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Abstract— Random sampling-based methods for motion plan-
ning of constrained robot manipulators have been widely stud-
ied in recent years. The main problem to deal with is the lack
of an explicit parametrization of the non linear submanifold in
the Configuration Space (CS) imposed by the constraints in the
system. Most of the proposed planning methods use projections
to generate valid configurations of the system slowing the
planning process.

Recently, new robot mechanism includes compliance either in
the structure or in the controllers. In this kind of robot most of
the times the planned trajectories are not executed exactly due
to uncertainties and interactions with the environment. Indeed,
controller references are generated such that the constraint is
violated to indirectly generate forces during interactions.

With the purpose of avoiding projections, in this paper
we take advantage of the compliance of systems to relax
the geometric constraints imposed by closed kinematic chains.
The relaxed constraint is then used in a state-of-the-art sub-
optimal random sampling based technique to generate paths
for constrained robot manipulators. As a consequence of re-
laxation, arising contact forces acting on the constraint change
from configuration to configuration during the planned path.
Those forces can be regulated using a proper controller that
takes advantage of the geometric decoupling of the subspaces
describing constrained rigid-body motions of the mechanism
and the controllable forces.

I. INTRODUCTION

In robot motion planning, interacting with the environment
is normally considered a task to avoid, however in every-
day tasks humans don’t do that. Actually, simple tasks as
opening a door, sliding an object on a table and moving
an object consist on taking advantage of the objects and
their constraints with the environment rather than avoiding
touching them. In robotics solving the problem of generating
motions is not simple mainly because we need to face two
main problems: 1) working on high dimensional spaces,
which make the problem difficult to solve it optimally, and
2) working under constraints such as closed loop kinematic
chains and force/torque limits. The first, is solved in an
efficient way by randomly sampling the configuration space
(CS) of the robot. This is possible thanks to the available
explicit description of the CS . The second problem is harder
due the fact that an explicit description of the admissible
CS is not available. It means that not all random samples
of the CS can be considered as a possible configuration to
explore. There exist some approaches to generate motions for
robots under environmental constraints, particularly closed

1Research Center ”E. Piaggio”, Università di Pisa, Largo Lucio Lazzarino
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Fig. 1. The Motion planning method presented in this paper is developed
for systems with compliance either in their structure of via the control loop.
In this case the bimanual system includes the compliance in the qbmotors
[5] composing the structure which is combined with mechanically embedded
compliance of the PISA/IIT SofHands [6].

kinematic chains, which are based either on the decomposi-
tion of the chain in a passive and an active part [1], or in
the projection of any random sample to the admissible CS
[2], [3].
In this paper we propose a new method to generate motions
for robots manipulators under closed . It is based on the
relaxation of the constraint to be able to randomly sample
an augmented admissible CS . Then, using state-of-the-art
algorithms as RRT* [4], we guarantee the convergence of the
algorithm to a path, connecting two points, which optimizes
the distance to the constraint at each point on it.

A. Planning with Closed Kinematic Chains - State of the Art

Since the introduction of random sampling techniques for
path planning, a lot of advances have been made in this
field. There exist two main approaches in this topic, the first
is the Probabilistic Roadmap (PRM) and the second is the
Rapidly-Exploring Random Tree (RRT) introduced in [7] and
[8] respectively. These two approaches were designed to plan
motions in high dimensional spaces, in fact they are normally
applied in the CS of robot manipulators. The major advances
have been focused in the improvement of these methods to
mainly include heuristics to speed up the planning time and
bias the solutions to get preferred behaviors. For example in
[9] exploration and exploitation of CS is balanced for fast
convergence of the planners. In [10] the authors propose to
include different heuristics to bias the growth of the trees
towards a preferred part in the CS .

The last major contribution in probabilistic motion planing



was presented in [4] where the authors studied the qual-
ity of the paths generated by randomized planners. They
proposed a modification of the RRT and PRM algorithms,
called RRT* and PRM*, to generate better quality paths.
The completeness and sub-optimality of the solutions are
guaranteed. Some improvements to speed up the solutions
of this planner have been proposed in [11] and [12].

