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Brief history of Model Predictive Control

Origins and motivations

Model Predictive Control (MPC) algorithms were born in
industrial environments (mostly refining companies) during the
70’s:

Ï DMC (Shell, USA) [Cutler and Ramaker, 1979]
Ï IDCOM (Adersa-Gerbios, France) [Richalet et al., 1978]

Necessity to satisfy the more stringent production requests, e.g.:

Ï economic optimization
Ï maximum exploitation of production capacities
Ï minimum variability in product qualities
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Brief history of Model Predictive Control (cont’d)

Industry and academia

Nowadays, most complex plants especially in refining and
(petro)chemical industries use MPC systems

After an initial reluctance, the academia “embraced” MPC
contributing to:

Ï establish theoretical foundations
Ï develop new algorithms
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Commercial product evolution

Commercial Products (partial list updated to 1996)

[DMC] Dynamic Matrix Control ⇒ DMC Corporation (USA)

[SMCA] (ex IDCOM) Multivariable Control Architecture ⇒ Set-Point,Inc.
(USA)

[PCT] (RMPCT) Predictive Control Technology ⇒ Honeywell - Profimatics
(USA)

[OPC] Optimum Predictive Control ⇒ Treiber Controls, Inc. (Canada)

[MVPC] Multivariable Predictive Control ⇒ ABB Ind. System Corp. (USA)

[IDCOM-Y] ⇒ Johnson Yokogawa Corp. (USA)

[MVC] Multivariable Control ⇒ Continental Control, Inc. (USA)

[C-MCC] Contas-Multivariable Constrained Control ⇒ CONTAS s.r.l. (Italy)
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Commercial product evolution

Merges

In middle of the 90’s, many acquisitions and merges occurred

The situation became quite steady with two main competitors (DMC+ and
RMPCT) and other less diffused technologies (Connoisseur, SMOC, PFC, etc.)

From [Qin and Badgwell, 2003]

In recent years the MPC landscape has changed
drastically, with a large increase in the number of
reported applications, significant improvements in
technical capability, and mergers between several of
the vendor companies. The primary purpose of this
paper is to present an updated, representative snapshot
of commercially available MPC technology. The in-
formation reported here was collected from vendors
starting in mid-1999, reflecting the status of MPC
practice just prior to the new millennium, roughly 25
years after the first applications.

A brief history of MPC technology development is
presented first, followed by the results of our industrial
survey. Significant features of each offering are outlined
and discussed. MPC applications to date by each vendor
are then summarized by application area. The final
section presents a view of next-generation MPC
technology, emphasizing potential business and research
opportunities.

2. A brief history of industrial MPC

This section presents an abbreviated history of
industrial MPC technology. Fig. 1 shows an evolution-
ary tree for the most significant industrial MPC
algorithms, illustrating their connections in a concise
way. Control algorithms are emphasized here because
relatively little information is available on the develop-
ment of industrial identification technology. The follow-
ing sub-sections describe key algorithms on the MPC
evolutionary tree.

2.1. LQG

The development of modern control concepts can be
traced to the work of Kalman et al. in the early 1960s
(Kalman, 1960a, b). A greatly simplified description of
their results will be presented here as a reference point
for the discussion to come. In the discrete-time context,

the process considered by Kalman and co-workers can
be described by a discrete-time, linear state-space model:

xkþ1 ¼ Axk þ Buk þGwk; ð1aÞ

yk ¼ Cxk þ nk: ð1bÞ

The vector u represents process inputs, or manipulated
variables, and vector y describes measured process
outputs. The vector x represents process states to be
controlled. The state disturbance wk and measurement
noise nk are independent Gaussian noise with zero
mean. The initial state x0 is assumed to be Gaussian
with non-zero mean.

The objective function F to be minimized
penalizes expected values of squared input and state
deviations from the origin and includes separate state
and input weight matrices Q and R to allow for tuning
trade-offs:

F ¼ EðJÞ; J ¼
X

N

j¼1

ðjjxkþj jj2Q þ jjukþj jj2RÞ: ð2Þ

The norm terms in the objective function are defined as
follows:

jjxjj2Q ¼ xTQx: ð3Þ

Implicit in this formulation is the assumption that all
variables are written in terms of deviations from a
desired steady state. It was found that the solution to
this problem, known as the linear quadratic Gaussian
(LQG) controller, involves two separate steps. At time
interval k; the output measurement yk is first used to
obtain an optimal state estimate #xkjk:

#xkjk%1 ¼ A #xk%1jk%1 þ Buk%1; ð4aÞ

#xkjk ¼ #xkjk%1 þ Kf ðyk % C #xkjk%1Þ: ð4bÞ

Then the optimal input uk is computed using an optimal
proportional state controller:

uk ¼ %Kc #xkjk: ð5Þ

LQG

IDCOM-M HIECON

SMCA
PCTPFC

IDCOM

SMOC

Connoisseur

DMC

DMC+

QDMC

RMPC

RMPCT

1960

1970

1980

1990

2000

1st generation
MPC

2nd generation
MPC

3rd generation
MPC

4th generation
MPC

Fig. 1. Approximate genealogy of linear MPC algorithms.

