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Abstract As described in Chapters 1, 2, 3 and 4, neuroscientific studies showed
that the control of the human hand is mainly realized in a synergistic way. Recently,
taking inspiration from this observation, with the aim of facing the complications
consequent to the high number of degrees of freedom, similar approaches have been
used for the control of robotic hands. As Chapter 11 describes SynGrasp, a useful
technical tool for grasp analysis of synergy-inspired hands, in this Chapter recently
developed analysis tools for studying robotic hands equipped with soft synergy
underactuation (see Chapter 7) are exhaustively described under a theoretical point
of view.

After a review of the quasi-static model of the system, the Fundamental Grasp
Matrix (FGM) and its canonical form (cFGM) are presented, from which it is
possible to extract relevant information as, for example, the subspaces of the
controllable internal forces, of the controllable object displacements and the grasp
compliance.

The definitions of some relevant types of manipulation tasks (e.g. the pure
squeeze, realized maintaining the object configuration fixed but changing contact
forces, or the kinematic grasp displacements, in which the grasped object can be
moved without modifying contact forces) are provided in terms of nullity or non-
nullity of the variables describing the system. The feasibility of such predefined
tasks can be verified thanks to a decomposition method, based on the search of the
row reduced echelon form (RREF) of suitable portions of the solution space.

Moreover, a geometric interpretation of the FGM and the possibility to extend
the above mentioned methods to the study of robotic hands with different types of
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underactuation are discussed.
Finally, numerical results are presented for a power grasp example, the analysis

of which is initially performed for the case of fully-actuated hand, and later
verifying, after the introduction of a synergistic underactuation, which capacities
of the system are lost, and which other are still present.

1 Introduction

The research in robotic hand design was directed for long time to increase the
dexterity and the manipulation capabilities. To follow this line, the number of
degrees of freedom, and, more in general, the complexity of the design are increased
in the years. Remarkable examples of such hands are the UTAH/MIT hand [1], the
Robonaut Hand [2], the Shadow hand [3] and the DLR hand arm system [4], just
for citing a few of them, as discussed in Chapter 7.

However, a large number of degrees of freedom, often, bring to enlarge weights
and costs of such prototypes. Moreover, the expected advantages in terms of
manipulability are often difficult to exploit in a real scenario. Recently, in order
to face the complexity of such systems, the human hand was considered as a source
of inspiration (see Chapters 1, 7 and 8) not just for the mechanical design, but also
in order to simplify the control strategies.

In recent years, many neuroscientific studies such as, for example, the ones
discussed in [5], [6], [7], [8], [9], [10], and [11] (see also Chapters 1 - 6), despite
significant differences in the definitions and in the requirements of the investigated
tasks, share a main observation: simultaneous motion of multiple digits, also called
synergies, occurs in a consistent fashion, even when the task may require a fairly
high degree of movement individuation, such as grasping a small object or typing.

As extensively discussed in the previous Chapters, one of the main result is that
a large variety of everyday human grasps is well described by just five synergies.
Moreover, the first two human synergies can describe the 80% of the variance
in human grasp postures (see also Chapter 8). This suggested the idea to move
the description base for grasping, from the joint space to the human-inspired
postural synergy space, taking advantage from the underactuation. Between the
first approach to this idea, we find [12] and [13], that try to implement a
synergistic control via software and via hardware, respectively. Despite each one
is characterized by its own peculiarities, they share the common characteristics
of rigidly controlling the joint movements, via the synergistic underactuation. As
discussed in Chapter 7, in the soft synergies approach, proposed in [14], a virtual
hand is introduced, attracting the real one via a generalized spring, allowing a certain
adaptability of the hand during grasps and manipulations tasks. The influence of
the synergistic underactuation, in terms of reducing the hand capabilities in object
motion and contact force control, is investigated in [15]. Moreover, the contact force
optimization problem was faced in [14], considering the limitations imposed by the
underactuation.
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The present Chapter, mainly based on the results presented in [16], [17] and
[18], describes and studies the quasi-static model of a synergistic underactuated
hand grasping an object. Considering the results of the above mentioned papers,
despite the fact that the analysis is performed in the neighborhood of an equilibrium
configuration, also some non local considerations can be done under a more general,
nonlinear kineto-static interpretation. More in detail, in Sec. 2 the congruence
and the equilibrium equations of the system are presented in quasi-static form. A
compliant contact model is introduced between the hand and the object, in order to
cope with the static indeterminacy of the contact force distribution problem. Finally,
a quasi-static model for the soft synergy underactuation (discussed in Chapter 7) is
provided. The treatise is general enough to consider the presence of hand/object
contacts also in the internal limbs of the hand. Moreover, the derivative terms of the
hand Jacobian and of the grasp matrix are considered, in order to properly take into
account the effects of the contact force preload.

Both the presence of internal contacts and of underactuation can greatly affect
the capabilities of the hand/object system, in terms of controllable system variations,
e.g. limiting the controllability of the forces and/or the object displacements. This
problem is faced in Sec. 3 where, after the Fundamental Grasp Matrix (FGM)
has been defined, its canonical form (cFGM) is derived, from which relevant
information on the system can be easily obtained, despite the difficulties introduced
by the presence of the synergistic underactuation in the model. In fact, as we
will discuss in Sec. 3.2, from the cFGM we can obtain information on the
controllable internal forces, on the controllable object displacements, and on the
grasp compliance, i.e. the compliance perceived at the object level. Moreover, from
the cFGM, input-output relationships between the independent variables (i.e. the
joint displacements and the external wrench variation) and the dependent variables
of the system can be easily deduced.