The inclusion of constraints in random-sample based plan-
ners is another research line in the area, for example 1)
nonholonomic constraints for mobile robots as summarized
in [13], 2) task constraints where the end effector has to
maintain a desired orientation over the whole planned path
(for example a robot holding an object upright), [14], and
3) closed kinematic chains for cooperative robots or par-
allel manipulators [15]. The latter is sometimes considered
a particular case of 2). There is also a research line to
include dynamic constraints such as joint torque limits. This
planning techniques are called kinodynamic motion planning
[16]. In this work we will focus the attention to motion
planing for systems with tasks space constraints, particularly
closed kinematic chains generated by multiple robot object
manipulation.

The main problem in motion planning for closed kinematic
chains is that the admissible CS of the robot is nonlinear
submanifold Mv, described by the constraint equations,
living in CS . Particularly, all randomized planners include
a function called Sample where a random point in the
configuration space is generated. In case of closed kinematic
chains the function Sample must return a random point on
the aforementioned submanifold. The probability to do this
is 0 because the manifold is a zero measure set in the
configuration space.

B. Path Execution

Another problem to deal with in multiple robot manipula-
tion is that during path execution suitable interaction forces
must be ensured. This can be addressed with a suitable
force/position controller using the theory presented in [17].
In that paper, the authors demonstrate that the object trajec-
tories and the contact forces can be addressed as decoupled
control problems. It implies that we can execute any object
trajectory coming from planning phase while contact forces
are steered so as to avoid violation of contact constraints,
allowing to regulate a desired force during motion.

Inspired by the combination of the state of the art robots,
such as the one in Fig. 1 which have a compliant rather than
a rigid structure, and from the fact that force and position
subspaces can be geometrically decoupled. In this paper
we propose a new approach to generate motions for closed
kinematic chains by transforming the lower dimensional
submanifold into a narrow but fully dimensional volume so
that the probability of sampling a point randomly on it is not
null.

Due to computational considerations, in Jacobian projec-
tion based methods, a threshold to decide whether a new
configuration is already in the manifold is defined by the user.
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Fig. 2. Differences of motion planning problem without constraints (a)
and with constraints (b). Initial position qinit in blue, final position qfinal in
red and Planned path in green. Constraint C(q) = 0 in baby blue.

This threshold can be considered also as a relaxation which
in this paper is formally addressed as interaction forces.

II. ORGANIZATION

Section III formally defines the motion planning problem
under task constraints and presents the main contribution of
this work. In section IV the algorithm called soft-RRT* is
presented, it describes the strategy implemented to find paths
in the relaxed constraint. Section V addresses the problem
of the practical implementations of the soft-RRT* algorithm
and introduces a solution. After an example presented in
section VI, section VII exposes the conclusions and future
developments of this work.

III. PROBLEM DEFINITION

In this Section we formally introduce the motion planning
problem for systems subject to constraints.

A. Motion Planning Problem of Systems Under Constraints

Consider a configuration spaceM∈ Rd that is a compact
set of configurations q. Let O ∈ M be the obstacle region
and Mfree :=M\O the configuration set free of obstacles.
Introducing a kinematic constraint C(q) = 0 that limits the
robot configurations and hence motion, see Fig. 2(b), we
define a nonlinear submanifold in M as Mv := {q : q ∈
Mfree, C(q) = 0} to describe all configuration where none of
the links of the mechanism collide neither with objects in the
environment not with other links and satisfy the constraint.
The motion planning problem is to find a continuous path
σ : [0, 1]→Mv with {σ(0) = qinit, σ(1) = qfinal}.

As mentioned, the main challenge in applying sampling
based motion planning algorithms to closed kinematic chains
is that the probability of getting a random point laying on
the submanifold Mv is zero.

