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Outline

@ Introduction to MPC: motivations and history

© Comparison with conventional feedback control

© Ssimple example and typical industrial architecture

@ Some reminders of linear systems theory and optimal control/estimation
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Brief history of Model Predictive Control

Origins and motivations

@ Model Predictive Control (MPC) algorithms were born in
industrial environments (mostly refining companies) during the
70’s:

> DMC (Shell, USA) [Cutler and Ramaker, 1979]
» IDCOM (Adersa-Gerbios, France) [Richalet et al., 1978]

@ Necessity to satisfy the more stringent production requests, e.g.:

> economic optimization
> maximum exploitation of production capacities
> minimum variability in product qualities
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Brief history of Model Predictive Control (cont'd)

Industry and academia

o Nowadays, most complex plants especially in refining and
(petro)chemical industries use MPC systems

@ After an initial reluctance, the academia “embraced” MPC
contributing to:

> establish theoretical foundations
> develop new algorithms
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Commercial product evolution £ ﬁi

Commercial Products (partial list updated to 1996)

o [DMC] Dynamic Matrix Control = DMC Corporation (USA)

@ [SMCA] (ex IDCOM) Multivariable Control Architecture = Set-Point,Inc.
(USA)

o [PCT] (RMPCT) Predictive Control Technology = Honeywell - Profimatics
(USA)

[OPC] Optimum Predictive Control = Treiber Controls, Inc. (Canada)
[MVPC] Multivariable Predictive Control = ABB Ind. System Corp. (USA)
[IDCOM-Y] = Johnson Yokogawa Corp. (USA)

[MVC] Multivariable Control = Continental Control, Inc. (USA)

[C-MCC] Contas-Multivariable Constrained Control = CONTAS s.r.1. (Italy)

Course on Model Predictive Control. Part I - Introduction EIEE



Commercial product evolution £ ﬁi&

o In middle of the 90’s, many acquisitions and merges occurred

o The situation became quite steady with two main competitors (DMC+ and
RMPCT) and other less diffused technologies (Connoisseur, SMOC, PFC, etc.)

From [Qin and Badgwell, 2003]
2000 @ 4th ’a:rz:eration

CSuer> Gre>

@ @ — 2nd generation
MPC

1980

1st generation

1970

1960

Course on Model Predictive Control. Part I - Introduction 6/33



Keywords

MPC keywords

In most commercial product acronyms we find several important keywords that
define the MPC technologies

Control
Model
Predictive
Multivariable
Robustness
Constraints

Optimization

Identification

Analysis of such characteristic features in comparison with conventional control
schemes
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B Anaos
= PID

Conventional feedback control (PID)

Essential features

o Control action based on the tracking error, e(f) = ysp () — y(f) (no prediction)

o Fixed structure regulator (e.g., PID)

Kc g de
u(r) = Kee(r) + —f e(m)dr+K.,1p—
71 Jo dt

o Constraints: only on the manipulated variable (absolute or incremental)

du

Umin < U(L) < Umax, s < AUmax

Process model: “sometimes” used to define the tuning parameters K, 77, Tp

Optimization: no direct optimization is achieved (only by tuning)
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Shortcomings of conventional feedback control (PID)

Issues

Conventional feedback controllers are not able to face:

o Interactions from each manipulated variable to all
controlled variables

o Directionality

Certain combinations of control actions have a
much larger (20-200 times) effect on the controlled
variables than other combinations of the same
control actions. Thus:

Perturbations in the former directions are rejected much
more easily than perturbations in the latter directions.

o Constraints on the controlled variables (e.g., product
qualities)

o Optimization of the overall plant (nonsquare systems)
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Conventional multivariable control

Typical structure

E.PI D-1 S MVl Cvli
D
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PID-2 ¢ Mv2 R Qv2
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. = =
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Features and limitations

@ The decoupler structure (model based) determines the achievable
performances (interactions and directionality)

@ Decoupler robustness is an issue

o When # CV # # MV (nonsquare systems) different alternatives are necessary
(split-range, selective control, etc.)
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Main features of MPC

MPC became a successful technology due to the following features:

o ease of handling multivariable systems

@ ease of handling complicated dynamics (e.g., delays, inverse
response, ramps, etc.)

o ease of handling constraints on controlled and manipulated
variables (pushing the plant towards its limits)

o straightforward applicability to feedforward information
(measurable disturbances)
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Industrial applications [Qin and Badgwell, 2003]

Area Aspen Honeywell Adersa PCL MDC Total
Technology Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 - 20 550
Chemicals 100 20 3 21 144
Pulp and Paper 18 50 - - 68
Air & Gas - 10 - - 10
Utility ks 10 = 4 14
Mining/Metallurgy 8 6 7 6 37
Food Processing - - 41 10 51
Polymer 17 - - - 17
Furnaces - - 42 3 45
Aerospace/Defense - — 13 - 13
Automotive - - 7 - 7
Unclassified 40 40 1045 26 450 1601
Total 1833 696 1438 125 450 4542
First App. DMC:1985 PCT:1984 IDCOM:1973 PCL: SMOC:
IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1988
OPC:1987
Largest App 603 x283 225x85 = 31x12 =
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Hierarchy of an optimization and control system

