in the mandatory part, made in the previous section. If the reduction technique constrains the
minimal controller to be in full matrices form, then it may have a greater complexity than that
of the full classical controller implemented in Jordan form. In this case it is better to implement
directly the classical controller and not the scalable version. Counsider, for instance, a full SISO
controller of dimension n = 6 implemented in Jordan form and a reduced controller of dimension
r = 3 implemented in full matrices form. The complexity of the full controller is C,, = 2n = 12 less
then the complexity of the reduced one C, = r(r + 2) = 15. Similar remarks hold also for MIMO
systems.

The same need for numerical reliability leading the choice of a particular realization of a SISO
controller, occurs also in the realization of a MIMO controller. This is essentially the reason why we
focus on Jordan form.

It is a well known fact that realizing a MIMO system is a significantly more complex task than
realizing a SISO one, mainly if we look for a minimal form. The dimension of the state space must be
set equal to the McMillan degree of the Matrix Transfer Function (MTF'), which is usually greater or
at least equal to the degree of the least common denominator of the various transfer functions in the
MTF. Moreover, the structure of the Jordan form is no longer obvious as for the SISO case, because
more than one block can be associated to the same eigenvalue and the dimension of these blocks may
be the same. Due to the minimality, hence to the full controllability and observability, the maximum
number of blocks relative to the same eigenvalue can be equal to the minimum between the number
of inputs and outputs.

11

Suppose we have a p x ¢ proper rational MTF G(z) and we want to find a realization {A, B, C, D}
with A in Jordan form. First of all we compute D as:

D = G() = lim G(z),

§—00

and we let:

G(z) = G(2) — G(0)

be the strictly proper part of G(z). The block structure of G(z) is an intrinsic property, therefore
the irreducible Jordan form can be uniquely determined up to block permutations. The maximum
number of blocks associated to the same eigenvalue can be at most equal to min(p, g).

In many works (as for instance [10]), the minimal Jordan form is produced by building a non
minimal Jordan form and then reducing it (two-steps reduction). In [11] the determination of the
McMillan degree and of the Jordan structure, namely the number and the dimension of the various
blocks, is performed directly by computing the ranks of some special matrices which turn out to be
the Hankel matrix and its submatrices.

A strictly proper MTF G (z) having m distinct eigenvalues can be factored as a sum of m MTFs
containing only one pole with multiplicity r;:

G(z) = Gi(2).
i=1
Therefore, the full minimal Jordan realization {A, B, C} of G(z) is derived by the minimal Jordan

realizations {A;, B;, C;} of the Gj(z) as follows:

Ay O
A= ;
O Am
B
B=|:|, c=[a Con
_Bm

Each Jordan realization of the C;’z(z) can be found independently of the other and in the same way,
hence let us consider only one G;(z). It can be further factored as:

ri

A 1
Gi(z) =]z_; m@j—l

where the p X ¢ matrix coefficients (); are used to build the Hankel matrices used to derive the Jordan
structure. If n; is the number of blocks of dimension j, N; = 251:1 n; is the total number of blocks

of G;(z), then the Jordan canonical form of A; is given by:

Jl,Ti O

Ai = ..)

O IN; 1

where

Ao 1 O

Ik = A
1
O Ai

12

is the k-th (k= 1,...,N;) Jordan block and has dimension j X j.

As for SISO systems, the Jordan form of the matrix A; is uniquely determined, and the forms
of B; and C}; are related in that, choosing one of them fixes the other. Unfortunately, in the MIMO
case neither B; nor C; can be fixed arbitrarily, only taking into account the full controllability or
observability constraint. The construction of the input and output matrices is more complex and
cannot be carried out by simply filling matrices with 1’s in appropriate positions. However, there
are certain degrees of freedom to exploit to the aim of reducing the number of operations needed to
compute it. For instance, one can try to fill one of these matrices with as many 0’s as possible. We
will not go into this issue thoroughly, anyway, and consider the worst case of full B; and C; matrices.
For our purpose, we prefer a systematic and numerically robust algorithm to get the irreducible
Jordan form as the one provided in [12]. This algorithm is capable to derive B; and C; matrices
along with the minimal Jordan form of A; involving only SVD computations. The SVD is known to
be a numerically robust technique to deal with rank computation problems, as those required in the
derivation of the Jordan form of A; and can be used profitably also to compute directly B; and C;.

For the purpose of estimate the complexity of a MIMO controller, consider a realization with
McMillan degree n = >3, 37 j - nj and full n x ¢ input and p x n output matrices. As in
the SISO case the 1’s in the above diagonal amounts only in doing some sums, and are therefore
immaterial for our cost criterion. The total amount of multiplications to be performed to compute a
step of this controller, hence its complexity, is equal to:

Cl =n+pn+ng=n(p+q+1),

in the worst case. Due to the non special form of B; and C; matrices, this realization loses some
of its convenience if compared to its analogous for SISO systems, but it retains the same numerical
reliability properties. However, it remains one of the most convenient realizations for MIMO systems
also from a complexity point of view. Indeed, it is obviously less expensive then a full realization,
whose complexity is given by:

Ch=n(p+q+n),

but it can be also less complex then a companion form.
There are many companion forms for MIMO systems [13, 14] and they are all significantly more
complex then their SISO counterparts. Cousider the controllable companion form which makes use

13

of all the input vectors [15]:

[0 1 O 0
0 0 1 0 O O

0 0 O 1

*x % *x Kk Kk X Kk %k *x *x Kk X %

01 0
O 0 0 1 0 O
A= 00 0 1

* Kk Kk ok ok Kk K K * * k Kk K K

01 0

O O 0 0 1 0

0 0 O 1

[x x x X Kk x X Kk Kx * * ok %k * |
[0 0 0 --- O]
0 0
1 x % *
0 0 O 0
0 0 0

B = :

0 1 % *
0 0 O 0
0 0 O 0
0 0 0 --- 1]

with C generally full matrix. In this form A has ¢ matrices in companion form on the diagonal and
B is partitioned accordingly. With the understanding that the x’s in previous equations stand for
not null elements, we can compute the complexity of this form as ng multiplications for the A matrix

(as before we do not care of 1’s), @ multiplications for the B and pn for the C matrix. The
complexity is therefore:

q(g—1)

2 7
that can be considered not very different from the complexity of the Jordan form. It is worth noting,
however, that any companion minimal form requires the MTF & (z) to be first factored in coprime
factors, which is known to be a non simple task.

So far we have considered minimal realizations with the persuasion that aiming at minimality is
the best choice, but it could not be true. Non minimal realizations may involve a lesser number of
multiplications due to the more empty structure of the matrices they require. For instance, a direct
realization of any G(z) can be obtained by juxtaposing the realizations of each transfer function
in é(z) If each entry is realized in controllable form, then the A matrix has dimensions given by
the sum of the degrees of each denominator in G(z) (let N be this number), while B and C have

CS=n(p+q)+

14

K.(2)

- A O -y

) 4
y
20
1

~

Nb >
N ,’
N s,
y

v

S~

Ky(2)

Figure 1.5: Mutually exclusive single loop connection.

dimensions p x N and N X q respectively. Although N is usually a much greater number then the
McMillan degree n, the matrix A has only N numbers not 0 and not 1, B has few not null entries
and are all set to 1, C, instead, is generally a full matrix. The total complexity is, therefore, equal
to N(1 + ¢), which may be less than the complexity of any minimal realization. There are a lot of
non minimal realizations and it is possible that at least one of them is better than any minimal one
with respect to complexity. The designer has to decide wether the complexity reduction is obtained
at the expense of a reasonable increase of the state dimension or not. Anyway, the dimension of a
non minimal realization is not unique and its profitability depends on the single case. For future
comparisons to make sense, hence, we will refer only to minimal realizations.

1.4 Closed loop models

A switching architecture with unitary feedback for the any time paradigm is reported in figure 1.5.As
long as the computational time is available, the index ¢ is increased, switching to the next, more
complex controller. The bus selectors, leaded by the index i, exclusively connect the input error e
to the controlled system input u through the indexed controller K;(z). The controllers from K;1(2)
to Kn(z) are “frozen” or rather their state space representation is not updated. The states of
these frozen controllers have been called sleeping states. Each controller K;(z) is made up of some
components controllers (C1(z),...,C;_1(z)) which can realize any connection scheme. Since in the
anytime paradigm the scalability must be intended from a code point of view only, the connection
schemes have not a proper physical meaning, but a logical one. These logical connection schemes
may help in gaining more intuition during the design phase.

Obviously some connections can be more suitable than others for the any time implementation,
therefore this aspect deserves a deeper analysis. The set of feasible connections must be defined
to take into account the controllers’ scalability constraint and the further constraint of the implicit
execution order. With some connection schemes, for the computation of the controller K;(z), the
component controller C;(z) must be computed after the component controllers C1(z) to C;_1(z) (as
it is evident in the series connection where the output of C;(z) is the input for Cj;1(z)). Moreover,
the violation of the execution order leads to the lost of already performed computations since, if the
input to the component controller C;(z) changes, then C;(z) must be computed again. Unfortunately,
it can be an unavoidable characteristic of some connection schemes such as for instance, the nested
loop scheme with unitary feedback.

Model reduction. Model reduction techniques have not their counterpart in the logical con-
nections of controllers. Indeed, this is a straight consequence of the state space reduction that can
only be converted into computational time preserving algorithms. In general, the effects on the fre-

15

VY<

O
—~
o

y
$)
—~~
NA

i

I
A
L

Figure 1.6: Series connection. The dashed boxes represent the controller K;(z), with j =1,..., N.
Refer to figure 1.5.

quency domain are not so easily identified, as well as the effects on the performances, since a state
space model reduction has effects on the controller’s singularities placements. This means that the
controllers K;(z) are mutually exclusive, hence the logical connection is as in figure 1.5. However,
the actual computational effort does not suffer of this connection drawbaks, as it is performed by
hemming the dynamic matrices of the controller.

Series connection. The series connection of the various controllers comes directly from their
implementation and their frequency domain decomposition. For instance, referring to the example
in section 1.1, the proposed performance reduction is trivially mapped on the series connection. For
SISO systems there are no limitations on the possible connection order among the controllers, but
this order is imposed by the scalability constraint (execution order). Instead, for multi-input and/or
multi-output systems, the order of connections is fundamental. Indeed, it is straightforward that
commutativity is no longer valid for matrix products. Furthermore, if the transfer matrix G(z) has
p rows and m columns (i.e. p outputs and m inputs), the simplest controller C(z) has m rows and
p columns, while the controllers from Cy(z) through Cn(z) have m rows and m columns. For a
visualization of the series connection refer to figure 1.6: again, in this architecture the bus selector
chooses the computed controller series.

