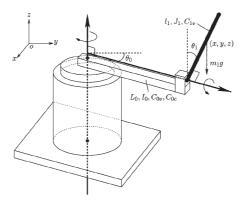
Esercitazione Scritta di Controlli Automatici — 11-7-2006

Quesito 1

Si consideri il sistema meccanico di figura, che rappresenta un pendolo rotante (pendolo di Furuta).



Sistema meccanico

Esso è costituito da un pendolo inverso collegato ad un braccio in grado di ruotare su un piano orizzontale. Il braccio, di lunghezza L_0 e inerzia I_0 , è attuato mediante un motore de in grado di generare la coppia τ . Il pendolo ha massa m_1 concentrata nel baricentro distante l_1 dal giunto del braccio e inerzia J_1 rispetto al medesimo baricentro. Indicando con θ_0 l'angolo di rotazione (sul piano orizzontale) del braccio e con θ_1 l'angolo di rotazione del pendolo misurato rispetto all'asse verticale, la dinamica del sistema è descritta dalle seguenti equazioni

$$\ddot{\theta}_0 = -\frac{1}{\Delta(\theta_1)} \left[p_4 a(\boldsymbol{\theta}) - p_3 \cos(\theta_1) b(\boldsymbol{\theta}) - p_4 \tau \right]$$

$$\ddot{\theta}_1 = -\frac{1}{\Delta(\theta_1)} \left[-p_3 \cos(\theta_1) a(\boldsymbol{\theta}) + \left(p_1 + p_2 \sin^2(\theta_1) \right) b(\boldsymbol{\theta}) + p_3 \cos(\theta_1) \tau \right]$$

dove

$$\Delta(\theta_1) = p_4 \left(p_1 + p_2 \sin^2(\theta_1) \right) - p_3^2 \cos^2(\theta_1) \neq 0 \ \forall \theta_1 \in [0, 2\pi)$$

$$a(\boldsymbol{\theta}) = p_2 \sin(2\theta_1) \dot{\theta}_0 \dot{\theta}_1 - p_3 \sin(\theta_1) \dot{\theta}_1^2$$

$$b(\boldsymbol{\theta}) = -\frac{1}{2} p_2 \sin(2\theta_1) \dot{\theta}_0^2 - p_5 \sin(\theta_1)$$

$$p_1 = I_0 + m_1 L_0^2, \quad p_2 = m_1 l_1^2, \quad p_3 = m_1 l_1 L_0, \quad p_4 = J_1 + m_1 l_1^2, \quad p_5 = m_1 l_1 g.$$

- **1.A** Si riscrivano le equazioni del sistema rispetto alle seguenti variabili di stato: $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T = \begin{bmatrix} \theta_0 & \theta_1 & \dot{\theta}_0 & \dot{\theta}_1 \end{bmatrix}^T$ e si calcolino tutti i punti e le coppie di equilibrio fornendo una spiegazione fisica dei risultati trovati;
- 1.B Si linearizzi il sistema rispetto all'equilibrio nell'origine;
- 1.C Si studi la raggiungibilità del linearizzato e la sua osservabilità nel caso si adotti come uscita la sola posizione angolare θ_0 e la sola posizione angolare θ_1 ; si forniscano inoltre (se esistono) due condizioni iniziali distinte non nulle tali per cui per qualunque ingresso τ il sistema produca la medesima uscita. Si fornisca una giustificazione fisica dei risultati ottenuti;
- 1.D Si studi la stabilizzabilità e la detettabilità del sistema nei casi del punto precedente;

Quesito 2

Si consideri il seguente sistema non lineare tempo discreto parametrico

$$x_1^+ = \alpha x_2 - x_1^2 x_2$$
$$x_2^+ = -\alpha x_1 + x_1 x_2^2.$$

2.A Si studi la stabilità dell'equilibrio nell'origine al variare del parametro α .

