
Towards the Design of Robotic Drivers for
Full-Scale Self-Driving Racing Cars

Danilo Caporale∗,†, Alessandro Settimi†, Federico Massa†, Francesco Amerotti‡, Andrea Corti‡,
Adriano Fagiolini††, Massimo Guiggiani‡, Antonio Bicchi†,‡,‡‡ and Lucia Pallottino†,‡

Abstract— Autonomous vehicles are undergoing a rapid de-
velopment thanks to advances in perception, planning and
control methods and technologies achieved in the last two
decades. Moreover, the lowering costs of sensors and computing
platforms are attracting industrial entities, empowering the
integration and development of innovative solutions for civilian
use. Still, the development of autonomous racing cars has been
confined mainly to laboratory studies and small to middle scale
vehicles. This paper tackles the development of a planning
and control framework for an electric full scale autonomous
racing car, which is an absolute novelty in the literature, upon
which we report our preliminary experiments and perspectives
on future work. Our system leverages real time Nonlinear
Model Predictive Control to track a pre-planned racing line.
We describe the whole control system architecture including
the mapping and localization methods employed.

I. INTRODUCTION
Challenges are one of the main drives of robotics develop-

ment, that call for integration of recent research results in real
world applications. In the particular case of self-driving cars,
the DARPA Grand Challenge [1] and Urban Challenge [2]
have pushed the robotics community to develop autonomous
cars meant to drive in unstructured or urban environments.

Following the encouraging results of these challenges, car
producers have started developing self-driving technologies,
which are foreseen to become a disruptive reality in the
next decade [3] and possibly the first widespread Artificial
Intelligence (AI) applications in robotics.

From deploying single vehicles to the consumer market
to fleets of shared vehicles to be used as a service, there
is a strong interest in the development of level 4 and 5
autonomous behaviors [4] for these cars. Of course, to
achieve that, human safety is one of the main concerns. In
fact, one of the expected results of the mass adoption of
these systems is a sensible reduction of the rate of accidents,
especially those due to the errors of human drivers. Despite
this being a reasonable outcome, at the moment of writing
this paper it is not yet clear where we stand with respect to
this goal, and extensive testing would be necessary to confirm
that this goal is within reach [5].

In this work, we focus on the particular scenario of a
racing track environment, which allows driverless vehicles
testing in extreme conditions (high accelerations that trigger
the nonlinear behavior of vehicles) without jeopardizing

∗ Corresponding author: d.caporale@centropiaggio.unipi.it
† Centro di Ricerca E. Piaggio - Università di Pisa - Pisa, Italy
‡ Università di Pisa - Pisa, Italy
†† Università degli Studi di Palermo - Palermo, Italy
‡‡ Istituto Italiano di Tecnologia - Genova, Italy

Fig. 1. Roborace Robocar: a platform for the development of robotic
drivers.

human safety. The interest in this application is justified
by the recent creation of racing challenges for full scale
(Roborace1), middle scale (Formula SAE2, see [6], [7]),
and small scale (F1Tenth3) vehicles. Autonomous racing
capabilities for non-electric vehicles have been demonstrated
e.g. in [8], but to the best of the author’s knowledge this
is the first work demonstrating self-driving capabilities full
scale electric racing cars.

We report preliminary experiments conducted on Robo-
race’s DevBot, the development version of Robocar (see
Fig. 1). The car can be driven either by a human pilot
or by an autonomous system. The control architecture of
the vehicle is hierarchical and it includes, at low-level, fast
response control-loops implemented by the manufacturer,
ensuring closed loop control of the actuators and raw input
processing from the on-board sensors, while exposing at
higher level an open platform for the implementation of user-
defined control strategies and perception schemes. This key
feature first enables rapid development and testing of full-
stack autonomous driving control solutions, in which the de-
signer can focus on driverless technology. It also seamlessly
allow for the implementation of learning-based approaches
in which the human or autonomous driver can execute
arbitrarily complex maneuvers [9]. Moreover, compared to
small scale vehicles, the hardware and software developed for
this application are readily amenable to technology transfer
to urban vehicles, for high speed or emergency maneuvering.