S.J. Qin, T.A. Badgwell / Control Engineering Practice 11 (2003) 733–764734
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Keywords

MPC keywords

In most commercial product acronyms we find several important keywords that
define the MPC technologies

Control

Model

Predictive

Multivariable

Robustness

Constraints

Optimization

Identification

Analysis of such characteristic features in comparison with conventional control
schemes
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Conventional feedback control (PID)

Essential features
Control action based on the tracking error, e(t ) = ysp (t )− y(t ) (no prediction)

Fixed structure regulator (e.g., PID)

u(t ) = Kc e(t )+ Kc

τI

∫ t

0
e(τ)dτ+KcτD

de

d t

Constraints: only on the manipulated variable (absolute or incremental)

umin ≤ u(t ) ≤ umax,

∣∣∣∣du

d t

∣∣∣∣≤∆umax

Process model: “sometimes” used to define the tuning parameters Kc , τI , τD

Optimization: no direct optimization is achieved (only by tuning)
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Shortcomings of conventional feedback control (PID)

Issues
Conventional feedback controllers are not able to face:

Interactions from each manipulated variable to all
controlled variables

Directionality

Certain combinations of control actions have a
much larger (20-200 times) effect on the controlled
variables than other combinations of the same
control actions. Thus:

Perturbations in the former directions are rejected much
more easily than perturbations in the latter directions.

Constraints on the controlled variables (e.g., product
qualities)

Optimization of the overall plant (nonsquare systems)
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Conventional multivariable control

Typical structure

Features and limitations
The decoupler structure (model based) determines the achievable
performances (interactions and directionality)

Decoupler robustness is an issue

When # CV 6= # MV (nonsquare systems) different alternatives are necessary
(split-range, selective control, etc.)
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Main features of MPC

MPC became a successful technology due to the following features:

ease of handling multivariable systems

ease of handling complicated dynamics (e.g., delays, inverse
response, ramps, etc.)

ease of handling constraints on controlled and manipulated
variables (pushing the plant towards its limits)

straightforward applicability to feedforward information
(measurable disturbances)
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Industrial applications [Qin and Badgwell, 2003]

Area Aspen Honeywell Adersa PCL MDC Total
Technology Hi-Spec

Refining 1200 480 280 25 1985
Petrochemicals 450 80 – 20 550
Chemicals 100 20 3 21 144
Pulp and Paper 18 50 – – 68
Air & Gas – 10 – – 10
Utility – 10 – 4 14
Mining/Metallurgy 8 6 7 6 37
Food Processing – – 41 10 51
Polymer 17 – – – 17
Furnaces – – 42 3 45
Aerospace/Defense – – 13 – 13
Automotive – – 7 – 7
Unclassified 40 40 1045 26 450 1601
Total 1833 696 1438 125 450 4542
First App. DMC:1985 PCT:1984 IDCOM:1973 PCL: SMOC:

IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1988
OPC:1987

Largest App 603×283 225×85 – 31×12 –

G. Pannocchia Course on Model Predictive Control. Part I – Introduction 12 / 33



Hierarchy of an optimization and control system
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Typical example: a distillation unit
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Conventional decentralized control of a distillation unit
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MPC of a distillation unit
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MPC: basic idea

Manual control of a furnace temperature

4

Time

1

2

3

T

% valve

Use the process model (DC gain)

Feedback information is the
difference between actual and
predicted process output

Actions are iterated based on
feedback information

G. Pannocchia Course on Model Predictive Control. Part I – Introduction 17 / 33



MPC framework

Timet
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Sensors
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data
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Future prediction

Actuators

y

u
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General structure of an MPC algorithm

MPC

ProcessDynamic

Steady-state

u(k)

Optimization

Estimator
d̂(k)

Optimization

Tuning parameters

Tuning parameters

x̂(k), d̂(k)

xs(k), us(k)

z−1

x̂−(k +1)
d̂−(k +1)

y(k)
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Linear dynamic models: continuous-time