Soluzione

1.A Le equazioni dinamiche del sistema rispetto alle variabili di stato $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T = \begin{bmatrix} \theta_0 & \theta_1 & \dot{\theta}_0 & \dot{\theta}_1 \end{bmatrix}^T$ sono date da

$$\dot{x}_{1} = x_{3}
\dot{x}_{2} = x_{4}
\dot{x}_{3} = -\frac{1}{\Delta(x_{2})} \left[p_{4} a(\mathbf{x}) - p_{3} \cos(x_{2}) b(\mathbf{x}) - p_{4} \tau \right]
\dot{x}_{4} = -\frac{1}{\Delta(x_{2})} \left[-p_{3} \cos(x_{2}) a(\mathbf{x}) + \left(p_{1} + p_{2} \sin^{2}(x_{2}) \right) b(\mathbf{x}) + p_{3} \cos(x_{2}) \tau \right],$$
(1)

con

$$\Delta(x_2) = p_4 (p_1 + p_2 \sin^2(x_2)) - p_3^2 \cos^2(x_2)$$
$$a(\mathbf{x}) = p_2 \sin(2x_2)x_3x_4 - p_3 \sin(x_2)x_4^2$$
$$b(\mathbf{x}) = -\frac{1}{2}p_2 \sin(2x_2)x_3^2 - p_5 \sin(x_2)$$

I punti di equilibrio si calcolano ponendo $\dot{x}_1=\dot{x}_2=\dot{x}_3=\dot{x}_4=0$. Dalle prime due equazioni dinamiche si ha $x_3=x_4=0$, pertanto

$$a(x_3 = x_4 = 0) = 0$$

 $b(x_3 = x_4 = 0) = -p_5 \sin(x_2)$

da cui si ottiene per le altre due equazioni dinamiche

$$0 = -\frac{1}{\Delta(x_2)} \left[p_3 p_5 \sin(x_2) \cos(x_2) - p_4 \tau \right]$$

$$0 = -\frac{1}{\Delta(x_2)} \left[-\left(p_1 + p_2 \sin^2(x_2)\right) p_5 \sin(x_2) + p_3 \cos(x_2) \tau \right]$$

da cui si ottiene (essendo $\Delta(x_2) \neq 0$)

$$\tau = \frac{p_3 p_5}{p_4} \sin(x_2) \cos(x_2)$$
$$- (p_1 + p_2 \sin^2(x_2)) p_5 \sin(x_2) + \frac{p_3^2 p_5}{p_4} \sin(x_2) \cos^2(x_2) = 0.$$
(2)

Distinguiamo i casi $\sin(x_2) = 0$ e $\sin(x_2) \neq 0$.

Se $\sin(x_2) = 0$ allora i punti di equilibrio (e il relativo controllo) sono dati dalle seguenti relazioni:

$$x_2 = k\pi, \ k \in \mathbb{Z}$$

 $x_3 = x_4 = 0$
 x_1 qualunque
 $\tau = 0$.

Questi equilibri corrispondono alle situazioni di pendolo rivolto verso l'alto $(x_2 = 0 + 2m\pi, \ m \in \mathbb{Z}$: equilibrio instabile) e rivolto verso il basso $(x_2 = \pi + 2m\pi, \ m \in \mathbb{Z}$: equilibrio stabile). In questi casi la coppia τ di equilibrio è nulla e la posizione angolare del braccio x_1 indifferente.

Se $\sin(x_2) \neq 0$, dalla seconda delle (2) si ottiene

$$-p_4 (p_1 + p_2 \sin^2(x_2)) + p_3^2 \cos^2(x_2) = 0$$

la quale non ammette soluzione poiché corrisponde $\Delta(x_2) = 0$, che sappiamo non essere mai verificata. Pertanto gli unici equilibri si hanno per $\sin(x_2) = 0$.