Parallel connection. Still very simple and useful for the any time paradigm, the parallel
connection (see figure 1.7, where each switching line is controlled by the index 4: if K;(z) is computed,
than the switches from 2 to i are closed) can be regarded as a logical connection scheme. It is
worthwhile to note from figure 1.7 that it can be easily interpreted with the main generic scheme in
figure 1.5.

Scalability is traced in the decomposition of the controller K;(z) in a sum of elementary controllers
C1(z) to Ci(z). In such a way, the control input u of the plant G(z) is the sum of the previously
computed controllers

i
u = Z Yej s
=1
where gy, is the output of the controller C;(z).

16

______ u=>y,
=1

j=

Y

A 4

G(2) >

Figure 1.7: Parallel connection. The index ¢ controls the switches’ aperture. The system control w
is the sum of the previously computed controllers.

The execution order constraint is easily verified in the parallel connection definition, since each
controller receives the same error input e = r — y at the same time instant.

Although difficult to read for closed loop stability or performance achievement, the simplest
parallel form can be found by applying Partial Fractions Decomposition on the transfer function of
the target controller K(z).

Finally, the closed loop schemes presented are not the only representatives of the virtually infinite
number of possible connections among a set of controllers, but they have been chosen for their
simplicity (an obvious target for complexity reduction) and because any possible different connection
can be reduced to one of the presented assemblages, adding at least some more block, e.g. a pre-
filter and/or a feed—through block. Nevertheless, one more particular closed loop connection is briefly
described, due to its positive features on the controller design.

Nested loop connection. The nested loop connection can be thought of as a single closed loop
scheme with a plant, which is itself a closed loop scheme (e.g. multi-rate systems).

Consider a single closed loop (the variable z is omitted for the sake of brevity)

y=Guqr=10+GC)*GCLF r,

where r € RP is the external reference signal, C; is the minimal controller, F} is the associated
pre—filter block (two degrees of freedom design) and y € R is the regulated output (see figure 1.8,
a)). Closing the loop with a second, more complex controller C, with an associated F» prefilter
block (figure 1.8, b)) yields

Yy = (I-I— Gcl1 Cg)_l Gch Cy Fhr = (I+ G (4 (I+F1 02))_1G CiF,Cy Fyr.

By imposing
y=(U+G Ceqz)il G Cegy Feg, T,

where C,y, and F,4, are respectively the controller and the pre-filter block equivalents to obtain a
single closed loop scheme, the relations

Ceg = C1 (I+F1 ()
Fopy = (I+F C) 'F Gy F,

17

G(2) >

HRG .2 H R@ c@) ——2d 6 [
L

v

2 G(2) y

Figure 1.8: a) Single closed loop architecture with pre-filter block. b) Nested closed loops with two
controllers of ascendent complexity. ¢) Single closed loop with pre-filter block equivalent to b).

are gained (see figure 1.8, ¢)). The procedure can be further iterated to obtain for the controller C;
the equivalents
{ Ceqp = Ceg;_y (I+F€qz>1 Ci)
Feg, = (I + Lo, Ci)_l Feq, , Ci Fi.

Although the designer helpful characteristics of the presented nested loop assemblage are evident, its
efficiency for the any time controller approach is quite poor since some computation performed for
the i—th controller are discarded to perform the (i 4+ 1)-th controller. This poor scalable property is
due to the fact that the reference changes at each nested loop input. Indeed, the computation of the
controller C;j;, affects the input u., to the controller C;, violating the execution order property (in
figure 1.9, another single loop equivalent, explicitly dependent from original blocks C1, Co, F} and
F,, is reported). Little improvements in scalability are achieved by inverting the controllers, with
the minimal controller C; as the most external (by inverting the index 2 with 1 in figure 1.8, b)).
Nevertheless, with MIMO systems, dimensions have to be taken into account: if the controlled system
G has p rows and m columns (i.e. p inputs and m outputs), with p # m and p > 1 and/or m > 1,
controllers C; must all have m rows and p columuns, implying that prefilters F;, with ¢ = 2,..., N,
are of the same dimensions of the system G. Furthermore, even if the controlled system G is squared
or SISO, by inverting the controllers in figure 1.8 the design that ensures closed loop stability and
performances is almost impossible, since each controller C;, with ¢ =1,..., N — 1, should ensure the
set of performances {]31, . 7]52} with the system G, the closed loop of C;;; and G, the closed loop
of Cj 41 and the closed loop of C; 12 and G, and so on.

Hence, the nested loop connection with unitary feedback presents many problems related to the
execution order constraint. The nested loop scheme directly connected in the feedback path, still
preserves the same appealing with respect to design simplicity than the previous one, but is more

18

|a CERECE
wl Jool—ielepl Y

y

LR ﬁ»— R@ — GO T%

Figure 1.9: Equivalent closed loop connection expressed with respect to original controllers C(z)
and Cy(z) and associated pre-filters Fy(z) and Fb(z).

e

u=>y,
j=1

=
"+

G(2) 1 —

Figure 1.10: Closed loop with parallel connection on the feedback path.

suitable for scalability and verifies the execution order constraint). Indeed, it is easy to see that this
connection is equivalent to the parallel one in the feedback loop (see figure 1.10).

The controller C is connected in closed loop with the system G, the controller Cy is connected in
closed loop with the system G = (I+GC1)~'G and so on. Therefore, each controller K; = 2;21 Cj.

1.4.1 Realizations and code skeletons

Consider a generic system G(z) to be controlled and its realization (A, By, Cs, Ds), whose state
variable is z, the inputs are u and the outputs are y and where A; € R™ *"s ig the dynamic matrix,
B, € R%*™s ig the input matrix, Cs € RPs*"s ig the output matrix and D; € RPs<*™s ig the input
direct feed—through matrix. The state space dynamics of the discrete time controlled system is
trivially
i = Aszs+ Bsu
{ y = Cszs+ Dsu,

where z is the state at the next iteration.

Furthermore, let (A, B, Ce,, D¢;) be a generic realization of the component controller C;(z),
whose state variable is z., € R"¢, the inputs are u., € R™¢ and the outputs are y., € RP«i. Two
assumptions are taken into account:

19

1. To avoid logical loops, at least one among the controllers K;(z) and the system under control
G(z) is chosen to be strictly proper, i.e. at least one between the minimal controller C(z) =
K (z) and the plant G(z). For simplicity’s sake, we consider the system under control to be
strictly proper (Ds = 0).

2. To reduce the computational complexity, the realizations are minimal. Non-minimal realiza-
tions are somewhat interesting considering other closed loop system properties, as switching
stability [16].

Model reduction. For the minimum controller Cy(z) (or equivalently K;(z)), the model reduc-
tion has the updating equations
A, e, + Be, (r — Cs xy)

N
Cc1
{ Yo = C¢ ey + Dey (r— Cs x4).
The main feature is that each dynamic matrix is “hemmed” with each suppressed part such that
the controller Cj;1(z) is given by

(1.2)

|
+ L, _ A Qe L, 7Bcz- _C
Ten = | z | B A T Tl (r=0Cs)
Cit1 Cit1 Cit1 Cit+1 Ci+1
_ Lo,
Yeita = [Ce; Ceip] [. + D¢y (r — Cs x5),
xci+1
where A, be,, and ¢, are respectively a square matrix of dimension 7., , = n¢ ., — N, a

matrix of dimension 7., ,, X p, and a matrix of dimension mgy X ., ,, while a,,,, (B_,) is a matrix
of dimension n¢;, X e, (Te;y X Ne;)-

The final closed loop state space dimension is then equal to ng + ng (where ny is the dimen-
sion of the (final) target controller), that is the smallest state space dimension among the different
approaches. The closed loop system with the controller K;(z) has the following updating equations

([z, |7 [A, — B, D.. Cy B, C., Byée, ... 0 g [B, D, |
T, —B., C A, o ... 0 T, B,
k _ K : : B N . n B ,
T —be; Cs Be; A, ... 0 Ze; be,
| Ty | I 0 0 ... 0 0] | Zey | 0]
T
Ty
y = [Cs 0 0 0] ic |
\ L jCN .

representing the whole state space and clarifying the existence of the sleeping states. For the controller
K;(z), the sleeping states belong to a non computed part (the states of the controllers C;j4(z) through
Cn(z))-

Let us now take a brief look on the code implementation. The first step for the any time controller
feasibility is to compare all the proposed code implementations with the implementation of the target
controller K(z), with state space realization (Ay, By, C, Dy) of dimension ny (see[8] for a deep
discussion on digital controllers’ implementation):

read inputs(r,y);
yk := Ck*xk + Dkx*(r - y);
xk := Akxxk + Bkx(r - y);
write outputs(yk);

Mandatory part. (1.3)

20

Due to unpredictable events, but satisfying the feasibility of the mandatory part, the scheduler
will execute one of the possible controller K;(z) at any task period iteration. An example of the code
skeleton for the model reduction is

read inputs(r,y);

01d xc[1] := xc[1];

yc[1] := Cc1%01d_xc[1] + Dcix*(r - y); Mandatory part
xc[1] := Ac1*0ld_xc[1] + Bclx(r - y);

write outputs(yc[1]);

01dxc[2] := bar_xc[2];)
yc[2] := yc[1] + bar_Cc2%01d xc[2];
xc[1] := xc[1] + alpha_c2*01d xc[2];
bar xc[2] := beta_c2x01d xc[1] +
+ bar_Ac2#01d xc[2] + bar bc2*(r - y);
write outputs(yc[2]); J

Optional part 1

0ld xc[i] := bar_xc[il;)
yc[i] := ycl[i-1] + bar_Cci*0ld xc[i];

xc[1] := xc[1] + alpha_ci[1]*01dxc[i];

bar xc[2] := bar=xc[2] + alpha_cil[2]*01d xc[i];

: Optional part ¢
bar xc[i-1] := bar_xc[i-1] + alpha_ci[i-1]1*01dxc[i];

bar xc[i] := beta_ci[1]*01d xc[1] + ... +
+ beta_ci[i-11*01d xc[i-1] + bar_Aci*01ld xc[i] +
+ bar bci*(r - y);
write outputs(yc[il); J

For ease of notation in each code skeleton throughout the paper, with xc[i] (bar_xc[i]) we
intend the ¢—th vector component of length n., (7,), while with alpha ci[1] (beta_ci[1]) we mean
the submatrices of the controller.

The code implementation highlights the discrepancy with the theoretical assumption on the state
space dimension. Indeed, the state value at the instant k is stored to compute the scalable part at
instant k+1 (in the variable 01d_xc[i]). Notwithstanding the implementation memory consumption,
this approach seems to be the more suitable for the any time paradigm since the model reduction
itself is based on computational complexity scalability.