In order to go beyond the information provided by the cFGM, a method to
investigate the solution space of the system is presented in Sec. 4. Different
types of system behaviors are defined in terms of nullity or non-nullity of some
system variables, such as, for example, the pure squeeze, where the contact forces
are modified without affecting the object configuration, or the kinematic grasp
displacement, where, on the contrary, an object movement is allowed, without
changing the contact forces. Finally, a decomposition method, based on the row
reduced echelon form (RREF) is presented, in order to find out the feasibility of
those predefined solutions.

In Sec. 5 a geometrical interpretation of the FGM is given. With a proper
arrangement of the equations, the FGM takes the form of a first-order Taylor
series approximation of the equilibrium manifold (EM) of the whole system,
describing the kineto-static behavior both of the hand and of the object during their
interaction. As explained in [18], some properties of the EM can be exploited,
in order to steer the system, along a trajectory composed by a sequence of
equilibrium configurations, toward a final one, characterized by the desired kineto-
static properties.
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Many of the observations and methods presented can be applied, with small
modifications, also in case of different types of underactuation, and the Sec. 6 is
dedicated to discuss this topic (see also Chapter 11).

To conclude, in Sec. 7, a numerical example is presented, for a power grasp case.
The example was firstly studied as if the hand was completely actuated, discovering
its manipulation capabilities. Then, a synergistic underactuation is introduced, and
the methods presented in the Chapter are used to verify which possibilities are lost
and which others are still present.

2 System Modeling

In this Section, we will present the equations describing the quasi-static behavior
of the hand/object system, schematically represented in Fig. 1, and already
introduced in Chapters 7 and 11. For both the hand and the object, the quasi-static
equilibrium equations will be considered, obtained as a first order approximation
of the general, nonlinear, equilibrium equations. Moreover, in connection with the
previous, by means of kineto-static duality considerations, the congruence equations
will be introduced, describing the displacement of the contact points, corresponding
to the hand/object displacements. A linear elastic model for the contact is also
introduced, in order to properly describe how the contact forces change, during the
execution of a manipulation tasks. Finally, the underactuation will be introduced in
the system according to the soft synergy pattern.

For the sake of clarity, in the following we will briefly recall some of the notations
already introduced in Chapters 7 and 11, also summarized in Table 1.

2.1 Object Equations

2.2 Equilibrium Equation of the Object

The grasped object is in equilibrium if the sum of all the contact forces/torques
exerted by the hand, gathered in the contact force vector1 fc ∈Rc, and of a possible
external wrench2 w∈R]w is null, where the symbol ]x indicates the dimension of the
vector x. In the present discussion, the contact forces are considered to be expressed

1 The dimension of the contact force vector c is related to the number of contact points and to the
local characteristics of the contacts. More details about this will be provided in Sec. 2.5.
2 Strictly speaking, the vector w ∈ R]w, in the present dissertation, represents a parametrization
of an external wrench, abbreviated in the text simply as external wrench. Similarly, the object
configuration is described by a parametrization vector u ∈ R]w. As a consequence, the object
velocity u̇ in (3) is a parametrization of the object twist, and, for this reason, can be expressed as the
time derivative of some physical variables. As an example, in a 3D case, a complete parametrization
can be obtained considering a 6−DoF virtual kinematic chain describing the configuration of the
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Fig. 1: Reference scheme for the analysis of compliant grasp by synergistically
underactuated robotic hand.

in a local frame attached to the object. Before summing all the contributions, they
have to be all expressed in a same reference frame, as for example the frame {B}
in Fig. 1, attached to the object. To this aim, it is usual in literature to introduce the
grasp matrix, indicated as G ∈ R]w×c. Using the previous symbols, the equilibrium
law for the object can be written as

w+G fc = 0. (1)

It is worth observing that, despite the fact that the contact forces are described in
a local frame attached to the object, the parametrization of the external wrench
imposes that the grasp matrix becomes a function of the object configuration,
as explained in [18]. In light of this, by means of a first-order Taylor series
approximation, from (1) the quasi-static equilibrium equation for the object can be
obtained in the form

δw+Gδ fc +Ugδu = 0, (2)

where the symbol δx expresses the variation of the variable x, the vector2 u ∈ R]w

describes a parametrization of the object configuration and Ug := ∂G fc
∂u .

object frame with respect to a fixed one. In this case, the vectors u̇ and w will contain, respectively,
the joint velocities and the joint torques of the virtual kinematic chain.
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Notation Definition
δx variation of the variable x
]x dimensions of the vector x

q ∈ R]q joint configuration
qr ∈ R]q joint reference
τ ∈ R]q joint torque

σ ∈ R]σ synergy configuration
σr ∈ R]σ synergy reference
η ∈ R]σ synergy actuation (generalized) force

c number of hand/object contact constraints
fc ∈ Rc contact force/torque vector exerted by the hand on the object
po

h∈ Rc pose of the hand contact frame with respect to the object contact frame
w ∈ R]w (parametrized) external wrench acting on the object; ]w = 6 in 3D case,

]w = 3 in planar case
u ∈ R]w (parametrized) object frame configuration

J ∈ Rc×]q hand Jacobian matrix
S ∈ R]q×]σ synergy matrix
G ∈ R]w×c grasp matrix

Φ? Fundamental Grasp Matrix, the coefficient matrix of the
Fundamental Grasp Equation (14)

ϕ augmented configuration, vector collecting the kineto-static variables
of the system

Table 1: Notation for grasp analysis.