Supply chain optimization:

planning, scheduling (1-7 days)
Il
Real Time Optimization ’ (1-2 hr)
Adgnced ﬁ;érsol ;Istfems: (30-120 5)
II Distrib:ﬁelejclgjonr;trrocils)wstej[ (10-100 ms)
T Il | ]
Actuators and Sensors (continuous)
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Typical example: a distillation unit

Course on Model Predictive Control. Part I - Introduction 14/33



Conventional decentralized control of a distillation unit
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MPC of a distillation unit
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MPC: basic idea

Manual control of a furnace temperature

T rﬁl\ : f 3 o Use the process model (DC gain)

; : 13 :

3 \'/m - @ Feedback information is the

! “ ! ! difference between actual and

b vl ‘ | ! ! predicted process output
1 @ Actions are iterated based on
| | feedback information
Time 4
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MPC framework

Past reconciliation

Sensors
y

Actuators ="
u 1
1

Future prediction

_-&-9--0¢-9--0

o 0
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General structure of an MPC algorithm

3 > Dynamic

: Optimization A
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Linear dynamic models: continuous-time

State-space formulation (LTV)

ﬂ—A(t) (B) +B(@)u(t)
ar WP “

y(&) = C(0)x(2) + D(t) u(1)
x(0) = xp

In most applications D(#) =0

xeR”

ueR™

yeRP

State-space formulation (LTT)

dx
— = Ax(?) + Bu(?)
dt

y(2) = Cx(£) + Du(r)

Solution:

t
x(1) = eMxo + f AU D Bu(r)dr
0

-

G. Pannocchia
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Linear dynamic models: discrete-time

State-space formulation (LTV)

x(k+1) = A()x(k) + B(k)u(k) xeR" —
y(k) = C(k)x(k) + D(k) u(k) ueR™ ¢ K
x(0) = Xo yeRP =

State-space formulation (LTT)

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

or simply: x*=Ax+Bu
y=Cx+Du
k-1
Solution: x(k) = A¥xo+ Y AFTT1Bu(j)
j=0
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Linear Quadratic Regulation problem

Problem setup

o Discrete-time LTI system x* = Ax + Bu

o Consider N time steps into the future, collect input sequence

u= {u(o)) u(l)) yeeoy u(N_ 1)}
@ Define the cost function:
= 1
Vn(x(0),u) = > Y [x()'Qx(k) + u(k)' Ru(k)] + 5x(N)’Pfx(N)
k=0

subject to: x* = Ax+ Bu

Optimal LQ control problem

Ir}lin Vn(x(0),u)
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Optimizing multi-stage functions

Solve the following problem of three variables (x, y, z):

En}r;f(w,x)+g(x,y)+h(y,z), w fixed

Rewrite as three single-variable problems:

min
X

f(w, x) +myin [g(x, ¥) +mzinh(y, z)]

v

Iterative strategy
@ Solve the most inner problem first: ho (y) =min, h(y, z)
@ Proceed to the intermediate problem: g%(x) = miny g(x, y) + ho(y)

@ Solve the most outer problem: f°(w) = min, f(x, y) + g°(x)
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Dynamic programming solution of the LQR problem

Principle of dynamic programming applied to LQR problem

o Let/(x,u) =1/2(x'Qx+ u'Ru) and £ y(x) = 1/2x'Psx
o Optimize over u(N — 1) and x(IN)

N-2

Y l(x(k), u(k)+
u(0),x(1),..., u(N 2),x(N-1) 15,

]

NEURO-DYNAMIC

min ﬂ(x(N— 1), u(N-1))+ ZN(X(N)) r"‘kilrv‘»‘u‘mmun
u(N-1),x(N)

)

Solve this first s.t. x(N) = Ax(N—1)+ Bu(N-1)

@ Obtain:
u’(N-1) = Ky(N-1)x(N-1), with Ky(N-1) = —(B'P;B+R)'B'P;A
@ Repeat to obtain the (backward) Riccati recursions:
u® (k) = Ky (k) x(k), with Ky (k) = —(B'TI(k+1)B+R) 'B'TI(k+ 1) A
M(k-1)=Q+ATi(k)A— ATI(k)B(B'II(k)B+R)'B'Tl(k)A, TI(N)=Py
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Infinite horizon LQR problem

A quote from [Kalman, 1960]

In the engineering literature it is often assumed (tacitly and incorrectly)
that a system with optimal control law is necessarily stable.