Series connection. Choosing a series connection, only the minimal controller Ci(z) (or K;(z))
has the updating equations as (1.2), while the generic controller C;(z) has

xz = ACi */L‘Ci + Bci yCifl
Yo = Cci Te; + Dci Yei_ 1

21

which leads to the open loop any time controller C;(z)

4 -

\

It is worth noting that the series connection has sleeping states too, that are a common feature of

Yei

+

A, 0
BCZ CCI ACQ

Be,(ITj=i-1 De,)Cei - Be,(Ij=i—1 De;)Ces

L BCI)
BC2 DC]_
+ : _C
Bo (T, D) | 775
| 0 _
[(H?:z DC]')Ccl (H?:Z ch)CCZ - Cci

+(H;:i De;)(r — Cs)

the any time paradigm.

Once each controller has been established, the closed loop state space dimension is

that is equal to the model reduction as long as ZZ]\L 1 Ne; = ny, (as in the lucky example in section 1.1).

N
N + E Toe;
=1

22

0]

)

Ty
Te,

7

Ten

Ty

The closed loop dynamics is then

([z, 1F [As = By([1j—i D;)Cs Bs([[7=;De;)Ce, .. By Cei ... 01 [a,]
T, —B., C A, 0 ... 0 T,
Le; B —Bci(H;:z‘q De;)Cs BCi(H?:ifl De;)Ce, ... A, ... 0 Le;
:L‘CN | 0 0 0 0_ _xCN_
_ BS(H;:i ch) -
B,
< + 1 T

Be;(ITj=i—1 De;)

\ L Ten
Going into the details of the implementation code

read inputs(r, y);

yc[1] := Ccl*xc[1] + Dcix(r - y);
xc[1] := Acl*xc[1] + Bclx(r - y);
write outputs(yc[1]);

Mandatory part

yc[2] Cc2*xc[2] + Dc2x*yc[1];
xc[2] Ac2*xxc[2] + Bc2*yc[1]; Optional part 1
write outputs(yc[2]);

ycl[il Cc2*xc[i] + Dc2xycl[i-1];
xc[i] Ac2*xc[i] + Bc2#yc[i-1]; » Optional part ¢
write outputs(yc[i]);

In this case (series connection), the scalability and the any time architecture of the implementation
are directly obtained and easily traceable.
Parallel connection. On the other hand, the parallel connection has all the controllers com-
puted with
{ alf = Ae xe + B, (r —Cs) (1.5)
Ye; = Cci Te; + Dci (T - C xs) ‘

(each controller receives the same error input) and the open loop any time controller K;(z) is com-

23

puted with

ror

\

A closed loop state space representation (for the controller K;(z)) is

(—

Ty

L,

7

Yei

+

A, 0
0 A, O
0 0
0
[Cey Co

_Bc1 Cs

24

[Ay — By(3,_;De,)Cs B, C,

A,

B, C.,

A,

T

(r —Cs xy)

+ (2;22 De;)(r — Cs)

with an implementation code

read inputs(r, y);

yc[1] Ccl*xc[1] + Dclx(r - y);
xc[1] Acixxc[1] + Bcl*(r - y);
write outputs(yc[1]);

Mandatory part

yc[2] Cc2*xc[2] + Dc2x(r - y) + ycl[i];
xc[2] Ac2xxc[2] + Bc2x(r - y); Optional part 1
write outputs(yc[2]);

ycl[i] Cc2*xc[i] + Dc2x(r - y) + ycli-1];
xc[i] Ac2*xxc[i] + Bc2*(r - y); Optional part ¢
write outputs(ycl[i]);

Nested loop connection. Regardless of the connection in the feedback rather than feedforward
path, the open loop state space representation and the code skeleton of the parallel connection is
the same (the difference is tha controller input that is y rather r — y). A closed loop state space
representation (for the controller K;(z)) is

([2 17F [A+ By(Xh_De,)Cs —ByCep ... —ByCe ... 0] [o]
Ley BCl S Acl 0 0 Ze,
T, = B, C, 0 A, ol |z |7
‘/I“CN | 0 0 0 0_ _*/I“CN_
T
0
+ 0 T
- 0 -
$cl
\ | ch .

Comments. Finally, some comments should be carried out on the implementation code skeletons
presented. First of all, each code segment should be thought as the core part of a controller procedure,
activated by a real time clock (periodic task).

Moreover, the line code

read inputs(r, y);

represents a read operation from an I/O port (e.g. an A/D converter or a digital port), equal to an
access to a memory buffer. It is worthwhile to note that only one read operation of the quantity
e = r —y could be performed at a time, but we want to emphasize that the process output y and the

25

reference signal r are usually generated by different process and may be of different typology (e.g. a
trajectory planner implemented as an algorithm on a digital machine).
For the output operations
write outputs(yc[i]);

the write command is regarded as a register recording (e.g. a saving operation on a D/A memory
buffer) whose output is available for the process as the task deadline is reached. It is worthwhile to
note that these read/write operations are a common, constant overhead for each controller compu-
tation. Furthermore, the Cj(z) controller computation is effectively stored if the computation has
been terminated. Strictly speaking, the C;(z) controller implementation code should be changed to

ycl[i] := Cc2*xc[i] + Dc2*(r - y);
deltaxc[i] := Ac2*xc[i] + Bc2*(r - y);

write outputs(yc[il);

tomwi
xc[i] := delta xc[i]; }a ornie

where the last two operations are atomic (not difficult to ensure since the latter operations are
memory assignment, virtually performed in zero time).

1.5 Different approaches to the any time paradigm

In section 1.4 the meaningful architectures for the any time controller framework are discussed both
from logical connections and from code implementations. The approaches that fulfill the assumptions
on the any time feasibility and maintain more degrees of freedom with respect to state space model
are the series and parallel connections. Therefore, in what follows the logical connections are not
considered anymore and series (or parallel) connections are given for granted.

Given a particular discrete time system G(z) to control and a set of performances P to satisfy
(or, equivalently, a target controller K(z)), the any time paradigm defines the control and imple-
mentation issues in order to obtain the system control inputs in any given computational time At
(provided that At is equal to or greater than the mandatory computational time). For, the controller
is split into a series of controllers K;(z), with i = 1,..., N, where K;(z) is the simplest, less com-
putational demanding controller that in general only stabilizes the system, and Ky(z) ensures all
the performances P (or, equivalently, is equal to or “similar” to the target controller K(z)). Each
controller K;(z), with 4 =1,..., N, is made by a logical connection of elementary controllers C;(z),
with 7 =1,..., N,.

Full Exploitation Scalability (FES). As said in previous sections, to achieve scalability and
computational time reduction it is desirable that some component controllers C;(z) belong to more
than one controller K;(z), in order to preserve already performed calculations and improve time
computational savings. In this sense, “optimal” scalability is achieved if:

1. Ci(z) = Ki(2);
2. N = Ng;

3. For each i = 2,..., N, if a general connection of component controllers C(z) to C;_(z) con-
stitutes the controller K; 1(z), than the controller K;(z) is constituted by the same connection
among the component controllers C;(z) to C;(z).

If all of the above properties are satisfied, the any time paradigm is perfectly satisfied and named
Full Exploitation Scalability (FES) as it exploits all the previously performed computations. In order
to analyze the main characteristics of FES, SISO systems with series connections are taken into
account (refer to (1.4) for a code skeleton example). Nevertheless, extensions to MIMO systems

26

and other logical connections can be easily achieved with minor adjustments. Hence, considering
the FES approach with series connection for SISO systems, the main advantage of the proposed
technique relies on the simplicity of the controller design as the use of systematic techniques is
naturally supported.

On the other hand, the use of systematic design techniques (e.g. Ha, Hy, LQR, LQG) for the
implementation of each component controllers C;(z), ensuring at each step a new performance I-:’i_l,
may also represent a drawback. Indeed, the pole placement for each controller K;(z), that satisfy the
performance set (]31, . ,]3’2;1), does not take into account that an additional component controller
Cit1(z) will be designed and connected in series to obtain the controller K, (z), satisfying the
additional performance P;. In this sense, the already placed singularities at step ¢ are in general a
drawback at step i+ 1 and force a more complex, with more control effort, controller C;j;1(z). There-
fore, also the final controller Ky (z) is in general greater (i.e. with a larger number of singularities)
and less efficient than the target controller K (z), designed to satisfy all the performances at a time.

Taking into account the advantages and the drawbacks of the FES approach, three rather different
scenarios could be realistically considered for a generic control design:

1. Optimal Design: the controllers K;(z), with ¢ = 1,..., N, are minimal and the final controller
Kp(z) has the same dimension of the target controller K(z). The minimality is referred to the
dimension of the controller, i.e. the number of singularities involved, guaranteeing the set of
performances (Py,...,Pi_).

2. Worst Design: all the poles of each component controller Cj(z) obstruct the design of the
subsequent component controller Cjy1(z).

3. Standard Design: each controller Cj(z) is minimal and has only a subset of poles that obstruct
the design of the controller C;11(z). The minimality is referred to the dimension of the i-th
controller designed for the system augmented with the obstructing poles.

Unfortunately, using systematic control design techniques the Worst Design case is the more
probable. With more efforts requested to the controller designer, Standard Design can be achieved.
The Optimal Design is obtained in particularly lucky situations (see the example in section 1.1).

Both scalability and computational efforts are key points of the any time paradigm. As it is
evident from the analysis of the FES approach, there is a trade-off among scalability, computational
time, simplicity of the controllers design and their complexity with respect to performance satisfaction
and control cheapness. For generic systems, the FES approach is extremely suitable for the any time
paradigm once an Optimal Design can be undertaken. For Standard Design and, particularly, for
Worst Design cases more aspects should be investigated to get rid from this leap in the dark.

Mutual Exclusion Scalability (MES). Consider an any time controller where each com-
ponent controller poles obstruct the design of the subsequent component controllers. The con-
trollers K;(z) design is then difficult, assuming that a performance scalability is taken into account.
Furthermore, the complexity of each controller grows together with the control effort. Instead of
compensating the negative effects of the previously added poles, consider an independent design
for each controller K;(z), leaded by a performance scalability. The design of each controller is
then stand-alone and fits the performance set. The series connection of the controllers is then
obtained noting that K;(z) = Ci(z) C;_1(2)...C1(z), that easily carries to component controller
Ci(z) = Ki(z) C1(2)7! C;_1(2)~!. Even in the case that the causality of each controller would be
satisfied, this approach leads to unnecessary computational burden, since the computation of each
component controller firstly eliminates the effects of previously computed controllers and then adds
its control job. Rather than a series connection, a switching architecture (see figure 1.5) seems to be
more suitable, in this case a set of mutually exclusive controllers (multi-version controller) is defined.

The switching connection is the simplest any time architecture, that could be regarded as an end
point of a variety of choices, where each controller is simply substituted to the previously computed

27

controllers in a single closed loop connection. Therefore, the scalability concept is simply drawn to its

extreme point, discarding all the previous computations, but it also represents the design maximum

freedom for each independent controller. Although this Mutual Exclusion Scalability (MES) approach

could lead to large state spaces, this is not always the maximum computational wasted architecture.
More precisely, MES is achieved if:

1. Kn(z) = K(z) where K(z) is the target controller;
2. N.=0;
3. Foreachi=2,..., N, each K;(z) is a stand-alone controller, without any component controller.