2.3 Congruence Equation of the Object

From (1), by kineto-static duality considerations, it is possible to find that the
transpose of the grasp matrix maps the object velocity2, indicated as u̇ ∈ R]w, into
the velocities of the object contact frames, grouped into the vector vo ∈ Rc, as
follows3

vo = GTu̇. (3)

The congruence equation, describing the displacements of the contact frames
as a consequence of the object frame displacement, can be obtained from (3) by
multiplying each member for an infinitesimal amount of time dt, obtaining

δCo = GT
δu. (4)

3 More precisely, the vectors vo and vh contain the terms of the contact frame twists violating the
(rigid) contact constraints between the hand and the object.
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2.4 Hand Equations

2.4.1 Congruence Equation of the Hand

Let us define the hand Jacobian matrix, J ∈ Rc×]q, as the map between the joint
velocities, clustered in the vector q̇ ∈ R]q, and the velocities of the hand contact
frames3 vh ∈ Rc, such that

vh = J q̇. (5)

The displacement of the contact frames attached to the hand can be obtained by
multiplying each member of (5) for an infinitesimal amount of time dt, obtaining

δCh = Jδq, (6)

that describes the quasi-static form of the congruence equation of the hand.

2.4.2 Equilibrium Equation of the Hand

The equilibrium law for the hand comes from (5) by kineto-static duality
considerations. As a result, indicating with the symbol τ ∈ R]q the joint torque
vector, the equilibrium law for the hand can be expressed as

τ = JT fc. (7)

The quasi-static equilibrium equation is obtained from (7), by means of a first
order Taylor series expansion. To this aim, it is important to note that, since the
fact that the contact forces are described in a local frame attached to the object, the
Jacobian matrix, introduced in (5), is a function both of the joint parameters of the
hand q, and of the object configuration parameters u, that is J = J(q,u).

From these considerations, it follows that the quasi-static equilibrium of the hand
can be expressed as

δτ = Q jδq+U jδu+ JT
δ fc, (8)

where Q j := ∂JT fc
∂q and U j := ∂JT fc

∂u .

2.5 Hand/Object Interaction Model

In the contact between the hand and the object, relative displacements of the
contact frames are forbidden in some directions. In these directions, some reaction
forces can arise. The dimension ci of the ith reaction force vector depends by the
nature of the materials involved. As an example, in the case of contact point with
friction, or hard finger contact model, the force can be transmitted in any direction,
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but no moment is allowed, that is ci = 3. Indeed, in the case of soft-finger contact
type, also a moment about the normal to the contact can be transmitted, thus ci = 4.

In most cases of interest, the total number of contact force elements c = ∑i ci
is greater than the number of the external wrench elements. For this reason, the
problem of determining the contact force distribution is statically indeterminate.

This problem is generally faced in literature by relaxing the contact constraints.
In other words, a relative displacement of the contact frames is allowed also in
the directions nominally forbidden by the (rigid) contact constraint, and this is
interpreted as the cause of the contact force variation. This behavior is modeled
introducing a (virtual) linear spring between the two bodies in contact. Defining
Kc ∈Rc×c as the contact stiffness matrix, i.e. a matrix collecting the stiffness values
of all the contact springs, the constitutive equation of the contact can be, finally,
expressed as

δ fc = Kc(δCh−δCo). (9)

2.6 Soft Synergy Underactuation Model

As explained in Sec. 1, in this Chapter we consider the problem of discovering
the capabilities of soft synergy underactuated robotic hands in grasping, as already
discussed in Chapter 7. Inspired by neuroscientific studies, the soft synergy
underactuation model, can be seen as composed by two elements: (i) a virtual hand,
which movement is governed by a synergistic correlation of the joints, and (ii) a set
of virtual springs, connecting the virtual hand to the real one.

To mathematically describe this model, in each joint we introduce a compliant
element by means of which the joint reference variables, collected in the vector
qr ∈ R]q, transmit the motion to the real ones. Afterwards, the synergistic behavior
of the hand is obtained imposing a correlation between the joint reference variables.

2.6.1 Elastic Joint Model

The equilibrium condition for the elastic joints requires that joint torques and the
spring deflections, that is the mismatch between the reference joint variables and
the real ones, are related by the joint stiffness. Considering this, by the introduction
of the joint stiffness matrix Kq ∈ R]q×]q, collecting all the joint stiffness values,
it directly follows that the quasi-static equilibrium law for the elastic joints is
described by the following

δτ = Kq(δqr−δq). (10)
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2.6.2 Introducing Synergies

The synergistic underactuation is imposed to the system by means of the synergy
matrix S ∈R]q×]σ . In analogy to what seen in (6), the joint reference displacements
can be expressed as

δqr = Sδσ , (11)

where σ ∈ R]σ is the synergistic actuation vector.
Again, by virtue of the kineto-static duality, indicating with η ∈ R]σ the

generalized actuation forces at the synergy level, with considerations similar to those
that have led to (8), the quasi-static equilibrium for the synergistic underactuation
level can be written as

δη = ST
δτ +Σδσ , (12)

where Σ := ∂STτ

∂σ
.

As already seen for the joints, an elastic model can also be introduced for the
synergistic actuation by means of a synergy reference variable σr ∈ R]σ , and the
synergy stiffness matrix Kσ ∈ R]σ×]σ . Thus, similarly to what seen in (10), the
elastic actuation model for the synergy actuation can be described as

δη = Kσ (δσr−δσ). (13)

2.7 The Fundamental Grasp Equation

Grouping together the equations for the object, the hand and the synergistic
underactuation, that is considering the eq.s (2), (4), (6), (8), (9), (10), (11), (12),
(13), denoting with I an identity matrix of proper dimensions, we obtain the system


G 0 0 Ug 0 0 I 0
−JT I 0 −U j −Q j 0 0 0

I 0 0 KcGT −KcJ 0 0 0
0 I 0 0 Kq −KqS 0 0
0 −ST I 0 0 −Σ 0 0
0 0 I 0 0 Kσ 0 −Kσ





δ fc
δτ

δη

δu
δq
δσ

δw
δσr


= 0, (14)

where the contribution of (4) and (6) was considered in (9), as well as (11) was
considered in (10).