With respect to our previous work [10], where a mapping
and localization system was introduced together with several

1https://roborace.com/
2https://www.fsaeonline.com/
3http://f1tenth.org/

https://roborace.com/
https://www.fsaeonline.com/
http://f1tenth.org/


User Control Software Layer

Sensor Readings Actuators Control

Mapping and 
Localization

Motion Control

Pose Estimation

Real Time ArchitectureNon Real Time Architecture
GPU

Car Low Level Control Layer

Fig. 2. Hierarchical control system architecture. Cars sensors and actuators
are available as measurements and control actions for the user. Mapping and
localization are performed on a non real time machine, while pose estimation
and motion control run on a real time machine.

possibilities for controlling the car, in this paper we present
a full stack architecture for motion planning, mapping,
localization, and control, focusing on the development and
experimental validation of the driver.

AI methods such as reinforcement learning [11] or end-to-
end deep learning [12] are promising in deriving data based
controls for this kind of applications, but pose significant
challenges in predicting and understanding how the AI will
react in emergency or unplanned situations, that is the ability
of the expert system to generalize from learnt scenarios.

Other approaches can be found in literature which al-
ready demonstrated their effectiveness in motion planning
and control for self-driving of urban cars. A recent survey
can be found in [13]. With respect to the methods therein
reported, the focus for racing vehicles is on racing line
optimization over the entire track, obstacle avoidance through
real time re-planning, and control of the nonlinear dynamics
of the system. Recent results are reported in [14], where the
problem of real time motion planning considering obstacles
is considered and experimentally validated on small scale
vehicles. Sampling-based methods [15] can be used both
for motion planning with differential constraints for racing
line generation or feedback planning for online control in
presence of moving obstacles [16].

In this work we do not discuss the problem of overtaking
competing vehicles, while we focus on racing line generation
over the entire track and vehicle control. State-of-the-art
methods in the literature report on two main approaches
for racing line generation, where the geometrical path and
the reference speed profile are computed separately or with
a unique optimization problem. The first method is often
preferred due to the fact that once a path has been defined,
usually through nonconvex optimization, obtaining a speed
profile becomes a convex problem, see [17], [18]. The second
method requires nonlinear programming approaches and has
been studied in [19], [20]. A recent comparison between
nonlinear programming and optimal control methods for
minimum lap-time racing line computation is given in [21],
where the authors state that the different methods lead to
similar results.

In the following we describe the overall architecture of
our autonomous driving system, with particular focus on the

motion planning (i.e., racing line optimization) and control.
In particular, we based our motion control algorithm on a
model based approach, and tested it on a commercial hard
real time embedded platform for automotive applications.

II. RACING ENVIRONMENT

Race tracks are designed with sharp turns, long straights to
reach high speed, and escape ways to recover from erroneous
maneuvers, with the goal of pushing the performance of the
vehicles to their limits. In this context one finds the ideal
conditions for experimental validation of advanced driver-
less algorithms within a structured environment affected by
uncertanties, such as the presence of adversarial vehicles that
behave as non-cooperative entities, see [22], and an uncertain
knowledge on the vehicle model.

With reference to typical requirements that one might
consider for an autonomous race, the following are a set
of reasonable constraints to consider for the single vehicle
control:
• Vmax: maximum allowed speed for the vehicle;
• glat,max, glong,max: maximum lateral and longitudinal nor-

malized accelerations allowed by the road/grip condi-
tions and the low level traction control;

• L(s), R(s): let s be the arc length of the track cen-
terline, these are respectively the left and right track
margins along the track which are allowed for a safe
operation of the vehicle.

Other constraints, not considered here, arise when dealing
with simultaneous presence of competing vehicles.

III. CONTROL SYSTEM ARCHITECTURE

The control system architecture developed is depicted in
Fig. 2. A hierarchical control architecture is available on
the car. Low-level controllers perform: i) torque vectoring
control [23] for four independent electric motors; ii) tracking
of the steering reference. At a higher level, the vehicle user
can specify: i) a reference for the traction force FT , that can
be either positive (during traction phases) or negative (during
braking phases); ii) a reference for the steering δ. High level
force and steering references are computed in hard real time
on a SpeedGoat board running at 250 Hz. This hierarchical
approach is typical of autonomous vehicles and allows the
user to control the vehicle with the same kind of actuation
a human would do. The perception pipeline we adopted in
this work comprises an IMU, differential GPS (both available
with a sampling rate of 250 Hz) and multiple LIDAR sensors
placed around the vehicle to cover the side-front-side area
(that we fused to make them available as a single point cloud
signal at a sampling rate of 25 Hz). Other sensors available
on the Robocar were not necessary for these preliminary
tests. The perception software runs in a non real time fashion
on a NVIDIA DRIVE PX2 board.