Let us take a look to the code implementation of MES with mutually exclusive single closed loop.
For each controller K;(z), u = yk, and ug, =7 —y

{ :L‘,jz = Ay, xy, + By, (r —Cs xy)
Yk, = Ck; o, + Dy, (r — Cs xy).

The closed loop state space realization under the i—th controller is

Ts + _ As — Bs Dki Cs Bs Cki Tg + Bs Dki r
Tk, _Bki Cs Aki Tk, Bki
J— :Es
yoo= a2

Although the MES is the most simple structure, it has a state space of dimension

N
Nng + Z Tk,
=1

where ny, is the state space dimension of a minimal realization of the controller K;(z).
The generic closed loop state space dynamics will be

([2, 17 [Ay—By Dy, Cy 0 ... ByCp, ... 0] [oy] [B, Dy, |
T, 0 0 ... 0 ... 0 Tk, 0
Tk, = By Oy 0 ... Ay o 0| e | T B |7
| Ty | I 0 0 0 0| | zky | 0
T
ZL'kl
y = [Cs 0 0 0] .
\ L Tkn |

representing the whole state space. The states of the controllers Kj(z) through K; ;(z) that are
computed and discarded become part of the sleeping states.

Due to unpredictable events but satisfying the feasibility of the mandatory part, the scheduler
will execute one of the possible controller K;(z) at any task period iteration. An example of the code

28

skeleton for the MES approach would be:

read inputs(r, y);

yk[1] := Ckl*xk[1] + Dklx(r - y);
xk[1] := Aklxxk[1] + Bklx*(r - y);
write outputs(yk[1]);

Mandatory part

yk[2] Ck2*xk[2] + Dk2*(r - y);
xk[2] := Ak2xxk[2] + Bk2*(r - y);
write outputs(yk[2]);

restore xk[1];

Optional part 1

yk[i] := Cki*xk[i] + Dki*(r - y);)
xk[i] Aki*xk[i] + Bkix(r - y);
write outputs(yk[i]);

restore xk[i-1];

Optional part ¢

yk [N] CkN*xk [N] + DkN*(r - y);)
xk [N] AkN*xk [N] + BkN*(r - y);
write outputs(yk[N]);

restore xk[N-1];

Optional part N

/

Analyzing the controller code implementation, it is worth noting that the sleeping states are
restored (restore xc[i-1];), discarding the previously computed values. Keeping instead of dis-
carding the computed evolution may be of interest too, but, at this point there is no evidence on
what is better to choose.

Albeit the scalability is not so evident, it is trivial that all the any time constraints defined in sec-
tion 1.2 are satisfied by this implementation. Nevertheless, this approach pays its extreme simplicity
in possible memory wasting, unacceptable overheads and excessive computational efforts to complete.
Indeed, the last four code lines, i.e. the code implementation of the target controller K(z) = Ky(2)
equal to (1.3), are executed after the computational overheads of the smaller controllers K (z) to
KN_1 (Z) .

It is worthwhile to note that the assumptions on atomicity should be extended to the code lines

write outputs(yc[il);

. atommic.
restore xc[i-1]; }

Counsidering SISO systems, the main advantages of the MES technique rely on:

1. Maximal flexibility on the controller design. K;(z) is completely independent from K;;(z).

2. The controller state space realizations are also unconstrained. Therefore, unifying the degrees
of freedom of design and realization, more complex characteristics can be taken into account,
e.g. switching quadratic stability or minimum norm controllers.

Drawbacks are related to:

1. Absence of incremental computation scalability.

2. In general it is a worsening in the state space dimension and in computational time if an Optimal
design or even a Standard design can be carried out with an FES approach.

29

<

r + UEyq

32

Figure 1.11: Controllers (series) connection for the Partial Exzploitation Scalability approach.

The MES has its main attractiveness in the independent design and state space representation.
Due to the controllers design simplicity and to the scalability features involved (the “extreme” concept
of scalability), the MES approach can be regarded as a comparison benchmark for all the possible
any time architectures, easily implementable in any possible situation.

Partial Exploitation Scalability (PES). It is straightforward that Optimal Design implies
the choice of FES to achieve an optimal any time paradigm satisfaction. On the other hand, in the
Worst Design case MES is the right choice. Between this two extreme points (both from a scalability
and computational complexities variety of choices) there are a lot of different situations where the
solution is not so easily pointed out.

“In medio tutissimus ibis” (“In the middle of things you will go most safe”, Ovidio): a more
reliable approach is just to aim between FES and MES. The Partial Ezploitation Scalability (PES)
approach preserves some singularities in switching among the controllers and discards the others. A
logical scheme is represented in figure 1.11, showing an intuitive visualization of the connections for
the series case. The switching index is controlled as in the other connections.

Let p; and z; be the sets of poles and zeros respectively of the component controller C;(z). Each
singularity set is split into two parts

pi = (i, 0i) 2= (%i,%) ,

where (p;, Z;) are the obstructing singularities. For each ¢ = 1,..., N — 1, the component controller
singularities impose a logical subdivision C;(z) = Cj(z) C;(z). In order to preserve already performed
calculations and improve time computational savings, but discarding the obstructing poles, PES is
achieved if:

1. Ki(2) = Cy(2) = Cy(2) C1(2);
2. N = Ng;

3. Foreachi=2,..., N, if a general connection of component controllers C’l(z), C’Z(z), e CA’i,g(z)
and C;_1(z) constitutes the controller K; 1(z), than the controller K;(z) is constituted by the

30

same connection among the component controllers C1(z),Ca(2),...,Ci_1(z) (ie. the non-
obstructing parts) and C;(z).

Counsider the open loop dynamics of the PES approach with series connection (see again fig-
ure 1.11), dividing the updating equations (i.e. the state space variables z.,) following the obstructing
property (i.e. T, = [d¢;,%¢;]!). For the first, simplest controller K (z)

it Acy Bey + Bey (r = Cy) } &1(2)

Uy = CN’cl Tey + -l?cl (7” - Cy xs) (1 6)
:1?"2—1 = {101 Zey + 501 Uey } él (2) '
Yo = C¢ Ty + Dey Yo,

where the controlled system input is v = yi, = ¥, and the controller input is ug, = ¢, =1 — ¥y
and where the series connection between the obstructing/non—obstructing parts is emphasized. For
each controller K;(z), with ¢ = 2,..., N — 1, the open loop dynamics is equal to (1.6), where the
controlled system input is v = yi, = 9y, and the controller input 4. = 9. ,, i.e. the output of
the non—obstructing part. The last controller Kx(z) which is not necessarily split into two parts,
furnishes the control u = yi, = y,, to the system G(z) and its input is u., = Jcy_,. It is worthwhile
to note that, as long as the number of obstructing poles decreases, the PES approach converges to
the FES. On the other hand, if the number of obstructing poles increases, the PES approaches the
MES. Therefore, the closed loop dynamics is straightforward and can be easily obtained from the
closed loop scheme of the FES series connection for the non-obstructing poles (i.e. the Z, state
variables) and from the closed loop scheme of the MES for the obstructing singularities (i.e. the
Z., state variables). Further extending this “middle approach concept”, the PES has sleeping states
which belong both to a controller non computed part and to discarded states.
The state space dimension of the closed loop PES is

N—-1 N N
s+ Y (e, +fie;) + ey =ns+ Y _ g, — (N — i),
=1 =1 =1

that again highlights how it is possible to reduce to FES (when 7., = 0 in the left part of the relation)
and to MES (when 7., = 0 in right part of the relation) state space dimensions.

31

The PES compatible code skeleton is:

read inputs(r, y);)
hat_yc[1] := hat_Cclxhat xc[1] + hat Dcl*(r - y); é (2)
hat xc[1] := hat_Aclxhat xc[1] + hat Bcl*(r - y); ! Mandatory part
tilde_yc[1] := tilde Ccl*tilde xc[1] + tilde Dclxhat _yc[1]; & (2) yp
tilde xc[1] := tilde_Acl¥tilde xc[1] + tilde Bcl¥hat_yc[1l; [*
write outputs(tilde_yc[1]);)
hat yc[2] := hat _Cc2*hat xc[2] + hat Dc2*hat_yc[1]; (2))
hat xc[2] := hat_Ac2xhat xc[2] + hat Bc2*hat_yc[1]; 2
tilde yc[2] := tilde Cc2#*tilde xc[2] + tilde Dc2*hat yc[2]; | .
1 1
tilde xc[2] := tilde Ac2*tilde xc[2] + tilde Bc2what yclo]; [C2(%) (Optional part

write outputs(tilde_yc[2]);
restore tilde xc[1];

hat_yc[i] := hat_Ccix*hat xc[i] + hat Dcixhat_yc[i-1]; 4 (2))
hat xc[i] := hat_Acixhat_xc[i] + hat_Bcixhat_yc[i-1]; ’
tilde_yc[i] := tilde Cci*tilde xc[i] + tilde Dcixhat _yc[i];

i tional part i
tilde xc[i] := tilde Aci*tilde xc[i] + tilde Bcixhat yc[i]; }CZ(Z) (Optional part ¢

write outputs(tilde_yc[il);
restore tilde_xc[i-1];

yc[N] := CcN*xc[N] + DcNxhat_yc[N-1];
xc[N] := AcN*xc[N] + BcN¥hat_yc[N-1];
write outputs(yc[N]);
restore tilde xc[N-1];

Optional part N

It is worth noting that the sleeping states are restored (restore tilde xc[i-1];), discarding the
previously computed values. Once again, there are no evidence in performing rather than discarding
the “restore” operation. Nevertheless, atomicity of the write outputs(tilde_yc[il); and the
restoring operation must be guaranteed.

From a code optimization point of view, the computation and the subsequent rejection of sleeping
states could be better implemented simply delaying the possibly rejectable part computation in the
next mandatory part. However, the computational overhead introduced in the mandatory part
depends on the last computed controller and could be too expensive.

The PES technique presented as the final, more flexible approach to the any time constraints’
satisfaction keeps positive features also for the complexity and computational error sensitivity, due
to its degrees of freedom in the state space realization choice.

Considering SISO systems, the main advantages of the PES technique are:

1. The any time paradigm is naturally and completely fulfilled. Within the PES approach, all the
scalability possibilities are preserved and taken into account.

2. The controller state space realizations are unconstrained. Therefore, complexity of the imple-
mentation can be taken into account.