Eq. (14), also called Fundamental Grasp Equation (FGE), is a linear and
homogeneous system, that can be written in compact form as Φ?δϕ = 0.
The coefficient matrix of the system, Φ? ∈ RrΦ×cΦ is the Fundamental Grasp
Matrix (FGM), which matrix elements are evaluated in the reference equilibrium



10 E. Farnioli, M. Gabiccini, A. Bicchi

configuration of the system, and the variable vector δϕ ∈ RcΦ is the augmented
configuration, collecting the variation of the system variables.

By direct inspection of (14), it is easy to verify that for the number of rows and
columns of the FGM, that is for rΦ and cΦ respectively, it holds that

rΦ = ] fc +2]q+2]σ + ]w,
cΦ = ] fc +2]q+3]σ +2]w. (15)

In most cases of practical relevance the FGM is full row rank4, that is rank(Φ?)=
rΦ , and we will assume it in the rest of the dissertation. In these cases, eq. (14)
can be univocally solved when it is known a number of independent variables, or
inputs for the system, equal to cΦ − rΦ = ]w+ ]σ . In continuity with the grasp
analysis literature, we consider to known, or to have a measure of, the external
wrench variation δw. Moreover, the synergy references are supposed to be position-
controlled, thus we consider to know5 the variable δσr. The independent variables
will be jointly indicates in next sections as δϕi ∈RcΦ−rΦ . We will refer to the set of
all the other variables as the dependent variables, or output of the system, and they
will be indicated as δϕd ∈ RrΦ .

3 Controllable System Configuration Variations

3.1 The Canonical Form of the Fundamental Grasp Equation

Considering previous definitions, eq. (14) can be also written as

Φ
?
δϕ =

[
Φ?

d Φ?
i
][ δϕd

δϕi

]
= 0. (16)

Assuming the invertibility4 of the matrix Φ?
d , the so called canonical form of

the Fundamental Grasp Equation (cFGE) can be obtained left-multiplying (16) for
Φ?−1

d , thus obtaining [
I Φi

][ δϕd
δϕi

]
= 0, (17)

where Φi = Φ?−1

d Φ?
i . It is worth observing in passing that, since the matrix Φ?−1

d
is full rank, eq.s (16) and (17) have the same solution space. In other words, all the
vectors δϕ satisfying (16) are also a solution of (17).

4 Exceptions are analytically possible but they refer to pathological situations of poor practical
interest.
5 Other choices are possible, as for example considering to know the object displacement δu,
instead of the external wrench δw, or the actuation force variation δη , instead of the synergistic
displacement variable δσr . Many results of our analysis can be easily adapted to the above
mentioned situations as well.
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The coefficient matrix of (17), characterized by the presence of an identity block
corresponding to the dependent variables, is the canonical form of the fundamental
grasp matrix (cFGM). From (17), it is easy to find that, once the variation of the
independent variables is known, the value of the dependent variable variation can
be directly computed as

δϕd =−Φiδϕi, (18)

which represents, in compact form, the raltionship between the input and the output
variables of the system.

3.2 Relevant Properties of the Canonical Form of the
Fundamental Grasp Matrix

The cFGM can be further investigated, in order to find out some relevant
information on the characteristics of the physical system. To this aim, let us consider
again (17). More in detail, this can be written also as


I 0 0 0 0 0 Wf R f
0 I 0 0 0 0 Wτ Rτ

0 0 I 0 0 0 Wη Rη

0 0 0 I 0 0 Wu Ru
0 0 0 0 I 0 Wq Rq
0 0 0 0 0 I Wσ Rσ





δ fc
δτ

δη

δu
δq
δσ

δw
δσr


= 0. (19)

3.2.1 Controllable Internal Forces

From (19), we can extract the expression for the contact force variation, that is

δ fc +Wf δw+R f δσr = 0. (20)

In continuity with the literature, we define as internal the solutions of (19),
or equivalently of (14), not involving the external wrench variation. From this
definition, it immediately follows that the matrix R f spans the subspace of the
controllable internal forces, that is the subset of all the contact force variations that
can be generated controlling the synergistic movement of the hand.

3.2.2 Contact Force Transmission Caused by an External Wrench

Again from (20), considering the hand actuation kept constant, the matrix Wf
represents a map between the external wrench and the contact force variation.
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In other words, −Wf represents the contact force transmission caused by an
external wrench variation.

Both controllable internal forces and contact force transmission have great
relevance in some grasping problems, as e.g. in the force closure evaluation and
in the contact force optimization problem.

3.2.3 Controllable Internal Object Displacements

In case of whole-hand grasp and/or of underactuated hands, it could be not easy
to find out which motions can be imposed to the grasped object by the hand. The
problem can be solved considering the fourth equation of (19), that provides a
description of the object displacements as

δu+Wu δw+Ruδσr = 0. (21)

Similarly to what discussed in Sec. 3.2.1, from (21) we can easily conclude that
the matrix Ru spans the subspace of the controllable internal object displacements.

3.2.4 Grasp Compliance

Again from (21), we can find that the matrix −Wu represents the grasp
compliance. In other words, the matrix Cg =−Wu is the compliance that a 6D
spring should have in order to imitate the effects of the hand actuation on the object
displacements, when an external wrench is applied.

3.3 GEROME-B: a Specialized Gauss Elimination Method for
Block Partitioned Matrices

In Sec. 3.1, a numerical method to compute the cFGM was presented.
Furthermore, the physical interpretation of some blocks composing the cFGM was
discussed, providing relevant information on the hand/object system. However,
since the relevance of these blocks, it may be helpful to have a symbolic form of the
matrices Wj and R j in (19), in order to better understand how some basic matrices
of the system (such as the Jacobian matrix J, the grasp matrix G, the synergy matrix
S, etc...) can affect the properties of the whole system (e.g. the controllable internal
forces or the controllable displacement of the object). Moreover, the knowledge of
such symbolic relationships can be profitably used e.g. in designing robotic hands
or underactuation mechanism. An example can be found in Chapter 7, regarding the
design of the underactuation of the Pisa/IIT SoftHand.