The key elements of our system are: the motion planning,
used to precompute a racing line; the perception pipeline,
which is essential to perform a hybrid LIDAR and model
based localization and mapping; and a model predictive
controller used to compute the steering and force commands



𝐶

𝑅 =
1

𝑘

𝑣

𝑢

𝑟

𝑎1

𝑎2𝛼2

𝛼1

𝛿

𝐺

𝛽

𝑉car

𝛽

Fig. 3. Kinematic quantities of a cornering vehicle. Point C is the velocity
center, perpendicular to the vehicle slip angle β.

required to track the desired racing line. In the following
sections we describe more in detail the development and
implementation of these components.

IV. SYSTEM MODELING AND IDENTIFICATION

When choosing a reference model for the control of a
racing vehicle, a trade-off between model complexity and
model representativity must be faced. In our case, we adopted
three different models: a kinematic model for path optimiza-
tion, a dynamic mass model for speed profile optimization,
and the dynamic single-track model for real time nonlinear
model predictive control. Apart from the kinematic model,
models are known as grey-box, hence some parameters need
to be identified either via experiments (when possible) or via
simulations on an accurate dynamic simulator provided by
the car manufacturer. For a detailed presentation of vehicle
dynamics modeling refer to [24]. A key role in the nonlinear
dynamics of the car is played by the wheel-road contact,
for which the Pacejka model [25] has been used to obtain a
complete parametrization of the pneumatic in the region of
interest.

With reference to the model of a cornering vehicle de-
picted in Fig. 3, let u and v be the longitudinal and lateral
speeds of the vehicle, r the vehicle yaw rate, δ the steering
angle and ai, i = 1, 2, the front and rear axle distances from
the center of mass G of the vehicle. Moreover, let m be the
vehicle mass and Yi, i = 1, 2, the ground contact forces at
the front and rear axles.

Under the assumption of quasi-steady state conditions
(slowly varying longitudinal speed u and lateral acceleration
ay) the dynamics of the vehicle can be written as in (1).

may = Y1 + Y2

0 = a1Y1 + a2Y2
(1)

For a front steering vehicle, the congruence equations give
the apparent slip angles of the front and rear axles as
α1 = δ − arctan

(
v+ra1
u

)
and α2 = − arctan

(
v−ra2
u

)
,

respectively. The tyre force model for a single axle (front

(a)

40

u [m/s]

200

2000

4000

0

6000

Y 
[N

]
0.02

8000

� [rad]

10000

0.04

12000

0.06 0.08 0.1 00.12

(b)

Fig. 4. Axle characteristics obtained with the Pacejka Tyre Formula [26].
(a) A detail of the model fitting data from a real track compared with the
data from the car simulator. (b) front (blue) and rear (red) axle characteristics
as a function of longitudinal speed and apparent slip angle.

or rear) ground force is then given by (2)

Y (α,u)=A sin

(
B arctan

(
Cα−D

(
Cα−arctan (Cα)

)))
λ(u), (2)

where λ(u) is a second degree polynomial used to model
aerodynamic effects as a function of the speed, A, B, C, D
are coefficients commonly named, respectively, peak value,
shape factor, stiffness factor and curvature factor that were
computed with a least squares fitting algorithm. A single
pole dynamics for the tyre transient has been considered.
The resulting curves are shown in Fig. 4.

V. RACING LINE OPTIMIZATION

To provide a racing line to the vehicle using its identified
model, an offline trajectory optimization algorithm has been
developed in two steps. First, a minimum curvature path has
been obtained based on the geometry of the track and the
car. Then, a speed profile has been derived on this path using
the simplified dynamics of the point mass model.