State-space formulation (LTV)

d x

d t
= A(t )x(t )+B(t )u(t ) x ∈Rn

y(t ) =C (t )x(t )+D(t )u(t ) u ∈Rm

x(0) = x0 y ∈Rp

In most applications D(t ) = 0

State-space formulation (LTI)

d x

d t
= Ax(t )+Bu(t )

y(t ) =C x(t )+Du(t )

Solution:

x(t ) = e At x0 +
∫ t

0
e A(t−τ)Bu(τ)dτ
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Linear dynamic models: discrete-time

State-space formulation (LTV)

x(k +1) = A(k)x(k)+B(k)u(k) x ∈Rn

y(k) =C (k)x(k)+D(k)u(k) u ∈Rm

x(0) = x0 y ∈Rp

State-space formulation (LTI)

x(k +1) = Ax(k)+Bu(k)

y(k) =C x(k)+Du(k)

or simply: x+ = Ax +Bu

y =C x +Du

Solution: x(k) = Ak x0 +
k−1∑
j=0

Ak− j−1Bu( j )
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Linear Quadratic Regulation problem

Problem setup

Discrete-time LTI system x+ = Ax +Bu

Consider N time steps into the future, collect input sequence

u = {u(0), u(1), , . . . ,u(N −1)}

Define the cost function:

VN (x(0),u) = 1

2

N−1∑
k=0

[
x(k)′Qx(k)+u(k)′Ru(k)

]+ 1

2
x(N )′P f x(N )

subject to: x+ = Ax +Bu

Optimal LQ control problem

min
u

VN (x(0),u)
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Optimizing multi-stage functions

Basic idea
Solve the following problem of three variables (x, y, z):

min
x,y,z

f (w, x)+ g (x, y)+h(y, z), w fixed

Rewrite as three single-variable problems:

min
x

[
f (w, x)+min

y

[
g (x, y)+min

z
h(y, z)

]]

Iterative strategy

Solve the most inner problem first: h0(y) = minz h(y, z)

Proceed to the intermediate problem: g 0(x) = miny g (x, y)+h0(y)

Solve the most outer problem: f 0(w) = minx f (x, y)+ g 0(x)

G. Pannocchia Course on Model Predictive Control. Part I – Introduction 23 / 33



Dynamic programming solution of the LQR problem

Principle of dynamic programming applied to LQR problem

Let `(x,u) = 1/2(x ′Qx +u′Ru) and `N (x) = 1/2x ′P f x

Optimize over u(N −1) and x(N )

min
u(0),x(1),...,u(N−2),x(N−1)

N−2∑
k=0

`(x(k),u(k))+

min
u(N−1),x(N )

`(x(N −1),u(N −1))+`N (x(N ))︸ ︷︷ ︸
Solve this first s.t. x(N ) = Ax(N −1)+Bu(N −1)

Obtain:

u0(N−1) = KN (N−1)x(N−1), with KN (N−1) =−(B ′P f B+R)−1B ′P f A

Repeat to obtain the (backward) Riccati recursions:

u0(k) = KN (k)x(k), with KN (k) =−(B ′Π(k +1)B +R)−1B ′Π(k +1)A

Π(k −1) =Q + A′Π(k)A− A′Π(k)B(B ′Π(k)B +R)−1B ′Π(k)A, Π(N ) = P f
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Infinite horizon LQR problem

A quote from [Kalman, 1960]

In the engineering literature it is often assumed (tacitly and incorrectly)
that a system with optimal control law is necessarily stable.

Closed-loop with finite-horizon LQR

Consider the optimal finite-horizon (N ) control law: u = KN (0)x

Closed-loop system: x+ = Ax +Bu = (A+BKN )x

Examples for which (see e.g. [Rawlings and Mayne, 2009]):

max |eig(A+BKN )| ≥ 1

and hence the origin is not asymptotically stable

Infinite horizon LQR: let N →∞ and solve the Riccati equation

Π=Q + A′ΠA− A′ΠB(B ′ΠB +R)−1B ′ΠA ⇒ K =−(B ′ΠB +R)−1B ′ΠA
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Controllability

Definition [Sontag, 1998]

A system x+ = Ax +Bu is controllable if for any pair of state y, z in Rn , there exists a
finite input sequence {u(0), u(1), . . . ,u(N −1)} such that x(0) = y implies x(N ) = z

Tests for controllability

Via controllability matrix: C = [
B AB · · · An−1B

]
(A,B) is controllable iff rank(C ) = n

Via Hautus Lemma – conceptual:
rank

[
λI − A B

]= n for all λ ∈C
Via Hautus Lemma – practical:
rank

[
λI − A B

]= n for all λ ∈ eig(A)