Remark 2 Consider a scalable any time controller Ki(z),...,Kn(z). Each component controller
Ci(z) is split according to the PES approach and realized in a generic state space representation. If
there are common poles between the component controller C;_1(z) and Ci11(z) but they are obstructing
poles for the component controller Ci(z), they have to be computed two times. This restrictive property

32

can be better explained noting that Ki(z) = Ci(2) and K;(z) = Ci(z) Ci_1(2) ... C1(2), in order to
obtain K;(z) = K;(z) Ki(z). Therefore

Ci(2) €Ki(z)Vi=1,...,N Vj=1,...,i

This constraint persists also if a realization in Jordan canonical form is chosen.
It has to be noted that a code optimization on the specific any time realization should be pursued
to overcome this problem.

Drawbacks are related to:

1. A controller design that is able to fulfill the separation between obstructing and non—obstructing
parts is very difficult. Moreover, systematic techniques are not well suited for the design of a
controller satisfying the additional splitting constraint.

2. The causality of each split controller Cj(z) and Cj(z) must be preserved. Therefore the sepa-
ration among obstructing parts cannot be arbitrarily performed.

Hence, the PES represents the more flexible architecture for the any time paradigm that natu-
rally guides the realization of each controller toward the FES, rather than MES, depending on the
controllers design.

1.5.1 Complexity comparison among FES, MES and PES

Regardless of the adopted design technique, a comparison among the different approaches will be
carried out in this section. As emerged in section 1.3, the best choice for a controller realization
seems to be the Jordan canonical form, easily implementable in each of the scalability approaches
presented (FES, MES, PES).

For simplicity’s sake, the comparison among the different approaches is guided by the subsequent
assumptions:

1. Each controller K;(z) and its relative component controllers C; and C;(z) are realized in Jordan
form. With this choice, complexity comparison is performed assuming the computational time
amount equal to the state space dimension of the controller;

2. Each realization is minimal;

3. The input vector B is filled with 1’s and 0’s, while the output vector C is completely filled with
rational numbers (only SISO systems are considered);

Remark 3 It is worthwhile to note that FES implies C;(z) = I Vi (I is the identity matriz of suitable
dimensions), MES implies C;(z) = I Vi, PES has no constraint.

Remark 4 For SISO systems, the input vector b or the output vector ¢ could have almost any desired
values as long as the realization is chosen to be reachable and observable. For MIMQO systems, this
assumption is still valid provided that the realization is no longer minimal (see [14, 13] for more

details).

Consider a set of stand-alone controllers K;(z), with ¢ = 1,..., N. The controller K(z) ensures
the stability of the system G(z) (in case G(z) is already stable, it is K1(z) = I), while the controller
K;(z) ensure the performance set (P, Ps,...,Pi_;), withi=2,...,N.

The less computational efficient any time technique is to compute the i—th controller after that
all the controllers from 1 to ¢ — 1 are computed and then discarded. The underlying assumption of

33

this method is that there are no common singularities among the controllers (i.e. K;(z) = I Vi), con-
sequently the computation furnishes the last computed control K;(z) and discards all the previously,
uselessly computed controls. The maximum cost for the i—th controller is then

3
j=1

where n;, is the state space dimension of the controller K;(z). The maximum cost is then equal to
the cost of the MES approach "¢*C; = C;. Any other technique which admits common singularities
should have a computational cost less then or at least equal to the maximum allowable cost ™¢*C}.
So, the MES approach defines an upper bound on the computational cost limit: any other approach
that has a computational cost greater than this easily computable limit is less efficient and should
be avoided.

Let us now consider a PES approach and assume that ny, is the dimension of the controller K;(z).
Due to the minimality of the controllers in the MES approach (recall that each controller is designed
to be stand-alone), ny, > ny,, but this property is not in contrast with the fundamental requisite
pesC, < ™mesC; that permits to PES to be more attractive than MES. For, consider the dimension of
each controller (for instance, in a series connection)

Ki(z) = Ki(2)K;(2) = nu, = fis, + g, > ., Vi

where 7y, singularities are computed uselessly at each step. For example, consider the component
controllers C;(z) = C;(2)C;(z) and a series connection among them

Ki(z) = Ci(2))
Ki(z) = Ci(z) Ci—1(z)...C1(2)

For the computation of the cost index P¢*C; it is necessary to take into account the partial superim-
position among the controllers

g, = Nk + Ny

Ny = Tl + Ny = ank2 + Ty > Ny
Ny = Mgy + Ny = "Ny + Mg, > 1y,
Nk, = Mg T, = g g 2 N

where “ny, is the dimension of the added singularities to the existing common singularities 7y, ,
in order to achieve the total number of singularities of K;(z). Due to the scalability property, the
common parts are already computed and the global computational cost of the ¢—th controller is then

)
pesCi = ng, + § :ankj
=2

Noting that ng, = ny,, since the smaller controller ensures only the stability, it is possible to assert
that Pe5C; < ™e5C; if and only if the relation

7 7

a
§ Nk, < § N
j=2 j=2

is verified Vi = 2,..., N, which implies
“ng, <ng, Vi=2,...,N (1.8)

34

It is straightforward that FES is the end point of the presented variety of choices. Indeed, it
simply uses all the calculations performed, regardless of their usefulness. Each controller K;(z)
designed with this approach will be minimal, but the presence of the obstructing poles in K; 1(z)
will bring to a state space whose dimension is ny. > ng, > ny,, in general larger than any other
representation. As it was highlighted for the PES, also in this approach the controllers are logically
split into two parts based on the obstructing/non—obstructing property of the singularities involved.
Although the PES approach discarded all the obstructing poles, in the FES all the singularities are
reused: the partition is highlighted only for comparison clarity. The dimension of each controller is

ny, = Ny, + g > ny Vi

and the computation of the cost index f¢*C; is carried out in the same way as PES

* — o4 o J— J—
N, = My TN, = Mgy =Ny,
* _ =k ok _ Aok ~ =~
Ny = N, T, = "N, +1g, + Ny > Ny 2> Ny,
* _ =k ok _ Aok ok =k
nk3 - nkg + nk3 - nk3 + nk2 + nk;2 Z nk3 Z ﬂkg
* _ ~ % ok _ (1% Ak ~ K
Mg, = Ty + Mg, = Ny + L + L 2 Nk 2 L

where “n. is again the dimension of the added dynamics to the existing singularities nj _ in order
to achieve the desired behavior for K;(z). Due to the presence of the obstructing poles, the added
singularities are split into two parts: the singularities added to increase the performance and the
singularities added to compensate the presence of obstructing poles at the step ¢+ — 1

a, * __ apx a*
Ny, = nki+ T,

Recalling that ny = ny, , the cost index is

i
TGy = my, + Z(“% +7k;)
=2

and the condition /¢*C; < ™¢3C; is verified if and only if

Z(aﬁ;‘j + aﬁzj) S ﬂk]‘ (19)

The comparison between FES and PES is not so easily identifiable, since the set of obstructing
poles at step ¢ — 1 for the controller K;(z) may be non—obstructing for the controller K;;(z) and
then keeping them may be an improvement in efficiency. Considering only computational complexity
FES can be regarded as a special case which PES naturally tends to, nevertheless a trade—off will
appear once design effort and obstructing singularities identification are also taken into account. The
overall comparison dramatically depends on the particularity of the application and it is no longer
investigate in this work. However, the guide lines for the choice of an approach in the proposed
set are given analyzing the scenarios presented in this section and assuming that the obstructing
property is a persistent characteristic, in order to get

i
~ %
Jes gy =5+ 3 0,
j=2

Fixing the upper complexity bound with ™¢C; in (1.7), three main situations are analyzed for
comparison purposes:

35

1. Optimal Design: noting that
an;i = aﬁzz = ank‘

3

the PES is equal to the FES, but the latter is preferable since no analysis is carried out in the
identification of the obstructing poles. Furthermore

_ . 4
ﬂki =Nk = nki

for the minimality of MES and the minimality of FES w.r.t. Optimal Design.
The cost index for the FES is

i
feSCi =PeQ; = o + § :ankj = ny,
=2

and then it is easy to assert that 7¢C; < ™¢5C; since
i
Dg; < Zﬂkj
j=1

Equivalently, expressing the upper bound index with respect to the non—obstructing parts

mesc; = Zﬂkj =Ny + Z(ankj + ’flkj_l) =ny + Z(ankj + nkj—l)
=1 =2 j=2

the condition (1.9) is verified since

(a,ﬁ’zj + a,ﬁ’z]—) = ankj < ankj + nkj—l’ V_] — 2, . ,N

Therefore, the Optimal Design with FES is the best choice in the best case. /¢*C; can be
regarded as the lower limit of the any time complexity

%
fesCi =y, + Z ankj
Jj=2

2. Worst Design: in this situation
a *x _ ark a~*

(2

which yields to
ny, = "y 4“0y + 0y > ny

The comparison index (1.9)is then violated Vi and then /¢*C; > ™¢*C;. Furthermore the cost
index for the FES is

7 7
* ~ %
fesCZ, = ny, + } :ankj —PesC 4 § :anki
j=2 j=2

that highlights that /¢*C; > P¢5C;. In order to compare the PES with MES, consider the
condition (1.8): fig, , = 0, Vi since all the singularities are obstructing, hence “nkj > ny, for
the minimality of the MES approach, and then P¢*C; > ™¢5(C;.

Therefore, for Worst Design the best choice is the MES, i.e. discarding all the already performed
computations. It is a matter of fact that ™¢C; is regarded as the upper limit of the any time
complexity. Applying the FES in this situation may lead to an excessive computational burden.

36

3. Standard Design: within this most general scenario
a, *x __ an*k a =%
Mg, = Mg, T 71,

and the cost index for the FES is again

i i

es a, * es a~*x

! Ci:@kl—i-g ng, =" Ci-l-g Ty,
J=2 J=2

that highlights that /¢*C; > P°5C;. It is worthwhile to remember that this condition is valid
as long as the non—obstructing property is permanent and when the design problems are not
taken into account.

The condition (1.8) should be analyzed carefully depending on the particular situation.

It is worthwhile to note that discarding design problems have leaded to the obvious conclusion of
always using the more flexible approach presented: PES. Indeed, it simply converges to one of the
two limit choices (MES or FES) depending on the superimposition properties among the controllers.
Problems related to controller design are analyzed in the next section.

1.6 Stability issue

The open loop system endowed with an anytime controller can be regarded as a LTI autonomous
switched system
rh = Ag,a (1.10)

where z. is the vector stacking the state vectors of the open loop system and of the controllers,
and A, are the closed loop dynamic matrices related to the system and to the controller K;. This
notation is allowed by the introduction of sleeping states, that is states related to idle controllers
which are frozen or decreased with a power law.