A. Optimal Curvature Path

Let s be the arc length of the track, x(s) and y(s) the
coordinates on the 2D map of the points to be optimized.
Let x′ = dx

ds and y′ = dy
ds be the spatial derivatives at

point s. Then, the curvature of the path at point s is given



-50 0 50 100 150 200 250
x map [m]

0

50

100

150

200

y 
m

ap
 [m

]

sampling points
bound sx
bound dx
optimal trajectory

Fig. 5. Racing line in map frame p∗map, with approaching path from zero
speed at (x, y) = (0, 0).

by k(s) = (x′y′′ − y′x′′)/
(
x′2 + y′2

)3/2
. The path is dis-

cretized in Ns segments, where the discretization step along
the arc length s is chosen adaptively as a decreasing function
of the mean line curvature, leading to a finer sampling where
the track curvature is higher. The path of the racing line has
been computed by solving the optimization problem in (3)
over the fixed discretization si of the mean line of the track.

min
x,y

Ns∑
i=1

k
(
x(s), y(s)

)
s.t.

(
x(s), y(s)

)
∈ Cfree

(
L(s), R(s)

) (3)

L(s) and R(s) represent, respectively, the borders of the
track and we refer to them for simplicity as left and right
borders, coherently with the forward direction of the car.
Since the presence of other vehicles and obstacles on the
track is disregarded, the collision free configuration space
Cfree is solely defined by these margins. Thus, the constraint
in (3) guarantees that each point of the racing line lies
within the track borders. The result of this optimization
can be interpolated with splines or clothoids to produce a
smooth reference trajectory of optimal heading ψ∗map, position
p∗map =

[
x∗map y∗map

]T
, and curvature k∗, see Fig. 5.

B. Speed Profile Optimization

Once an optimal path is available, a reference speed
profile is obtained considering the point mass model
of the vehicle. Speed can be iteratively computed as

V (i+ 1) =
√
V (i)2 + 2aT (i)∆s

√
x′2 + y′2, with aT and

∆s the acceleration and step along the arc length, respec-
tively. ∆t

(
V (i)

)
is the interval during which the car is

driving along the i-th segment of the racing line, and can
be written as

∆t
(
V (i)

)
=


−V (i)+

√
V (i)2+2aT (i)∆s

√
x′2+y′2

aT (i)
if aT (i) 6= 0

∆s
√

x′2+y′2

V (i)
if aT (i) = 0

Maximum accelerations and torques are the constraints of the
problem. In particular, for the lateral acceleration we refer to

0 5 10 15 20 25 30 35 40
u [m/s]

0

2

4

6

8

10

12

14

16

a y [m
/s

2 ]

Fig. 6. Map of Achievable Performance [24] for the lateral acceleration.
Continuous grey lines represent data from slow ramp steer maneuvers
performed on the vehicle dynamic simulator. Thin dashed lines represent
points at the same value of steering angle, increasing from the bottom to
the top. The thick dashed line fits the peaks of the steer maneuver data and
gives a conservative limit on the lateral acceleration as a function of the
longitudinal speed.

0 500 1000 1500
Position on the optimal path [m]

0

10

20

30

40

50

O
pt

im
al

 s
pe

ed
 [m

/s
]

Fig. 7. Racing line optimal speed profile without constraints on the
maximum speed.

the point mass model, hence aN = V
R2 where R = 1

k is the
instantaneous curvature radius of the trajectory. The safety
limit for the maximum lateral acceleration was derived from
the Map of Achievable Performance aN −u as a function of
the speed [24], see Fig. 6. The resulting constraints are

aT (i) < amax
x = µxg − 1

2γCxSV
2 max. long. acc.

aN (i) = amax
y max. lat. acc.(

aT (i)
amax
x

)2
+
(
aN (i)
amax
y

)2
< 1 max. combined acc.

amax
x = Fmax

m
(4)

where: µx is the longitudinal friction coefficient that can
be derived as the projection of the ground forces on the
longitudinal direction of the car; g is the gravity acceleration;
γ is the air density; Cx is the drag coefficient; S the frontal
area of the car; aT and aN are the longitudinal (tangential)
and lateral (normal) accelerations; Fmax(u) is the maximum
traction/braking force at ground level that the electric motors
can exert, as a function of the vehicle speed. A nonlinear
optimization problem can then be solved as in (5), where a
first guess on the speed profile is provided as a function of
the curvature of the track and the maximum speed.

min
V

Ns∑
i=1

∆t
(
V (i)

)
s.t.constraints (4) (5)



δ(t)

xmap

ymap

xb(t)

yb(t)

xveh

yveh

u(t)

v(t)
ψ(t)

Vcar

Fig. 8. Reference trajectory (in blue) and car coordinates in the vehicle
frame for the single track model.