To achieve this goal, the typical Gauss Elementary Row Operation Method
(GEROME) for linear and homogeneous systems was adapted to act on block
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partitioned matrices (GEROME-B), preserving the integrity of the initial blocks (see
also Chapter 7).

The GEROME-B method can be applied by means of the following three
elementary operations:

• exchanging the ith row-block with the jth row-block
• multiplying the ith row-block by a full-rank matrix ∆ ,
• adding the ith row-block with the jth row-block, possibly left-multiplied for a

suitable matrix Λ to accord dimensions.

Each rule can be performed by left-multiplying the FGM for a suitable full-
column rank matrix, thus without affecting the solution space of the initial system.

Let us consider a proper identity matrix Ip, initially partitioned such that the ith

block on the main diagonal, indicated as Ipi , has the same dimensions of the ith row-
block of the FGM. From this, the three matrices, equivalent to the three elementary
operations previously seen, can be written as

M1
i j = diag(Ip1 , . . . , Ipi−1 , Ip j , Ipi+1 , . . . , Ip j−1 , Ipi , Ip j+1 , . . . , Ipm),

M2
ii(∆) = diag(Ip1 , . . . , Ipi−1 ,∆ , Ipi+1 , . . . Ipm),

M3
i j(Λ) = Ip⊕Λi j,

(22)

where the expression Ip⊕Λi j indicates the insertion of a suitable matrix Λ on the
block on the ith row and jth column of the default partitioned identity matrix Ip, and
where m is the number of row-blocks of the identity matrix Ip.

Moreover, similarly to the classical elimination method, to apply GEROME-B it
is necessary to define and identify some pivot elements.

Definition 1. A block of the FGM can be a pivot if

• it is a full-rank square block,
• it is the only pivot in its row and column,
• it is not a coefficient of one of the input variables.

Without losing generality, describing the algorithm, we suppose to act on a
matrix Φ̂?, such that all the pivots are on the main diagonal. The matrix Φ̂? can
be obtained from the initial Φ? by properly exchanging some rows and columns
and/or using matrices of the type (22). Once the algorithm is completed, if desired,
the permutation can be inverted, restoring the initial order. In our case, the desired
new form of the FGM can be written as

Φ̂
? =


I 0 0 KcGT −KcJ 0 0 0
−JT I 0 −U j −Q j 0 0 0

0 −ST I 0 0 −Σ 0 0
0 0 0 Ug−GKcGT GKcJ 0 I 0
0 I 0 0 Kq −KqS 0 0
0 0 I 0 0 Kσ 0 −Kσ

 . (23)

The three matrices seen in (22) can be used to describe the GEROME-B
algorithm, able to bring to the cFGM acting on the new form of the coefficient
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matrix (23). The GEROME-B algorithm essentially operates through the following
steps: (i) the ith block row is left-multiplied for the inverse of the ith pivot, thus the
ith pivot becomes an identity matrix; (ii) the ith pivot is used to cancel out all the
elements on its same column; (iii) the process is iterated for all the pivots. A formal
description of these steps is presented in Algorithm 1.

Algorithm 1 GEROME-B
for h = 1→ m do

∆ = Φ̂?−1

hh
Φ̂? = M2

hh(∆)Φ̂?

for k = 1→ m do
if h 6= k then

Λ =−Φ̂?
kh

Φ̂? = M3
kh(Λ)Φ̂?

end if
end for

end for

4 Solution Space Decomposition

Among all the possible solutions of the system, several are of greater practical
interest. As a simple example, let us consider an object placement task. During the
motion of the object, uncertainties of the model, as well as external disturbances,
could bring one or more contacts close to the slipping condition. In order to increase
the robustness of the grasp without affecting the performances of the positioning
task, it is important to recognize the capability of the hand of redistributing internal
forces, avoiding object movements. From this and other simple examples, it follows
that some interesting behavior of the system can be described by defining proper
(non-)nullity patterns of the system variables. In this way, in this Section, some
particular types of solutions will be defined, together with a method to discover
their feasibility, by means of a numerical procedure acting on the solution space of
the system, that is on the nullspace of the FGM.

4.1 Relevant Types of System Solutions

4.1.1 Internal System Perturbations

As discussed in Sec. 3.2.1, following the grasping literature, we will call internal
the solutions in which an external wrench variation does not appear, that is in the
cases in which δw = 0.
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4.1.2 Pure Squeeze

We define the pure squeeze as the particular system behavior in which there is a
contact force variation not caused by an external wrench, and do not involving any
object displacements. In other words, a pure squeeze occurs if δw = 0,δ fc 6= 0 and
δu = 0.

4.1.3 Spurious Squeeze

An internal contact force redistribution associated to a displacement of the object
is defined as spurious squeeze. The definition correspond to a solution of the form
δw = 0,δ fc 6= 0 and δu 6= 0.

4.1.4 Kinematic Grasp Displacement

The internal solutions in which the object is moved without changing the
contact force distribution, that is do not violating the (rigid) kinematic contact
constraints, are called kinematic grasp displacement. Such solutions have to verify
the conditions δw = 0,δ fc = 0 and δu 6= 0.

It is worth observing that, considering the elastic model of the contact as
descriptive of the deformations of the grasped object, requiring a null variation of
contact forces implies a null variation of the object shape. In this interpretation the
definition of rigid object displacement can be recovered.