Ensuring the asymptotic stability of a system with an anytime controller is no longer a matter
of single controllers, but of all controllers and of the switching law specifying which controller is
active in each instant. In other words it is a problem of stability of switched systems. There exists
a wide literature on this subject (see [17], [18] and [19] and references therein), but, unfortunately,
few results can be used for the anytime problem. First of all, the numerical problems affecting the
computations of the controllers impose specific state space realizations, seriously limiting a stability
oriented design of the controllers. That is, we cannot choose state space realizations guaranteeing
asymptotic stability for arbitrary switching (see [16]). The realizations driven by computational
constraints, may result in a stable system for any switching law, but it cannot be systematically
ensured. This suggests to face the problem from a stabilizability point of view, that is to design
specific switching laws ensuring the stability.

There exist many results also for the stabilizability problem, but they usually require the com-
putation of complex functions to ascertain which subsystem can be activated next time. Since the
reduction of computation at each step is a main concern of the anytime paradigm, we cannot make
use of a switching logic potentially requiring more computations than the controller itself. Therefore,
we present two switching laws based on the norm of closed loop matrices instead of on the online
measure of the norm of the state vector. We make the conservative assumption that the scheduler can
make preemption, thus changing the available time for computation, at each step. This means that
a switching logic, allowing at each step the computation of the maximal controller for the available
time, produces a system subject to an arbitrary switching law, hence, potentially unstable. It is worth
noting that any switching logic can only further limits the available time granted by the scheduler,
deciding to stop the computation for stability reasons before the scheduler has made preemption.
The preemption event is mandatory and cannot be delayed.

37

1.6.1 (V,n) switching logic

The basic idea behind this logic is to exploit the repeated application of the minimal controller
(whose complete computation is always guaranteed by the feasible mandatory constraint) to tame
the expansive behavior of an arbitrary, but time-limited, sequence of controllers. More in depth, this
logic opens a time window of n steps, during which the controller order ‘follows’ the available time,
that is computations are interrupted only on the occurrence of a preemption event and the provided
controller is the greatest possible for the available time. After that, a sequence of N successive
applications of the minimal controller follows, resulting in an overall contractive behavior.

Define with I = {1,..., Ni} the set of controller indices, with Ay = {Ay;, },.; the set of closed

loop dynamic matrices, with o, = (i1,...,4,), i; € I, a sequence (string) of n indices, with X, the
n
set of all the strings oy, with Ay, =[] AClij the dynamic matrix after n steps corresponding
j=1
ij=0n(j)

to 0, and with A, = {AClan }an s, the set of all previous matrices.

Suppose the present state is x, after an evolution of n time steps following the sequence of indices
on, the state will be 2"+ = Ag,, o If we do not measure the actual state, we can make a conservative
estimation of the norm of the state after n steps considering the initial state z uniformly distributed
on a unit sphere. Moreover, if we do not record the specific sequence of indices, we can estimate
the effect of the arbitrary sequence on the norm of the state vector by taking the maximum over all
sequences

b= max |Aa,,el, =, max o (Aa,)
Aclg—n e-Acla—n

where & (-) is the maximum singular value. B is an estimation of the maximum expansion of the
system after n steps, that is any evolution of the system starting from an initial condition on the unit
sphere yields, after n steps, a final point included in the sphere of radius B. If our goal, after n + NV
steps of evolution, is to produce an overall contraction at the minimum rate of 1 —e¢ with 0 < e < 1,
we must find a number of steps IV such that B -b <1 — ¢ with

b=oc (Acll)

and A, closed loop matrix related to the minimal (mandatory) controller. With this switching law
the switched system is guaranteed to be asymptotically stable (the system sampled any n + N steps
is power law stable with minimum rate 1 —¢).

This logic has the merit to be very simple and to require no online computations (n and N are
fixed) or storing data, but has the drawback to be too stiff. At the expanse of some online recordings
and little memory consumption, a more flexible switching logic can be defined.

1.6.2 Power sequence switching logic

Suppose to build all the power sequences A, Azli, - ,A?fi for every Ay, € A, with n; chosen such

that & (AZZ) <1-—¢ (0 < e < 1). Moreover, for every power sequence consider the sequence of

maximum singular values ¢ (Ag,) , & (Azli) ey (A?ﬂ) and define the following quantities
Bij =5 (4],) maxa (Aa), j<ni i€l
i) le

The B;;’s represent an estimation of the expansion induced on the norm of the state by each sequence
of 7 < n; consecutive applications of the i-th controller followed by a step of an arbitrary controller
[€ 1. As for the previous logic we use the minimal controller to reduce the norm of the state vector.
Indeed, we find positive integers IN;; such that B;; - b;; < 1 — ¢ with

bij =0 (Ag;) .

38

N;j is the number of consecutive applications of the minimal controller needed to reduce the expansion
Bi;; and to produce a minimal overall contraction of 1—¢ after j+1+ N;; steps. With these definitions
it is now possible to explain the power sequence switching logic as follows:

1. Try to compute the greatest possible controller for the available time (say & the index of this
controller);

2. For the following ny — 1 steps try to compute the controller £ (the switching logic force the
controller & even if the available time would allow the computation of more complex controllers);

3. If a preemption event occurs after r steps (with r < ny) from the beginning of this power
sequence, that is if the available time is reduced below the value needed for the computation
of the controller k, a step of the greatest possible controller for the reduced available time is
computed. For the following IV;; steps the minimal controller (index 1) is computed;

4. If the step 2) (nj time steps) or the step 3) (r 4+ 1 4 N;; time steps) is completed, than go to
step 1).

This logic introduces more flexibility as it allows the execution of sequences of variable length and
is based on the implicit assumption that the consecutive application of the same controller produces
better results than an arbitrary sequence of controllers even if of greater complexity. For this reason
the switching logic come unhooked by the scheduler and limits further the computation time by
freezing the controller order.

Respective to the simpler (N, n) switching logic, a “lookup table” is needed (computed off-line)
and a counter to compare with ny is each time updated. This little memory consumption, carried
out with neglected computational time, allows more flexible and efficient switching laws.

1.6.3 Power sequence + norm switching logic

If a measure of the state vector is available, a more flexible switching logic can be set up at the expense
of further computations. In order to limit these computations, the 1-norm can be chosen to evaluate
the expansion or contraction of the state vector. Indeed, it requires only the sum of the absolute values
of the vector components. The use of the actual norm can reduce the conservatism of the previous
switching logic based on the worst case expansion, thus allowing the use of shorter power sequences.
This is because we replace the contraction condition on the matrix norms with a condition derived
from the state norms. Counsider an initial state ;7 and suppose that after a certain number of steps
the actual state is given by 4. The task of the switching logic is to find a number m of successive
application of the i-th controller capable of producing a contraction of the state norm at least of

a factor 1 — ¢, namely ‘{xA+‘{1 HA”; xAH HA zally, < (1 —¢)flzsll,. From the previous
relation we derive the following conservative condition: ﬁnd m such that HA H (L—¢) H.
1

As shown before we use the matrix 1-norm for the power sequences of dynamlc matrices. There-
<1—¢and all

fore, let us define the positive integer n; as the number of steps such that HAZ[Z .

the intermediate expansions as B;; = HAgl' ‘ , 5 <mnj, © € I. The power sequence + norm switching
il

logic is as follows:

1. Compute and store the (new) initial state vector norm (y! = |lzf]|,);

2. Try to compute the greatest possible controller for the available time (say k the index of this
controller);

3. For the following njy — 1 steps try to compute the controller k;

39

4. If a preemption event occurs after r steps (with r < my) from the beginning of this power
sequence:

4.1) Compute and store the actual state vector norm (Y = ||z 4l|,);

4.2) If i (< k) is the index of the greatest possible controller for the (reduced) available time, for
the following m steps try to compute the ¢-th controller, where 1 is such that HAZ;Z H s

1
(1-¢) I
4.3) If the step 4.2) is completed then go to step 1) else go to step 4.1);

5. If the step 2) is completed then go to step 1).

It is worth noting that this logic relaxes also the constraint of directly using the minimum con-
troller after a preemption event, by allowing the computation of the greatest possible controller
for the new available time. However, the asymptotic stability of the system is ensured by the fact
that, even in the worst case of a burst of preemptions expanding the norm, eventually the minimum
controller is activated and then the norm is reduced at least of the factor 1 — e.

1.6.4 Always measured norm switching logic

If the computation of the state norm is included in the mandatory part, it can be performed at each
step. This way a new logic can be defined:

1. Compute and store the (new) initial state vector norm (y! = |lzf]|,);

2. Try to compute the greatest possible controller for the available time (say k the index of this
controller);

3. Compute the actual state vector norm (y4 = ||z 4||,), if v* < (1 — €)4! then go to step 1) else
try to compute another step of controller k£ and go to step 3);

4. If a preemption event occurs, compute the greatest possible countroller for the new available
time (say ¢ < k the index of this controller) and go to step 3) with k replaced by 1.

Also this logic ensures the asymptotic stability as, in the worst case, the minimum controller is
eventually reached and computed for a sufficient number of steps to contract the state norm.

1.7 Simulations results

The mechanical system chosen for the simulations results is reported in figure 1.12. The nonlinear
dynamic equations of the presented system are

2

1
mil“a — ﬁml2 sin 2 w? + mglsina = 0

(I +mi?sin?)& + ml?sin 2« & = 7

where m = 1Kg is the hanging mass, [= 2L = 1 is total length of the rigid vertical bar and of
the rigid bar that hangs the mass, I = 1073Kg/m? is the inertia of the rotating vertical bar and
g = 9.8m/s? is the gravity acceleration. Let o be the orientation angle between the rigid vertical bar
and the hanging bar while w is the angular velocity of the vertical bar. The mechanical system is
actuated by the torque control 7 applied at the structure basement. Let x = [z1, 72, 23]7 = [o, w, &7
be the state space vector. Consider the linearized system with respect to the equilibrium point

40

o o

Figure 1.12: Mechanical system adopted for the Any Time Controller simulations.

Y
X

T
= |7/4,4/ #, 0| , with 7 = 0. Let now consider the discretized state space with sample time

X
T = 0.1s, which yields to the subsequent, open loop unstable, transfer function

a(z) 0.0012178(z + 3.657)(z + 0.2734)

G(z) = T (z —1)(22 — 1.664z + 1)

To prove the validity of the analysis of the Any Time paradigm, together with the presented
stabilizable control laws, a parallel connection has been adopted (see figure 1.7). The controllers are
designed based on nested loops, i.e. considering at the level i—th the closed loop transfer function

obtained by the system closed with controllers C(z) with j = 1,...,i—1: Gg,(2) = Sy G(CZ?(z)G(z)'
j=1Yj

Three controllers are obtained

_3.4294(2* — 0.6558z + 0.7057)

G2 = = =0.090)(z — 0.868)
Cole) = 900.6711(2% — 1.3762 + 0.6716)
(z + 0.2734) (22 + 2.3072 + 2.695)
—15.1733(z — 0.5619) (22 + 0.569z + 0.09385)
Cs(z) =

(2 + 0.5874)(z — 0.091) (22 + 0.655z + 0.493)

whose closed loop responses to a step command (raised after one second of simulation) are reported
in figure 1.13.