The resulting speed profile is given in Fig. 7. Fi-
nally, we can define the desired vehicle trajectory as
pref =

{
ψ∗map p∗map k∗ V ∗

}
. This reference trajectory

of the vehicle constitutes a feed-forward input to the motion
control system as detailed below.

VI. MOTION CONTROL

For the purpose of model based control we used the
dynamic single track model of the car, see [24]. Front and
rear axles slip angles αi, i = 1, 2 are as in (1), and axle forces
Yi(αi), i = 1, 2 as in (2). With reference to Fig. 3 and Fig. 8,
let u and v be the longitudinal and lateral speed components
of the vehicle in local frame, and Vcar the magnitude of the
speed vector. The dynamic equation of the single track model
is then given in (6)

may = m(v̇ + ur) = Y1(α1) + Y2(α2)

Jz ṙ = Y1a1 − Y2a2
(6)

where Jz is the moment of inertia of the vehicle. The
kinematics of the vehicle can be obtained from (7)

ẋb = u cosψ − v sinψ

ẏb = u sinψ + v cosψ

ψ̇ = r

u̇ = ax + vr

v̇ = ay − ur

ṙ =
Y1a1 cos δ +X1a1 sin δ − Y2a2

Jz

(7)

where ψ is the heading of the car, xb and yb its position
in the map frame, see Fig. 8. The measured or estimated
outputs used for control are z =

[
xb yb ψ u v r

]T
,

and the control signal is ν =
[
δ Ft

]T
, with δ the steering

command and Ft the total (signed) traction/braking force. In
this way, the vehicle is controlled with the same interface
that a human driver would use, with a different and possibly
richer set of information coming from the vehicle sensors
and the knowledge of the model parameters.

A. Real Time Model Predictive Control

We used Nonlinear Model Predictive Control (NMPC) to
satisfy two key requirements for our control system: i) to

RHG

MPC
State Estimator

z(t) x̂(t)

pref(τ)

phor(τ̂)

δreq(t)

Freq(t)

Fig. 9. The measured output of the system z(t) is used by the State
Estimator to obtain the estimated state x̂(t). The RHG pref(τ) computes
the desired trajectory on the prediction horizon phor(τ̂), while the MPC
block computes the controls for the car.

include nonlinear tyre characteristics in the vehicle model;
and ii) to predict the car behavior over a prediction horizon,
exploiting its nonlinear model. Given a reference trajectory,
let the tracking error at discrete time k be

e(k) =


x∗(k)− x(k)
y∗(k)− y(k)
ψ∗(k)− ψ(k)
u∗(k)− u(k)

 (8)

The cost function considered is J =
∑Thor
k=τ0

e(k)TQe(k),
where Q is a positive semidefinite weight matrix. The
sampling time used for the execution of this controller on a
real time target machine is Ts = 0.004 s, while the prediction
horizon was chosen to be Thor = 0.5 s.

Since the numerical solver employed finds local solu-
tions of the NMPC problem, we provided a warm start
solution at each sample time as a strategy to avoid failure
in the computation of a control. The procedure employed
is outlined in Algorithm 1, where by F(i) and δ(j) we
mean vectors of constant values over the whole prediction
horizon. It is worth noting that, despite this algorithm is not
computationally efficient since it explores all the possible
solutions on the grid of constant control values, the prediction
horizon considered is small enough to make the computation
of Ji,j(k) by forward integration of the model based error
dynamics amenable to real time usage.

The Reference Horizon Generator (RHG) block in Fig. 9
selects in real time the portion of the racing line that
belongs to the prediction horizon Thor, starting with the
current pose of the car, which is the problem of how to
localize the car against the racing line. Letting τ be an
index over the discretized reference vector pref(τ), we seek
for the index τ∗ on the reference path solving (9), where
pb(t) =

[
xb(t) yb(t)

]T
.

τ∗ = arg min
τ
‖pref(τ)− pb(t)‖2 (9)

By varying the prediction horizon Thor and the error weight
matrix Q it is possible to tune the behavior of the steering
and force commands.

VII. MAPPING AND LOCALIZATION
In this work we used a combination of LIDARs raw data,

IMU accelerations and GPS speed, in combination with an
optimization based SLAM ROS package [27], to perform
mapping.



Data: u(k − 1): control vector at previous sample time.
Thor prediction horizon.