4.1.5 External Structural Force

An external action causing a contact force variation without affecting the hand
actuation level is defined as external structural force. If such kind of solution is
possible, it is characterized by δw 6= 0,δ fc 6= 0 and δη = 0,δσr = 0. Considering
eq. (13), above conditions directly imply also that δσ = 0.

4.2 Discovering (Non-)Nullity Patterns in the Solution Space

In previous Sections we showed how some relevant types of manipulation tasks
can be defined in terms of nullity or non-nullity of some system variables. The
feasibility of such solutions can be investigate by properly elaborating the solution
space of the FGM. In this Section, we briefly present a method to discover if the
hand/object system is able to perform a task corresponding to a solution of (14),
in the desired form. To this aim, we firstly recall some results from linear algebra,
the details of which can be found in [19]. For the following discussion, it is useful
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to recall that from every matrix C ∈ Rrc×cc , with ρc = rank(C), its corresponding
reduced row echelon form (RREF) can be obtained via a Gauss-Jordan elimination.
The same result can be equivalently obtained by a suitable permutation matrix
Π ∈ Rrc×rc , such that

ΠC =

[
U
0

]
, (24)

where U ∈ Rρc×cc is a staircase matrix, and the zero block has consequent
dimensions. The RREF of a matrix, in (24), can be profitably used to discover the
presence of desired (non-)nullity pattern in the nullspace base Γ ∈Rrγ×cγ , that is in
the solution space of (14). In later discussion, we will make the assumption to have
access to a function rref(X) able to return the reduced row echelon form of its
argument6 X .

For the sake of simplicity, we consider the system variables divided in two
groups, called δϕα and δϕβ , and we will present the investigation method
supposing that we are interested to find the solutions characterized by δϕβ = 0.
In this case, all the solutions of the system can be written as

δϕ =

[
δϕα

δϕβ

]
=

[
Γα

Γβ

]
x, (25)

where Γα ∈ Rrα×cγ and Γβ ∈ Rrβ×cγ , the portions of the nullspace relative to the
variables just defined.

Considering (25), a suitable permutation matrix can be obtained running the

function rref([Γ T
β
| I]), which result is a matrix in the form

[
Uβ

0
Πβ

]
, where

Uβ ∈Rρβ×rβ , and ρβ = rank(Γβ ). From the properties of the RREF, it is known that
the block Πβ ∈Rcγ×cγ is the permutation matrix such that Πβ Γ T

β
=Uβ . Using these

results, it is possible to find a new form 1Γ ∈ Rrγ×cγ for the solution space matrix
such that

1
Γ = Γ Π

T
β
=

[ 1Γα

U T
β

0

]
, (26)

where 1Γα =Γα Π T
β

. From direct inspection of (26), it is evident that the last cγ−ρβ

columns of Γ1 span all the solutions in which δϕβ = 0, while the first ρβ columns
of Γ1 span all the solutions in which δϕβ 6= 0. The method explained can be
easily extended, by a recursive application, to the case of searching (non-)nullity
conditions for more than one variable. The reader can find more details about the
above method in [20] and in [17].

6 This is a typical situation with the most popular computational platforms, e.g.: rref(X) in
MATLAB and RowReduce(X) in Mathematica.



Quasi-Static Analysis of Synergistically Underactuated Robotic Hands 17

5 Geometrical Interpretation of the Fundamental Grasp
Equation

In Sec. 2, a model describing the local behavior of a grasp with a synergistic
underactuated robotic hand was obtained, starting from both the differential
kinematic and the equilibrium equations of the system. The quasi-static form of
such equations was obtained considering the effects of the differential kinematic
equations for an infinitesimal amount of time, and by means of a first-order
Taylor series approximation of the equilibrium equations. Moreover, the constitutive
equations of the contacts, as well as the compliance in the actuation (at different
levels), were introduced via linear elastic models. All these equations were used to
build the Fundamental Grasp Equation.

As we saw in (14), it is straightforward considering the contribution of the
congruence equations into the other relationships. As a result, eq. (14) can be seen as
the first-order approximations of a suitable system of nonlinear equation. Without
going into the details, we just mention that such system of equations, the Taylor
series approximation of which correspond to eq. (14), can be written as

w+G(u) fc = 0
τ− JT(q,u) fc = 0
fc−Kc po

h = 0
τ−Kq(ψ(σ)−q) = 0
η−ST(σ)τ = 0
η−Kσ (σr−σ) = 0,

(27)

where po
h ∈ Rc is a vector describing the configuration of the hand contact frames

with respect to object ones, and where we introduce the function ψ(σ) := qr,
such that ∂ψ(σ)

∂σ
= S(σ). We will refer to eq. (27) as the equilibrium manifold7

of the system. We note in passing that the FGE is the equation of the hyperplane
tangent to the equilibrium manifold in a specific point, representing an equilibrium
configuration of the system.

It is worth observing that, given the invertibility of the matrix Φ?
d in (16), the

variables δq and δw can be considered a local parametrization of the equilibrium
manifold in the neighborhood of a given equilibrium configuration of the system. As
discussed more in detail in [18], this property can be exploited in order to steer the
system toward a new equilibrium configuration characterized by different kineto-
static properties, with respect to the initial one. Moreover, as explained in [21],
the equilibrium manifold of the system can be used as the exploration space for
planning algorithm for closed kinematic chains as e.g. in bimanual manipulation
tasks, taking advantage of the compliance in the contacts for relaxing the geometric
constraints imposed by the presence of the closed loop. In this case, the above

7 More precisely, the equations related to the elasticity do not describe an equilibrium law, and, for
this reason, we should, more properly, talk about a manifold describing the kineto-static behavior
of the whole system. For the sake of compactness, this definition will be left implicit in the rest of
the discussion.
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discussed equilibrium manifold can be used for random sampling based technique
in order to generate any-time paths for closed-loop robot manipulators.