Five different policies of the Any Time paradigm are simulated: No Switching Logic (the system
will execute the controller computation as there is enough time to compute), (N, n) Switching Logic,
Power Sequence Switching Logic, Power Sequence + Norm Switching Logic and Always Measured
Norm Switching Logic. Four different simulations set-up are reported, supposing the system and
the controllers at the equilibrium in the initial instant. All the simulations run for 50 seconds.
In the first set-up, the system is excited with the reference signal in figure 1.14, on the top left.
The closed loop responses reported in figure 1.14 show that the system is asymptotically stable for
each stability policy chosen. In figure 1.15, the scheduled time (dotted) and the effectively executed
controller (solid) for each policy is reported, assuming that index ¢ means the execution of the parallel
controller Z;:l Cj(z). To simulate the scheduled time, it has been assumed a statistical distribution
of the workload on a general multitasking PC. More precisely, assumptions have been made on the
mean time length of the activation period of each controller (1/2, 5 and 10 seconds respectively for

41

Ouput for C, Ouput for C,+C,

Value

8 10 0 2 4 6
Time (sec)

4 6
Time (sec)

Ouput for Cl+(:2+C3

0.05
0.045 H
0.04

0.0351

4 6
Time (sec)

Figure 1.13: Closed loop output in the case of controller C}(z) (top, left), C1(z) + Ca2(2) (top, right)
and C1(z) + Cz(z) + C3(2) (bottom).

the controllers C(z), C1(z) + C2(z) and C(z) + Cz(z) + C3(z)) and on the probability of activation
of each controller (equal for each of the three connections).

In the second set-up, the system is excited with the same reference signal of example in figure 1.14,
on the top left. The mean time length of the activation period of each controller has been set to
1 second for each controller, while the probability of activation is again equal for each of the three
connections. In figure 1.16, the scheduled time (dotted) and the effectively executed controller (solid)
for each policy is reported, showing how this assumption degrades all the available computational
time for each controller. The closed loop responses are reported in figure 1.17. As it will be expected,
without any switching policy, the closed system may be unstable.

In the third example, excited with the same reference signal of the previous simulations, the mean
time length of the activation period of each controller has been set to 1/2, 1/2 and 10 seconds for each
controller, assuming that the system has enough time to execute the larger controller C1(z) 4+ Co(z) +
C3(z), although some sporadic task may be executed. To enforce this scenario, the probability of
activation of the first controller has been rather set to 1/10 of the probability of the other two tasks.
Results for the executed controllers are reported in 1.18, while the outputs are reported in 1.19. In
the presented examples, the closed loop behavior is quite good, since available computational time
is sufficient. Future works will focus the attention on the general closed loop performances of the
whole system.

In the final example, the reference signal is depicted in figure 1.20, on the top left. The mean
time length of the activation period of each controller has been set to 1/2, 1/2 and 2 seconds for each
controller, assuming an high workload for the multitasking CPU. Again, the probability of activation
of the first controller has been rather set to 1/10 of the probability of the other two tasks. Results
for the executed controllers are reported in 1.21, while the outputs are reported in 1.20.

42

Reference Signal Output - No Logic

2 T T T T 0.06 T T T
18 1 0.04 1
16 1
0.02 1
14r B
[}
1.2r : 1 % 0
g >
= 1 q 5 -0.02 q
> =2
L. H >
08 O -0.04 1
0.6 : 1
-0.06 1
04r 1
o2l | -0.08 1
0 -0.1 : i i :
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output = 'Nn’ Switching Logic Output — Power Sequence Switching Logic
0.2 T T T T 0.15 T T T T
0.15 1 0.1 1
0.1r 1 0.05 1
[} [}
= =
@ 005 J o 0 MAA
> >
= =
> >
g o £ -oost 1
o] o]
-0.05 1 -0.1p 1
-0.1p 1 -0.15 1
~0.15 i i i i 02 i i ; ;
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output — Measured State Norm Switching Logic Output — Always Measured State Norm Switching Logic
0.15 T T T T 0.15 T T T T
0.1} : 1 0.1} : 1
0.05 1 0.05 1
[} [}
= lL""—' = lL"
© 0 © 0
> >
= =
> >
£ -o0sf] £ -o0sf]
(e] (0]
-0.1f 1 -0.1f 1
-0.15 . 1 -0.15 . 1
-0.2 i i i . -0.2 i i i ;
10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)

Figure 1.14: Reference signal (top, left) and closed loop outputs for the Any Time Controller imple-
mentation for No Switching Logic (top, right), (N,n) Switching Logic (center, left), Power Sequence
Switching Logic (center, right), Power Sequence + Norm Switching Logic (bottom, left) and Always
Measured Norm Switching Logic (bottom, right).

43

No Logic 'Nn’ Switching Logic

35 . . 35 . . . :
Applied controller
= = = Scheduled time
r | Fu=a Al [[l L ¥
3 ’_ II 3T N . . 1 1 1 ' :'ﬁ:: 1
L " ! 1 1 1 I\H h
3 N PO A VR
1 1
2 25t 1 2 2s} o Pl ! o ' :h:: no
— — 1 ! h
5 - N T
S | BT RE M S
2 Ll 1 c 2r ' T W i 1
S 8 oy i
(@] (@) iy |
wn o y i
' '.' [4 i
15F 1 15 v [| Y | 1
o Y i
Iy [|] |
T B A | 1 H
1 | . . . 1
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Power Sequence Switching Logic Measured State Norm Switching Logic
35 . . . ; 35
Applied controller Applied controller
= = = Scheduled time = = = Scheduled time
~n= - FP===""- P===- L | ~n= - FP===""- P===-
= T 1 : 1 ! ;:" I:] 35y 1 : 1
B EE R iR
1 1 1 "y i 1 1
) 1 : ! 1 : 1 : 'h" |:) 1 1 : 1
Bosth v, o . Wy B 25t 1 1 o —
= 1 LT =
5 h 1 g 1 1 1 | |":| 1 - 1 1 1 1
1 1
R I TR IR o |
< - - .- - =kt < - - b4 - -
F=BF 1 LT " |] 2 2f ! !]
9] LI ! |] k] i
O g B0 h | O 1 d
Ve | !
K ! | ’)
vy [| L] 1 J
15r) [] | 1 15r J 1
1 : ! : h | !
1]
oo ' ! !
1 1 .
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Always Measured State Norm Switching Logic
35
Applied controller
= = = Scheduled time
~n= '- - r= == -l P===-
3 i '
71 .
x | ! 1
[} | 1 1
B a5t . 1 f
- ! 1
< : 1 1
g == r 1 -! = "|I
c 2r 1 il "
S noy i
O g i
] I
Lo
18] o
'
$ i
v
1 . .
0 10 20 30 40 50

Time (sec)

Figure 1.15: Scheduled time (dotted) and executed controller (solid) (the index ¢ means that the
parallel controller 23:1 Cj(z) is executed) for No Switching Logic (top, left), (IV,n) Switching Logic
(top, right), Power Sequence Switching Logic (center, left), Power Sequence + Norm Switching Logic
(center, right) and Always Measured Norm Switching Logic (bottom).

44

No Logic

'Nn’ Switching Logic

35 35 T
= = = Scheduled time
[l s I"r‘ 1y -|| I|I] .III"' 1[" L4 0|I|I l
: i A it 1w
ul A LR AR R]
% % nh A HITEEE kRN
kel | kel I ||l’l 'ﬂ '|' oy '1“'| lt'l‘ |||'|I'|
£25 £25 g LA SRR
5 o uea B
£ g "||"'.I,fll'rn' R TY Jll" Rt
5 ° S (R ! TR :'::"' n
S S g LT
I
15 15 :‘:II" ‘I: : e ':I‘ :Igt: :"
: : .‘i,',l" 4 PR L1y il b
g ORI B
| HEL AREEEY BT
%o 20 30 20 50 %o 10 20 30 40 50
Time (sec) Time (sec)
Power Sequence Switching Logic Measured State Norm Switching Logic
3.5 T T T T 3.5 T T T T
Applied controller Applied controller
= = = Scheduled time = = = Scheduled time
r‘l 'I"‘I ""‘a"ll.l 1, s "r‘l ""‘l‘lll..“'l'ww..l.ll
wond ﬁ FARIME :;ﬁ:- g oo ﬁ Py b ."‘:"'::‘::':::‘
4 At Yoy . P d Sagn g gy B R Ay
] ity y 1A oy A Bl nay
% 4 AL Yagn % nd A Fhi s ey iy B
g,.housa AL Ea oy B ngR TR R
£ 25 |'l R 'F'.: f'|:|: =|'\"I "y 25 g A f'|:|: Yoy IIIF h IF:"I"l :. :i:'l il
5 ﬁ Wy e st 5 nh i Py iy vty o i
5 ' Ih |I||~fll|.'llll|l lnﬂll = 1 Ih fll|.vlllll|'if i I|||‘II'I||. 1y
s, .l'll,r \; e Ak Sy g by, ARl AR Ln‘lv,f"-,
5 "II' "I. ': “'|I“'I ! LT 5 I"II' "I|| 1 TN '} |“.I :'|
o ||Ili "l| 'l‘a'll:lh f Wt O I|Ili "||| Al f it |] '“.Ik N
Iu" 5 l,‘“l.l Y O "Il" 5 B ILRL TR 1 .“"III !
W ghadm oy, B ILRL TR R
o A ghual i e Lo rvd b, [e o
R ghuam ditwe 1o T IR IE |
¢y TR TR ol id RO R |
L :'”-.I-"lu L I B ' atid o A hacs o v e !
l0 1‘0 26 3:0 40 50 l0 1‘0 20 3:0 4‘0 50
Time (sec) Time (sec)
Always Measured State Norm Switching Logic
3. T T T T
° Applied controller
= = = Scheduled time
e nh)
i 88
” i
g0 ned
£ 25 |:|'l I.\
5 il
e} 1
g fluniroy TR
5] . Il" 15 [
© [byl
AR ol B
15 i':ﬁ :: W ol byl
i il H B
g A will ibi
i ¢ 3 Vi
1

[
o

30
Time (sec)

IN
o
3
=)

Figure 1.16: Scheduled time (dotted) and executed controller (solid) for No Switching Logic (top,
left), (N,n) Switching Logic (top, right), Power Sequence Switching Logic (center, left), Power
Sequence + Norm Switching Logic (center, right) and Always Measured Norm Switching Logic
(bottom).