Result: uguess(k): warm start control vector at current
sample time k for the MPC solver

Compute the cost J(0, 0) obtained with u(k − 1);
Compute a grid of N ×M points in the minimum and
maximum range of the control signals δ and FT ;

for i← 1 to N do
for j ← 1 to M do

Apply u(i, j)← (F(i), δ(j));
Compute J(i, j);
if J(i, j) < Jmin then

Jmin ← J(i, j);
uguess(k)← u(i, j);

end
end

end
Algorithm 1: Warm start algorithm for the MPC optimiza-
tion problem.

To localize the car we developed an Extended Kalman
Filter (EKF) based on the single track model of Equations
(1), (6), (7), that receives as inputs the high rate measure
updates from the vehicle sensors (IMU, wheel speed and
optical speed sensor) as well as a low rate update from
the LIDAR+IMU+GPS odometry. In this way it is easy
to compute frequent updates of the vehicle state while
correcting drift using LIDAR sensors input.

VIII. EXPERIMENTAL RESULTS

Some preliminary results of experiments conducted on
the real vehicle are here reported. The vehicle used is the
development version of the Robocar, namely the DevBot (see
Fig. 1 in [10]). For these tests, a safety limit of Vmax = 50
km/h was considered. Normalized longitudinal and lateral
accelerations, are limited to glong,max = glat,max = 0.8.
Localization (offtrack) error with respect to the planned path
is below 0.3m (see Fig. 12 in [10]). Despite being relatively
small when compared with the size of the car (about 4 m long
and 2 m wide), the use of different localization techniques
or a better tuning of the localization algorithm can improve
this result. A major issue we faced is that scan matching
performed on PX2 overloads the ARM CPU, sometimes
resulting in failures. For this reason we are working on a
more efficient implementation.

Speed and acceleration tracking results are shown in
Fig. 10. Both transient and steady state performance were
satisfactory. Measured accelerations in vehicle frame are
compared with the ones obtained from the racing line. One
main observation is that for high values of the acceleration
we see differences in the values achieved by the vehicle. This
can be due to a conservative estimation of the acceleration
limits in the handling map or neglected second order dynam-
ics (suspension dynamics). Moreover, the single mass model
used for planning the vehicle trajectory does not take into
account the fact that the vehicle is not always aligned along

0 20 40 60 80 100 120 140 160
Time [s]

0

5

10

15

sp
ee

d 
[m

/s
]

 

Measured
Planned

0 500 1000 1500
-10

-5

0

5

10

a x [m
/s

2 ]

Planned
Measured

0 500 1000 1500
Position on the optimal path [m]

-10

-5

0

5

10

a y [m
/s

2 ]

Fig. 10. From the top: speed tracking over two laps, detail of longitudinal
and lateral acceleration tracking.

the tangent to the path, hence resulting in an observed lower
acceleration during some turns.

Finally, the trajectory planning algorithm was imple-
mented with MATLAB fmincon function, hence convergence
to the global optimal solution is not guaranteed. Despite
this, for the purpose of this work a feasible trajectory was
sufficient for operating the vehicle.

IX. CONCLUSIONS

In this work we reported some preliminary experiments
conducted towards the development of a fully autonomous
race driver for a full scale electric autonomous vehicle,
namely the Roborace Robocar. The methods and the results
reported are general enough to be applied to vehicles of
smaller scale or other autonomous cars. Here we focused on
the development of a modular architecture for the mapping,
localization, planning and control of the vehicle. Future work
will be devoted to globally optimal path planning and online
re-planning in the multi-vehicle scenario.

ACKNOWLEDGMENT

The authors would like to thank all the members of
Roboteam Italia4 for the hard work, dedication and support
provided to this project. A special thanks goes to Roborace
team for the valuable support received during the preparation
of this work.

4http://www.roboteamitalia.it



REFERENCES

[1] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand
challenge: the great robot race. Springer, 2007, vol. 36.

[2] ——, The DARPA urban challenge: autonomous vehicles in city traffic.
Springer, 2009, vol. 56.

[3] P. Gao, H.-W. Kaas, D. Mohr, and D. Wee, “Automotive revolution–
perspective towards 2030 how the convergence of disruptive
technology-driven trends could transform the auto industry,” Advanced
Industries, McKinsey & Company, 2016.