6 Other Types of (Under-)Actuation

Despite the fact that the soft synergy (Chapter 7) is currently one of the most
attractive and interesting underactuation approach, it is worth considering the
possibility to apply the analytical tools presented in this Chapter also in other
cases. In literature, other underactuation approaches deserve attention, as e.g. the
eigengrasp, presented in [12], the parallel structure based [22], or the recent
adaptive synergies approach, described in [23] and in Chapter 7. Some parts of
the previous discussions were strictly dedicated to the soft synergy underactuation,
especially in Sec. 2. However, the methods presented in Sec. 3 and in Sec. 4 can be
easily recovered for other types of underactuation (as also discussed for the methods
in Chapter 11). After the kinematic and static equations were obtained in quasi-
static form for the particular underactuation mechanism in exam, the Fundamental
Grasp Matrix directly follows. From this, a proper definition of the dependent and
the independent variables bring to obtain the FGM in canonical form. Moreover,
the GEROME-B algorithm can still be applied, obtaining the symbolic form of
the block matrix composing the cFGM. These results can be used to study how
the underactuation affects the main system characteristics. Many definitions of
manipulation tasks by (non-)nullity patterns can be recovered, regardless of the
particular type of underactuation. One remarkable exception is the subspace of the
external structural forces. However, the definition provided in Sec. 4.1.5 can be
generalized considering the conditions δw 6= 0,δ fc 6= 0, and δτ? = 0,δq? = 0,
where δq? and δτ? are the generalized displacement and force variables at the
underactuation level.

In Chapter 7, more space is dedicated to the application of some of the discussed
methods to the case of the adaptive synergies undearctuation model.

7 Numerical Results

7.1 Power Grasp

As a test case, we consider a spider-like hand, composed by two fingers and 8
joints, grasping a square of side 2L. Fig. 2 shows the initial configuration of the
system and the contact force preload. All the initial force components have unitary
value along the directions depicted.
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Fig. 2: Compliant grasp of a square object by a two fingered spider-like hand.

7.1.1 Perturbed Configuration for Fully Actuated Hand

The solution space of the system has dimension equal to ]w + ]q = 11.
Elaborating the nullspace of the FGM, it is possible to find out that the pure squeeze
subspace has dimension 5, the kinematic grasp subspace has dimension 3 and
together they complete the internal solution subspace.

For the kinematic grasp displacements, simulation results show that it is possible
to have a finite displacement of the object δux= 0.001, as in Fig. 3a, with no torque
variations, but with the following joint angle displacements

δq = 10−3
[
−1 1 0 0 −1 1 0 0

]T
. (28)

For δuy =−0.001, represented in Fig. 3b, the corresponding joint torques and joint
angle variations are

δτ = 10−3
[
−2 −2 0 0 2 2 0 0

]T
,

δq = 10−3
[
0 1 −1 0 0 −1 1 0

]T
.

(29)

To obtain an object rotation δuα = 0.001, without changing the contact forces, Fig.
3c, the necessary variations in the joint torques and joint angles are

δτ = 10−3
[
3 3 0 0 3 3 0 0

]T
,

δq = 10−3
[
−1.511.50−1.511.50

]T
.

(30)

A basis for the pure squeeze is sketched in Fig. 3d, where the couple of forces si and
−si corresponds to the ith components of the basis. The numerical results for δτ and
δq are omitted here for brevity.
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δux δuy

δuα

s1 −s1
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−s2

s3

−s3

s4

−s4

s5

−s5

Fig. 3: Plates (a-c) represent the kinematic displacements of the grasped object, and
plate (d) represents a basis for the pure squeeze.

7.1.2 A Synergy in the Power Grasp

Introducing in the system an underactuation characterized by a synergy matrix in
the form

S =
[−0.6500 0 −0.3200 −0.4000

0.6500 0 0.3200 0.4000]T , (31)

in the solution space it remains a pure squeeze subspace of dimension 1.
In the absence of external disturbances, with an unitary synergistic actuation,

δσr = 1, the contact forces and the object displacements become

δ fc =
[0.5043 0.5043 0.5043 −0.5043
−0.5043 0.5043 −0.5043 −0.5043]T, (32)

δu =
[
0 0 0

]T
, (33)

indicating that we are squeezing the object along both diagonals. It is worth noting
that the above synergy was constructed by considering the contribution of two
particular pure squeeze solutions, represented in Fig. 3d, for the fully-actuated
system.
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8 Conclusions

In this Chapter, the basic concepts and methods for the quasi-static analysis of
synergistically underactuated robotic hands were described. Moreover, compliance
was integrated in the system at various levels, i.e. in the contacts between the hand
and the object, and in the actuation mechanism, as discussed in Chapter 7. The
derivative terms of the hand Jacobian and of the grasp matrix were also considered
in the model, in order to properly take into account the effects of the contact
force preload. Afterwards, the Fundamental Grasp Matrix (FGM) was defined,
and a method for finding its canonical form (cFGM) was presented, both via a
numerical and a symbolic approach. From the cFGM, relevant information on the
system behavior can be easily extracted, as e.g. the controllable internal forces, the
controllable object displacements and the grasp compliance.

Moreover, a method to investigate the solution space of the FGM was presented,
able to point out the feasibility of relevant manipulation tasks, defined in terms of
nullity or non-nullity of some system variables.

Despite the fact that the methods proposed provide information about local
characteristics of the system around the initial equilibrium configuration, some
results have also non-local relevance. In fact, it is possible to provide a geometrical
interpretation of the FGE, for which this represents the tangential plane to the
equilibrium manifold of the whole system. Exploiting the properties of the FGM,
a local parametrization of the system can be found, which can be profitably used to
steer the system over a continuum set of equilibrium configurations, until the desired
kineto-static characteristics were fulfilled.