45

21

Output - 'Nn” Switching Logic

X 10 Output - No Logic
4 T T T T 0.2 T T
2+ 0.15 4
j 0.1r 1
() 0 1 ()
= =
© © 0.05F 1
> > J
= -2F R
3 >
o o
= = 0
> >
o o
—al
-0.05- 1
-1 -0.1f 4
g i i i i 015 i i i i
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output — Power Sequence Switching Logic Output — Measured State Norm Switching Logic
0.2 T T T T 25 T T T T
oL J
0.15 1
15F 1
0.1 1 1} J
E] g
T 005t g 3 % |
> z A
5 5 o AMAN
o o
= 0 =
= S -05f 4
o] o]
-0.05} 4 -ir 7
-15F 1
—o1h J
2l J
~0.15 i i i i 25 i i ; ;
0 10 20 30 40 50 10 20 30 40 50
Time (sec) Time (sec)
Output — Always Measured State Norm Switching Logic
15 T T T T
1k J
N 0.5 1
=
©
>
= O-W/\W/\M,W Yo'
2
>
o]
-0.5r 1
1k J
15 i i i i
0 10 20 30 40 50

Time (sec)

Figure 1.17: Closed loop outputs for the Any Time Controller implementation for No Switching
Logic (top, left), (IV,n) Switching Logic (top, right), Power Sequence Switching Logic (center, left),
Power Sequence + Norm Switching Logic (center, right) and Always Measured Norm Switching Logic
(bottom).

46

No Logic

'Nn’ Switching Logic

T T 35 T T T ;i
Applied controller
- Scheduled time
- - == rma = == == m ===
3tp 1 ':' A I B "o,
1 'Il A R B R o,
ot o S o,
Py Py L T L T T LI
)) T N 1
k] k] 1 ! 1 "] LI | LI
c c 25 1 1 1 1 ! A
= = 1 ! 1 LI | LI |
= u T L T v)
k) k) o P! L R . : ! . "
° ° PO T P T U T T, .o
=] =
c c 2 4
]]
@] @]
15F 1 15]
1 1
0 10 20 30 40 50 10 20 30 40 50
Time (sec) Time (sec)
Power Sequence Switching Logic Measured State Norm Switching Logic
35 T T T T T T T T
Applied controller
= = = Scheduled time
. I e — " L B B i B Bl T S Bl o Bl N By
a1 Mty N v] s [T L L R T o
1 Wy by v oy, L L L I Yo
o 1 v oy, L L B BT Yo
5 L' ' v vy, % L L L |: Yo
T Mt v [T T 25 L L T Yo
£25, | oy :I ' [B £ LN L L [:: 1
5 "y = [T L I R "
] 1 1 1 1 [| [] [] 1 1 1
K] 1y 1 1 Q2 1 [T ' I | 1 ! | T
s | Lonlal o 'ou I B PRI R A oo
€ 2 1 € 2
8 8 Applied controller
= = = Scheduled time
15F 1 15]
1 1
0 10 20 30 40 50 10 20 30 40 50
Time (sec) Time (sec)
Always Measured State Norm Switching Logic
3 P~y 1= M= rm ey = ey =y =
3
T 25 4
=
3
s
E 2]
]
O Applied controller
= = = Scheduled time
15F 1
1
0 10 20 30 40 50
Time (sec)

Figure 1.18: Scheduled time (dotted) and executed controller (solid) for No Switching Logic (top,
left), (N,n) Switching Logic (top, right), Power Sequence Switching Logic (center, left), Power
Sequence + Norm Switching Logic (center, right) and Always Measured Norm Switching Logic
(bottom).

47

Output - No Logic Output - 'Nn” Switching Logic

0.05 T T T 0.2 T T
0.04 4
0.15 : B
0.03 1
0.1r B
© 0.02 1 ™
=] =]
0.05 B
S o0 i S J
= =
> >
=3 0 =3 0
> >
e} e}
-0.01 1
-0.05- A
-0.02 B
-0.1r A
-0.03 B
~0.04 i i i i 015 i i i i
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output — Power Sequence Switching Logic Output — Measured State Norm Switching Logic
0.05 T T T T 0.05 T T T T
0.04 1 0.04 B
0.03 1 0.03 1
o 0.02 1 © 0.02 1
=] =]
S o0 f S oo01 —
= =
> >
g o 2 o
> >
o] o]
-0.01 b -0.01 1
-0.02 1 -0.02 1
-0.03 1 -0.03 1
~0.04 i i i i _0.04 i ; ; ;
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)

Output — Always Measured State Norm Switching Logic
0.05 : : :

T
0.04
0.03
0.02

0.01

Output value

-0.01

-0.02

-0.03

-0.04 : : :
0 10 20 30 40 50

Time (sec)

Figure 1.19: Closed loop outputs for the Any Time Controller implementation for No Switching
Logic (top, left), (IV,n) Switching Logic (top, right), Power Sequence Switching Logic (center, left),
Power Sequence + Norm Switching Logic (center, right) and Always Measured Norm Switching Logic
(bottom).

48

Reference Signal

11

Output - No Logic

1 T T T

10
ol
sk
Tr 3]
=
g o g
3 5
> 5r =3
>
4+ (@]
sb
oL
1L
0 -0.8 : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output = 'Nn’ Switching Logic Output — Power Sequence Switching Logic
20 T T T T 2 T T T T
15] 150 f
10 1
1L
3 s — 3
[© 05p
> ﬂ A A " A q ” n >
- 0 -
> >
o [=X
= = 0 4
> >
o -5 1 o]
_os) i
“10 i
-15 1 - 1
20 i i i i 15 i ; ; ;
10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Output — Measured State Norm Switching Logic Output — Always Measured State Norm Switching Logic
2 T T T T 15 T T T T
15 1
100 4
1L
sk i
L os It
© ©
> >
5 0 5 oMVV \W"j
=2 =2
> >
O -0s o
5L i
-1
_10f i
-15
- i i i i _15 i i i i
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)

Figure 1.20: Reference signal (top, left) and closed loop outputs for the Any Time Controller imple-
mentation for No Switching Logic (top, right), (N,n) Switching Logic (center, left), Power Sequence
Switching Logic (center, right), Power Sequence + Norm Switching Logic (bottom, left) and Always
Measured Norm Switching Logic (bottom, right).

49

No Logic

'Nn’ Switching Logic

35 . . 35 . . ;
Applied controller
= = = Scheduled time
L ! [LRI
3) s y |:: n |:::
:: ! : I :: i
x x] 1
g g TR
c 25 < Il If "I I “.flli
= = ! |; W[“lp.
2 L LRI I [o naly,
o o LT L T lL-lﬁlll---lllL-
c 2f 2 [']
S [S) [\
O O [| X
[] \
15} b ' 1
L]
I v
[N
) .
%o 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
Power Sequence Switching Logic Measured State Norm Switching Logic
35 . . . ; 35 . . ;
Applied controller Applied controller
= = = Scheduled time = = = Scheduled time
1! ‘l- “Il-i "=] r - 1 r |
o n l: h ! Y
\I I n ” I| P !]
) Wt " ') " ! ! H
! T £ " A ;o]
£ LB I I||! < 1 ? ni If]
. 1 na ;_ n a ni o y
L " nat 2 h N | KRR
°© "I 1! '} = f 1 ! h
(<] =l —naldp (<]] e | LU LS
5 N 1 J5
o ' o
L]
L]
‘ i i
L]
L]
L]
Y io 26 30 4‘0 50 io 20 50 4‘0 50
Time (sec) Time (sec)
Always Measured State Norm Switching Logic
35 . . T .
Applied controller
= = = Scheduled time
=it [T o
3 I.‘ \ II:
|$ § |:I
g T
Bas .5 y! ,::
5 IR
° LA T L
€ 2 v
8 \
L]
15] 1
L]
L]
L]
%o 10 20 30 4‘0 50
Time (sec)

Figure 1.21: Scheduled time (dotted) and executed controller (solid) for No Switching Logic (top,
left), (N,n) Switching Logic (top, right), Power Sequence Switching Logic (center, left), Power
Sequence + Norm Switching Logic (center, right) and Always Measured Norm Switching Logic
(bottom).

50

Bibliography

[1]

[10]

[11]

[12]

K. Arzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control and scheduling co-design,”
in Proc. IEEE Intern. Conf. on Decision and Control, Sydney, Australia, December 2000, pp.
4865-4870.

A. Cervin and J. Eker, “The Control Server: A computational model for real-time control tasks,”
in Proc. IEEE Euromicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp.
113-120, best paper award.

A. Cervin and B. Lincoln, “Jitterbug: A tool for analysis of real-time control performance,”
in Proc. IEEE Intern. Conf. on Decision and Control, Las Vegas, NV, December 2002, pp.
1319-1324.

A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzén, “How does control timing affect
performance?” IEEE Control Systems Magazine, vol. 23, no. 3, pp. 16-30, June 2003.

J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise computation,”
Proceedings of the IEEE, vol. 82, no. 1, pp. 83-93, January 1994.

N. Perrin and B. H. Ferri, “Digital filters with adaptive length for real-time applications,”
in Proc. IEEE Real-Time and Embedded Technology and Applications Symposium, Le Royal
Meridien, King Edward, Toronto, Canada, May 2004.

J. W. S. Liu, Real-Time Systems, T. Holm, Ed. Upper Saddle River, NJ: Prentice Hall Inc.,
2000.

K. J. Astrom and B. Wittenmark, Computer Controlled Systems, T. Kailath, Ed. Prentice Hall
Inc., November 1996.

S. Jones, R. Goodall, and M. Gooch, “Targeted processor architectures for high—performance
controller implementation,” Control Engineering Practice, no. 6, pp. 867-878, 1998.

S. P. Panda and C. T. Chen, “Irreducible Jordan form realization of a rational matrix,” IEFEE
Transactions on Automatic Control, vol. 14, no. 1, pp. 66-69, February 1969.

Y. L. Kuo, “On the irreducibile Jordan form realization and the degree of a rational matrix,”
IEEE Transaction on Circuit Theory, vol. CT-17, no. 3, pp. 322-332, August 1970.

F. W. Fairman, “Jordan form realization via singular value decomposition,” IEEE Transaction
on Circuits and Systems, vol. 35, no. 11, pp. 1431-1434, November 1988.

T. Kailath, Linear systems, T. Kailath, Ed. Prentice—Hall Inc., 1980.

C. T. Chen, Linear system theory and design, M. E. V. Valkenburg, Ed. Holt, Rinehart and
Winston, 1984.

D. G. Luenberger, “Canonical forms for linear multivariable systems,” IEEE Transactions on
Automatic Control, vol. 12, no. 3, pp. 290-293, June 1967.

o1

[16] J. P. Hespanha and A. S. Morse, “Switching between stabilizing controllers,” Automatica, no. 38,
pp- 1905-1917, June 2002.

[17] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on
the stability and stabilizability of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp.
1069-1082, July 2000.

[18] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,”
IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59-70, October 1999.

[19] Z. Sun and S. S. Ge, “Analysis and synthesis os switched linear control systems,” Automatica,
no. 41, pp. 181-195, 2004.

52

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