[4] Taxonomy and Definitions for Terms Related to On-Road Motor
Vehicle Automated Driving Systems, January 2014. [Online]. Available:
https://doi.org/10.4271/J3016 201401

[5] D. J. Hicks, “The safety of autonomous vehicles: Lessons from
philosophy of science,” IEEE Technology and Society Magazine,
vol. 37, no. 1, pp. 62–69, 2018.

[6] M. d. l. I. Valls, H. F. C. Hendrikx, V. Reijgwart, F. V. Meier,
I. Sa, R. Dubé, A. R. Gawel, M. Bürki, and R. Siegwart, “Design
of an autonomous racecar: Perception, state estimation and system
integration,” arXiv preprint arXiv:1804.03252, 2018.

[7] T. Drage, J. Kalinowski, and T. Braunl, “Integration of drive-by-
wire with navigation control for a driverless electric race car,” IEEE
Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 23–33,
2014.

[8] V. A. Laurense, J. Y. Goh, and J. C. Gerdes, “Path-tracking for
autonomous vehicles at the limit of friction,” in American Control
Conference (ACC), 2017. IEEE, 2017, pp. 5586–5591.

[9] T. Lin, E. Tseng, and F. Borrelli, “Modeling driver behavior during
complex maneuvers,” in American Control Conference (ACC), 2013.
IEEE, 2013, pp. 6448–6453.

[10] D. Caporale, A. Fagiolini, L. Pallottino, A. Settimi, A. Biondo,
F. Amerotti, F. Massa, S. De Caro, A. Corti, and L. Venturini, “A
planning and control system for self-driving racing vehicles,” in 2018
IEEE 4th International Forum on Research and Technology for Society
and Industry (RTSI). IEEE, 2018, pp. 1–6.

[11] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep rein-
forcement learning framework for autonomous driving,” Electronic
Imaging, vol. 2017, no. 19, pp. 70–76, 2017.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to End Learning for Self-Driving Cars,”
arXiv:1604.07316 [cs], Apr. 2016, arXiv: 1604.07316. [Online].
Available: http://arxiv.org/abs/1604.07316

[13] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[14] A. Liniger, “Path planning and control for autonomous racing,” Ph.D.
dissertation, ETH Zurich, 2018.

[15] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[16] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[17] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” International Journal of Control, vol. 87, no. 6, pp. 1297–1311,
2014.

[18] L. Consolini, M. Laurini, M. Locatelli, and A. Minari, “A solution of
the minimum-time velocity planning problem based on lattice theory,”
arXiv preprint arXiv:1809.01959, 2018.

[19] G. Perantoni and D. J. Limebeer, “Optimal control for a formula one
car with variable parameters,” Vehicle System Dynamics, vol. 52, no. 5,
pp. 653–678, 2014.

[20] D. Limebeer and M. Massaro, Dynamics and optimal control of road
vehicles. Oxford University Press, 2018.

[21] N. Dal Bianco, E. Bertolazzi, F. Biral, and M. Massaro, “Comparison
of direct and indirect methods for minimum lap time optimal control
problems,” Vehicle System Dynamics, pp. 1–32, 2018.

[22] A. Liniger and J. Lygeros, “A non-cooperative game approach to
autonomous racing,” arXiv preprint arXiv:1712.03913, 2017.

[23] C. Chatzikomis, A. Sorniotti, P. Gruber, M. Bastin, R. M. Shah, and
Y. Orlov, “Torque-vectoring control for an autonomous and driverless
electric racing vehicle with multiple motors,” SAE International Jour-
nal of Vehicle Dynamics, Stability, and NVH, vol. 1, no. 2017-01-1597,
pp. 338–351, 2017.

[24] M. Guiggiani, The science of vehicle dynamics. New York, NY:
Springer International Publishing, 2018.

[25] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.
[26] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle

system dynamics, vol. 21, no. S1, pp. 1–18, 1992.
[27] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in

2D LIDAR SLAM,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1271–1278.

https://doi.org/10.4271/J3016_201401
http://arxiv.org/abs/1604.07316

	INTRODUCTION
	RACING ENVIRONMENT
	CONTROL SYSTEM ARCHITECTURE
	SYSTEM MODELING AND IDENTIFICATION
	RACING LINE OPTIMIZATION
	Optimal Curvature Path
	Speed Profile Optimization

	MOTION CONTROL
	Real Time Model Predictive Control

	MAPPING AND LOCALIZATION
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	References