The generality of the proposed methods, as well as the technical tools described
in Chapter 11, can be applied also in case of different types of underactuation, with
small modifications.

Finally, in order to assess the validity of the proposed methods, an example of a
power grasp has been presented showing the generality of the methods, capable of
treating both the cases of fully actuated and synergistically controlled hands.

Acknowledgments

This work was supported by the European Commission under the CP-IP grant
no. 248587 “THE Hand Embodied”, within the FP7-2007-2013 program, by the
grant no. 600918 “PaCMan” - Probabilistic and Compositional Representations of
Objects for Robotic Manipulation - within the FP7-ICT-2011-9 program, the grant
no. 611832 “Walk-Man” within the FP7-ICT-2013-10 program, and the grant no.
645599 “SOMA: Soft-bodied Intelligence for Manipulation”, funded under H2020-
EU-2115.



22 E. Farnioli, M. Gabiccini, A. Bicchi

References

[1] S. Jacobsen, J. Wood, D. Knutt, and K. Biggers, “The Utah/MIT dextrous
hand: work in progress,” The International Journal of Robotics Research,
vol. 3, no. 4, pp. 21–50, 1984.

[2] C. Lovchik and M. Diftler, “The robonaut hand: a dexterous robot hand
for space,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on, vol. 2, pp. 907–912 vol.2, 1999.

[3] Shadow Robot Company Ltd., “Shadow hand.” Retrieved from Shadowhand:
http://shadowhand.com, 2009.

[4] M. Grebenstein, M. Chalon, W. Friedl, S. Haddadin, T. Wimbck, G. Hirzinger,
and R. Siegwart, “The hand of the dlr hand arm system: Designed for
interaction,” International Journal of Robotic Reasearch, vol. 31, no. 13,
pp. 1531–1555, 2012.

[5] J. Fish and J. F. Soechting, “Synergistic finger movements in a skilled motor
task,” Experimental Brain Research, vol. 91, no. 2, pp. 327 – 334, 1992.

[6] D. E. Angelaki and J. F. Soechting, “Non-uniform temporal scaling of hand
and finger kinematics during typing,” Experimental Brain Research, vol. 92,
no. 2, pp. 319 – 329, 1993.

[7] J. F. Soechting and M. Flanders, “Flexibility and repeatability of finger
movements during typing: Analysis of multiple degrees of freedoms,” Journal
of Computational Neuroscience, vol. 4, no. 1, pp. 29–46, 1997.

[8] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies for tool
use,” The Journal of Neuroscience, vol. 18, pp. 10105–10115, December 1998.

[9] M. L. Latash, V. Krishnamoorthy, J. P. Scholz, and V. M. Zatsiorsky, “Postural
Synergies and their Development,” Neural plasticity, vol. 12, pp. 119–30;
discussion 263–72, Jan. 2005.

[10] P. H. Thakur, A. J. Bastian, and S. S. Hsiao, “Multidigit Movement Synergies
of the Human Hand in an Unconstrained Haptic Exploration Task,” Journal of
Neuroscience, vol. 28, pp. 1271–1281, Feb. 2008.

[11] C. Castellini and P. van der Smagt, “Evidence of muscle synergies during
human grasping,” Biological Cybernetics, vol. 107, pp. 233–245, April 2013.

[12] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dexterous grasping via eigengrasps:
A low-dimensional approach to a high-complexity problem,” in Proceedings
of the Robotics: Science & Systems 2007 Workshop-Sensing and Adapting to
the Real World, Electronically published, 2007.

[13] C. Y. Brown and H. H. Asada, “Inter-Finger Coordination and Postural
Synergies in Robot Hands via Mechanical Implementation of Principal
Components Analysis,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and System, pp. 2877–2882, 2007.

[14] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the role of
hand synergies in the optimal choice of grasping forces,” Autonomous Robots
[special issue on RSS2010], vol. 31, no. 2 - 3, pp. 235 – 252, 2011.



Quasi-Static Analysis of Synergistically Underactuated Robotic Hands 23

[15] D. Prattichizzo, M. Malvezzi, and A. Bicchi, “On motion and force
controllability of grasping hands with postural synergies,” in Robotics: Science
and Systems VI, (Zaragoza, Spain), pp. 49–56, The MIT Press, June 2011.

[16] M. Gabiccini, E. Farnioli, and A. Bicchi, “Grasp and manipulation analysis
for synergistic underactuated hands under general loading conditions,” in
International Conference of Robotics and Automation - ICRA 2012, (Saint
Paul, MN, USA), pp. 2836 – 2842, May 14 - 18 2012.

[17] M. Gabiccini, E. Farnioli, and A. Bicchi, “Grasp analysis tools for synergistic
underactuated robotic hands,” International Journal of Robotic Reasearch,
vol. 32, pp. 1553 – 1576, 11/2013 2013.

[18] E. Farnioli, M. Gabiccini, M. Bonilla, and A. Bicchi, “Grasp compliance
regulation in synergistically controlled robotic hands with vsa,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2013,
(Tokyo, Japan), pp. 3015 –3022, November 3-7 2013.

[19] C. D. Meyer, Matrix analysis and applied linear algebra. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2000.

[20] A. Bicchi, C. Melchiorri, and D. Balluchi, “On the mobility and manipulability
of general multiple limb robotic systems,” IEEE Trans. Robotics and
Automation, vol. 11, pp. 215–228, April 1995.

[21] M. Bonilla, E. Farnioli, L. Pallottino, and A. Bicchi, “Sample-based motion
planning for soft robot manipulators under task constraints,” in accepted to
International Conference of Robotics and Automation - ICRA 2015, 2015.
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