B. Relaxing Constraints

In this paper we consider systems with compliance, it is
introduced in the planning phase as a parameter to relax the
constraint and to obtain C(q) ≤ ε. In the case in which the
constraint is violated a proportional force fh arises between
the two parts in contact. With the inclusion of the parameter
ε the submanifold describing the relaxed constraint can be
considered as a space with the same dimension of CS .
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Fig. 3. Motion planning problem under relaxed constraints. Initial position
qinit in blue. Final position qfinal in red. Planned path in green. Constraint
C(q) in baby blue.

Thanks to this we can use rejection techniques to randomly
sample the CS valid, now defined as Mr := {q : q ∈
Mfree, C(q) ≤ ε}, and thus speed up the planning process.
Now the planning problem is to find a continuous path
σ : [0, 1] → Mr, with, {σ(0) = qinit, σ(1) = qfinal}. This
relaxed problem is graphically described in Fig. 3.

IV. RANDOMIZED PLANNING ALGORITHM

The random based-sampling algorithm used in this paper
is the soft-RRT* reported in the algorithm 1. The difference
with the original RRT* algorithm is that instead of just
checking for collision we also check if the new configuration
is inside the relaxed constraint.

Algorithm 1 T = (V,E)← soft-RRT*(xinit)

1: T ← InitTree();
2: for i = 1 to N do
3: xrand ← Sample(i);
4: xnearest ← Nearest(V ,xrand)
5: xnew ← Steer(xnearest, xrand)
6: if Constraints(xnearest, xnew) then
7: Xnear ← Near(T , xnew)
8: xmin ←BestParent(Xnear, xnew)
9: T ← T ∪ (xnew,xmin)

10: T ← Rewire(T , Xnear, xnew)
11: end if
12: end for
13: return G = (V,E).

The main functions use in the Algorithm 1 are
• in function Sample, a configuration xrand is generated

using the algorithm presented in section IV-A, which
converges to a uniform distribution of random points
within the boundary layer.

• function Nearest returns the (previously sampled) con-
figuration xnearest closest to xrand.

• function Steer connects two configurations if possible
otherwise a configuration xnew is obtained as in RRT*.
In this work we are using simple interpolation in joint
space as a local steering procedure.

• Near function returns a set Xnear containing points
which are inside a ball centered on xnear. For details

(a) (b)

Fig. 4. Graphical explanation of the difference of using a) uniform
distribution to sample M and b) applying the algorithm presented in [18]
to bias new samples to Mv.

on the parameterization of the ball the reader can refer
to [4].

• The main difference with the original RRT* algorithm
is in the Constraints function. In our case this func-
tion includes not only collision checking but also the
validation of the configuration xnew to be in the bound-
ary layer. In this function the constrained optimization
problem described in the subsection IV-B is solved

• BestParent function select the best configuration xmin ∈
Xnear to connect with xnew.

• Function Rewire rearrange the tree if one of the config-
urations on Xnear could be better connected to the tree
passing through xnew.

The cost function to optimize in the soft-RRT* is described
by the euclidean distance in the CS .

A. Biased Random Sampling

The first step in randomized path planners is performed
in the function Sample and it consists on generating a new
sample in M. Typically, random configurations are taken
using a uniform distribution to explore equally all regions
in CS . Doing the same in our problem, the probability of
getting a new point in Mr can be computed as

ρ = volume(Mr)/volume(M), (1)

where the volume of M is defined by the mechanism,
more precisely by the range of motion of all joints. On the
other hand, the volume Mr is proportional to the relaxing
parameter ε. As a consequence, the probability of getting a
new point goes to 0 as ε approaches 0, in other words it
means that bigger is ε, higher the probability of getting a
new configuration in Mr.

In practice, the parameter ε is associated with internal
forces fh = Kε where K can be interpreted as a suitable
stiffness matrix resulted from contact and joint stiffness.
Hence, the parameter ε depends on the compliance in the
system and is limited by the user defined bounds for the
forces fh.

It is evident that if ε is small most of the new samples will
be rejected in the Constraints function because they are not
in the relaxed constraint. To minimize the impact of this fact,



in the soft-RRT* we used the algorithm presented in [18]
which builds an adaptive kd-tree to bias the random sampling
procedure to converge to a uniform distribution not in M
but in Mr. This algorithm works building a data structure
to collect information about whether previously generated
samples were or not in the valid space, then this information
is used generate futures samples with higher probability of
being in the valid space. This idea is graphically presented
in the Fig. 4.