Infinite-horizon LQR and controllability

For (A,B) controllable and Q,R positive definite, there exists a positive definite
solution of the Riccati equation, and the matrix (A+BK ) is strictly Hurwitz
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Stochastic linear systems

Discrete-time LTI systems

x+ = Ax +Gw

y =C x + v

x(0) = x0

x(0), w and v are random variables

Gaussian assumption

We often make the following assumption:

x(0) ∼ N (x̄(0),P (0)), w ∼ N (0,Q), v ∼ N (0,R)

Notation: x ∼ N (x̄,P ) means that the random variable x is normally distributed
with mean x̄ and covariance P
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Linear optimal state estimation

Preliminary results on normally distributed random variables

If x and y are n.d. and (statistically) independent, i.e.
x ∼ N (mx ,Px ) and y ∼ N (my ,Py ), then the joint density is[ x

y
]∼ N

([mx
my

]
,
[

Px 0
0 Py

])
If x and y are jointly n.d., i.e.

[ x
y
]∼ N

([mx
my

]
,
[ Px Px y

P ′
x y Py

])
, then

the conditional density of x given y , (x|y), is:

(x|y) ∼ N
(
mx+Px y P−1

y (y −my ),Px−Px y P−1
y P ′

x y

)
If x ∼ N (mx ,P ) and y =C x, then:
y ∼ N (C mx ,C PC ′)
If x ∼ N (mx ,P ), v ∼ N (0,R) and y =C x + v , then:
y ∼ N (C mx ,C PC ′+R)
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Linear optimal state estimation (cont.’d)

Deriving the Kalman filter...

Assume prior knowledge: x(k) ∼ N (x̂−(k),P−(k))

Obtain measurement y(k) that satisfies:
[

x(k)
y(k)

]
= [

I 0
C I

][
x(k)
v(k)

]
Since x(k) and v(k) are independent, there holds:[

x(k)
y(k)

]
∼ N

([
x̂−(k)

C x̂−(k)

]
,
[

P−(k) P−(k)C ′
C P−(k) C P−(k)C ′+R

])
Conditional density (x(k)|y(k)) ∼ N (x̂(k),P (k)) with:
x̂(k) = x̂−(k)+L(k)

(
y(k)−C x̂−(k)

)
L(k) = P−(k)C ′(C P−(k)C ′+R)−1

P (k) = P−(k)−P−(k)C ′(C P−(k)C ′+R)−1P−(k)C ′

Forecast using x(k +1) = Ax(k)+Gw(k)

x(k +1) ∼ N ( Ax̂(k)︸ ︷︷ ︸
x̂−(k+1)

, AP (k)A′+GQG ′︸ ︷︷ ︸
P−(k+1)

)
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Linear optimal state estimation (cont.’d)

Convergence of the state estimator

Consider the noise-free system:

x(k +1) = Ax(k)+Bu(k), y =C x(k)

Given an incorrect initial estimate x̂−(0), we use a time-varying
Kalman filter L(k). Is x̂−(k) → x(k) as k →∞?

Estimation error and steady-state Kalman filter

Define the state estimation error: e(k) = x(k)− x̂−(k)

We obtain:
e(k +1) = (A− AL(k)C )e(k)

Thus, e(k) → 0 as k →∞ if (A− ALC ) is strictly Hurwitz, where:
L =ΠC ′(CΠC ′+R)−1

Π= AΠA′− AΠC ′(CΠC ′+R)−1ΠC ′A′+GQG ′
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Observability

Definition [Sontag, 1998]

A system x+ = Ax +Bu with measured output y =C x, is observable if there exists a
finite N such that for any (unknown) initial state x(0) and N measurements
{y(0), y(1), . . . , y(N −1)}, the initial state x(0) can be determined uniquely

Tests for observability

Via observability matrix: O =
 C

C A
...

C An−1


(A,C ) is observable iff rank(O ) = n

Via Hautus Lemma – conceptual:

rank

[
λI − A

C

]
= n for all λ ∈C

Via Hautus Lemma – practical:

rank

[
λI − A

C

]
= n for all λ ∈ eig(A)
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Regulator vs estimator

Regulator:
x+ = Ax +Bu, y =C x, V∞(x(0),u) = 1

2

∑∞
k=0

[
x(k)′C ′QC x(k)+u(k)′Ru(k)

]
Estimator:
x+ = Ax +Gw, y =C x + v

Duality

Regulator Estimator

R > 0, Q > 0 R > 0, Q > 0
(A,B) controllable (A,C ) observable
(A,C ) observable (A,G) controllable

A A′
B C ′
C G ′
Π Π

K −(AL)′
A+BK (A− ALC )′

x e ′
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