v

Closed-loop with finite-horizon LQR

@ Consider the optimal finite-horizon (N) control law: u = Ky (0)x

o Closed-loop system: x™ = Ax+ Bu = (A+ BKy)x
o Examples for which (see e.g. [Rawlings and Mayne, 2009]):

max |eig(A+ BKy)|=1

and hence the origin is not asymptotically stable

Infinite horizon LQR: let N — oo and solve the Riccati equation
M=Q+ATA-ATIB(BTIB+R) 'BTIA= K=—-(B'TIB+R)"'B'TIA
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Controllability

Definition [Sontag, 1998]

Asystem x* = Ax + Bu is controllable if for any pair of state y, z in R”, there exists a
finite input sequence {u(0), u(1),..., u(N — 1)} such that x(0) = y implies x(N) = z

v

Tests for controllability

e Via controllability matrix: € =[B AB .- A""1B] SRR
(A, B) is controllable iff rank(€)=n ' v P

o Via Hautus Lemma — conceptual:
rank[AI-A B]=n forallAeC

@ Via Hautus Lemma — practical:
rank[AI-A B]=n forall A€ eig(A)

Infinite-horizon LQR and controllability

For (A, B) controllable and Q, R positive definite, there exists a positive definite
solution of the Riccati equation, and the matrix (A + BK) is strictly Hurwitz
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Stochastic linear systems

Discrete-time LTT systems

xt = Ax+Guw

y=Cx+v
x(0) = xp
x(0), w and v are random variables

Gaussian assumption

We often make the following assumption:

x(0) ~ N(x(0),P(0), w~N(@©0Q), v~N(@OR)

Notation: x ~ N (X, P) means that the random variable x is normally distributed
with mean X and covariance P
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Linear optimal state estimation

Preliminary results on normally distributed random variables

o If x and y are n.d. and (statistically) independent, i.e.
X ~ N(my, Py) and y ~ N(m,, P,), then the joint density is

BE(EAN A

e If x and y are jointly n.d., i.e. [§] ~ ( *1, [ o nyy]), then

the conditional density of x given y, (x|y), is:

(%19 ~ N (mx+ Py Py (v = my), Po—Poy Py P )

o If x ~ N(my, P) and y = Cx, then:
¥~ N(Cmy, CPC)

o If x~N(my,P),v~N(0,R) and y = Cx + v, then:
y~N(Cmy, CPC'+R)
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Linear optimal state estimation (cont.'d)

Deriving the Kalman filter...

o Assume prior knowledge: x(k) ~ N(x~ (k), P~ (k))

x(k) | — IO] x(k)
y | —LC I vk

@ Since x(k) and v(k) are independent, there holds:

(k)
;(k) (
o Conditional density (x(k)|y(k)) ~ N(x(k), P(k)) with:
&(k) = £~ (k) + L(k) (y(k) - Cx~ (k)
L(k) =P~ (k)C'(CP~(k)C'+ R)™!
P(k) =P~ (k)- P~ (k)C'(CP~(k)C'+ R)~"'P~(k)C'
o Forecast using x(k + 1) = Ax(k) + Gw(k)
x(k+1) ~ N(Ax(k), AP(k)A' + GQG)
—_———
% (k+1) P (k+1)

o Obtain measurement y(k) that satisfies:

£ (k) ] [ P~(k) P (kC
Cx~ (k) |’ | cP~(k) CP~(k)C'+R
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Linear optimal state estimation (cont.'d)

Convergence of the state estimator

Consider the noise-free system:

x(k+1)=Ax(k)+ Bu(k), y=Cx(k)

Given an incorrect initial estimate X~ (0), we use a time-varying
Kalman filter L(k). Is ™ (k) — x(k) as k — co?

Estimation error and steady-state Kalman filter

@ Define the state estimation error: e(k) = x(k) — X~ (k)

@ We obtain:

e(k+1)=(A-AL(k)C) e(k)
o Thus, e(k) — 0 as k — oo if (A— ALC) is strictly Hurwitz, where:
L=1c'«cnc’' +p
I = AITA' - ATIC'(CIIC' + R)'TIC' A" + GQG'
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Observability

Definition [Sontag, 1998]

A system x* = Ax+ Bu with measured output y = Cx, is observable if there exists a
finite N such that for any (unknown) initial state x(0) and N measurements
{y(0), y(1),..., (N — 1)}, the initial state x(0) can be determined uniquely

Tests for observability

C
ca ]
CA."_I

(A, C) is observable iff rank(@) = n
@ Via Hautus Lemma - conceptual:

@ Via observability matrix: 0 =

rank AIC_A =n forall1eC
@ Via Hautus Lemma — practical:
rank C_’ A =n for all A € eig(A)
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Regulator vs estimator

@ Regulator:

xT=Ax+Bu, y=Cx, Vy(x(0),u)= %z;’;o [x()'C'QCx(k) + u(k) Ru(k)]
o Estimator:

xt = Ax+Guw, y=Cx+v

Duality

Regulator Estimator

R>0,0>0 R>0,0>0
(A, B) controllable (A, C) observable
(A,C) observable (A, G) controllable

Al
C/
GI
IT
—(AL)
K (A- ALC)
el

+
kmN:lQbutu
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