B. The Equilibrium Manifold

Since we are doing planning for robots interacting with a
grasped object, we need to guarantee that those interactions
are safe for both, the robot and the object. During interactions
it is necessary to ensure that the contact forces remain
between the minimum and maximum values allowed, and
within the friction cone. As discussed in [17], the fine contact
force management can be assured at control time, without
affecting the performance of the object motion. This property
of the system is exploited here to speed up the planning
algorithm for closed kinematic chains. Here, in fact, the
contact force values are admitted to vary in a certain range,
as we are going to explain, also without the necessity of
considering contact limits leaving this task to the controller.

For later use, let us define ph ∈ Rc as the vector describing
the mutual configuration of the contact points on the robots
and on the object to be manipulated. Considering the closed
loop constraint, for planning purpose we should randomly
choose joint configurations q such that ph = 0. Conversely,
relaxing the closed loop constraint, it is possible to admit
vector values such that ph < ε. Considering virtual springs
at the contacts, whose characteristics are described by the
contact stiffness matrix Kc ∈ Rc×c, the contact forces
between the robot and the object can be described as fh =
Kcph ∈ Rc. It is worth stressing the fact that admissible
values for the planner fh < Kcε can violate contact limits.
As a consequence, also negative forces (within a certain limit
defined by the vector ε) can be considered acceptable for
the planner, as well as tangential forces out of friction cone
limits.

The equilibrium of the robot/object system can be assured
if the following relationships are satisfied

w +Gfh = 0, (2)
τ − JT (q, u)fh = 0, (3)

fh −Kcph = 0, (4)
τ −Kq(qr − q) = 0, (5)

where w ∈ R6 is a possible external wrench acting on the
object, G ∈ R6×c is the grasp matrix of the system. The
vector u ∈ R6 parametrize the configuration and the vector
τ ∈ Rd collects the joint torques. For the sake of generality,
eq. (5) was introduced to consider the possibility of having
also compliance at the joint level, where the joint stiffness
matrix Kq ∈ Rd×d and the joint reference configuration
vector qr ∈ Rd were used. The system of equations composed
by (2), (3), (4) and (5), compactly written as Φ(ϕ) = 0 ∈

(a) Undesired forces arising
from planning on the relaxed
contraint

(b) The task of the controller is
to project the undesired forces
back to the manifod

Fig. 5. Lateral view of the relaxed constraint. In green are the pushing and
pulling forces against the constraint. The black dots are the nodes extracted
from the tree generated by the soft−RRT ∗.

Rc+2d+6, where ϕ ∈ Rc+3d+12 is a vector collecting all the
system variables, describes the equilibrium manifold of the
system. From recent results in grasp analysis, extensively
discussed in [19] and in [20], it follows that it is valid to
parametrize the equilibrium manifold with the variables w
and qr (or q if there is no elasticity at the joints). In other
words, in case of no external wrench acting on the object,
w = 0, the joint reference configuration is suficient to define
the value also of q, u, τ , fh and ph. Given qr all the other
variables can be found solving the problem

min
q,u,fh,τ

ΦT (ϕ)Φ(ϕ). (6)

Once the variables u, q, τ and fh are found, they can be
used in the soft-RRT* to check for collisions and bounds of
interaction forces.

V. EXECUTION OF THE PLANNED PATH

After the planning problem is solved a proper controller
able to let the robot follow the planned path must be
determined. The main challenge comes from the fact that the
closed kinematic constraint has been relaxed, so undesired
contact forces arise from interactions, a graphical example
is shown in Fig. 5(a). The real-time controller must ensure
that the nominal constraint is satisfied during the whole
execution, see Fig. 5(b). Indeed, if only the relaxed constraint
is verified, the object handled by the robot does not fall
but can be damaged by possible high squeezing forces.
On the other hand, whenever the nominal closed kinematic
constraint is verified this can not occur.

The problem that arises when relaxing constraints is that
from the point of view of implementation, the constraint
violation can be dangerous, see Fig. 6, since undesirable
interaction forces may be indirectly induced into the system.
In this section we introduce a control law to overcome this
problem.

A. Control

In order to address the problem of regulating contact
forces and, at the same time, executing the planned path,
a force/position controller can be implemented. There are
many control approaches to do that, for example in [21] an
adaptive hybrid control scheme for multiple geometric con-
straints based on the joint-space orthogonalization method
(JSOM) is proposed, in [22] the authors propose a general



Fig. 6. In this example the Kuka robot has to move from the initial to the
final configuration maintaining the contact with the plane (red object). The
resulting path from the soft-RRT* is shown in pink and the forces during
motions in black arrows. Forces that arise form the virtual violations of the
contraint can damage either the robot mechanism or the environment in case
of rigid robots. This issue is addressed by soft robots where compliance is
included for safety.

framework for multi-contact motion/force control. In both
cases the main considerations is that contacts are performed
with rigid environments. However, new robot developments,
like Soft Robots, are designed to work in uncertain envi-
ronments and compliant task spaces. A general analysis of
manipulation systems with general kinematics and compliant
contact models is presented in [17] and complemented in
[23]. The main result of the last two contributions is a
geometric description and an algorithm to provide a basis
to describe the feasible motions that can be executed by the
system, and forces that can be controlled to avoid violation of
the contact constraints, both in a decoupled way. In practice
it means that it is possible to control all object displacements
given a fixed force reference and vice versa, where the first
is useful to correct the relaxations in the planning phase.

VI. SIMULATIONS

In this section we show simulations results of the motion
planning method presented in this paper. As an example
we consider a two finger planar hand with two degrees of
freedom in each finger, see Fig. 8.

Fig. 8. The two finger hand used for the presented example. Object position
are represented by u, the fingers configurations are q = {q1, q2, q3, q4},
the reaction torques are τ = {τ1, τ2, τ3, τ4} and contact forces are fh =
{f1, f2}.

This systems has 7 degrees of freedom in total, 2 joint

Fig. 9. Normal contact forces (blue) resulting from the relaxation of the
constraint during planning. The maximum allowed forces ε are in magenta.

positions for each robot and 3 to represent the position
of the object in the space. For planning purposes we are
just randomly sampling the joint positions, consequently
the object positions are generated solving the equilibrium
manifold equations. Algorithms have been implemented in
C++ and use ROS for visualization purposes. All tests were
performed in a 2.4Ghz quad-core computer with 3Gb of
RAM memory and Ubuntu 14.04 operative system. Fig. 7(a)
shows the starting position and Fig. 7(j) shows goal position
of the hand, the objective is to find a path connecting this
two points avoiding the static spherical obstacle in green
and maintaining the contact forces within ε. Figs. 7(b) to
7(i) show some snapshots of the planned path resulting
from the execution of algorithm 1, we can observe how
the hand avoids the obstacle. Interaction forces arising from
the planning phase, which in the case of the 2D example
presented in this section are normal to the contact constraints
and with magnitude proportional to ε, are shown in Fig. 9.
Notice that the relaxation parameter ε is never overtaken.

VII. CONCLUSIONS

In this paper we propose a motion planning method for
robots moving with task constraints. The approach consists
in the combination of constraint relaxation and random
sampling sub-optimal planner. The first one helps to speed up
the planning phase considering the closed loop imposed in
the system because of the interaction of the manipulators and
the object. The second one allows us to explore the complete
configuration space of the system and, at the same time, take
into account optimality of the planned trajectories. Combin-
ing the first two strategies we are able to fast plan motions for
multiple robot manipulators working cooperatively, however
due to the constraint relaxation interaction forces appeared
during executions of the planned path. To deal with this, as
a future work we can implement a control strategy, as the
ones presented in section V, to online regulate contact forces
while executing trajectories coming from planning phase.
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