1.B Linearizziamo il sistema (1) nell'intorno dell'origine ($\mathbf{x} = \mathbf{0}, \ \tau = 0$), cioè nel caso di pendolo rivolto verso l'alto. A tal fine calcoliamo preventivamente $\frac{\partial}{\partial x_i} a(\mathbf{x})\Big|_{\substack{\mathbf{x}=0\\\tau=0}}, \ \frac{\partial}{\partial x_i} b(\mathbf{x})\Big|_{\substack{\mathbf{x}=0\\\tau=0}}$ e $\frac{\partial}{\partial x_i} \Delta(x_2)\Big|_{\substack{\mathbf{x}=0\\\tau=0}}$:

$$\frac{\partial}{\partial x_i} a(\mathbf{x}) \bigg|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0, \quad i = 1, \dots, 4$$

$$\frac{\partial}{\partial x_i} b(\mathbf{x}) \bigg|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0, \quad i = 1, 3, 4$$

$$\frac{\partial}{\partial x_2} b(\mathbf{x}) \bigg|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = -p_5$$

$$\frac{\partial}{\partial x_i} \Delta(x_2) \bigg|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0, \quad i = 1, \dots, 4.$$

Posto, inoltre, $f_3(\mathbf{x}, \tau) = -\frac{1}{\Delta(x_2)} [p_4 a(\mathbf{x}) - p_3 \cos(x_2) b(\mathbf{x}) - p_4 \tau]$ e $f_4(\mathbf{x}, \tau) = -\frac{1}{\Delta(x_2)} [-p_3 \cos(x_2) a(\mathbf{x}) + (p_1 + p_2 \sin^2(x_2)) b(\mathbf{x}) + p_3 \cos(x_2) \tau]$ e ricordando che $\Delta(x_2)|_{\substack{\mathbf{x}=0 \\ \tau=0}} = p_4 p_1 - p_3^2 \neq 0$, si ha

$$\frac{\partial}{\partial x_1} f_3(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = -\frac{1}{\Delta^2(x_2)} \left[\left(p_4 \frac{\partial}{\partial x_1} a(\mathbf{x}) - p_3 \cos(x_2) \frac{\partial}{\partial x_1} b(\mathbf{x}) \right) \Delta(x_2) - \frac{\partial}{\partial x_1} \Delta(x_2) (\cdots) \right] \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0$$

$$\frac{\partial}{\partial x_2} f_3(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = -\frac{1}{\Delta^2(x_2)} \left[\left(p_4 \frac{\partial}{\partial x_2} a(\mathbf{x}) - p_3 \cos(x_2) \frac{\partial}{\partial x_2} b(\mathbf{x}) \right) \Delta(x_2) - \frac{\partial}{\partial x_1} \Delta(x_2) (\cdots) \right] \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0$$

$$= -\frac{p_3 p_5}{p_4 p_1 - p_3^2}$$

$$\frac{\partial}{\partial x_3} f_3(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = \frac{\partial}{\partial x_4} f_3(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0$$

$$\frac{\partial}{\partial \tau} f_3(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = \frac{p_4}{p_4 p_1 - p_3^2}$$

$$\frac{\partial}{\partial x_1} f_4(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} =$$

$$-\frac{1}{\Delta^2(x_2)} \left[\left(-p_3 \cos(x_2) \frac{\partial}{\partial x_1} a(\mathbf{x}) + \left(p_1 + p_2 \sin^2(x_2) \right) \frac{\partial}{\partial x_1} b(\mathbf{x}) \right) \Delta(x_2) - \frac{\partial}{\partial x_1} \Delta(x_2) (\cdots) \right] \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0$$

$$\frac{\partial}{\partial x_2} f_4(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = -\frac{1}{\Delta^2(x_2)} \left[\left(p_3 a(\mathbf{x}) \sin(x_2) - p_3 \cos(x_2) \frac{\partial}{\partial x_2} a(\mathbf{x}) + \left(p_1 + p_2 \sin^2(x_2) \right) \frac{\partial}{\partial x_2} b(\mathbf{x}) \right] \right] + 2p_2 b(\mathbf{x}) \sin(x_2) \cos(x_2) \Delta(x_2) - \frac{\partial}{\partial x_2} \Delta(x_2) (\cdots) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = \frac{p_1 p_5}{p_4 p_1 - p_3^2}$$

$$\frac{\partial}{\partial x_3} f_4(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = \frac{\partial}{\partial x_4} f_4(\mathbf{x}, \tau) \Big|_{\substack{\mathbf{x} = 0 \\ \tau = 0}} = 0$$

 $\left. \frac{\partial}{\partial \tau} f_4(\mathbf{x}, \tau) \right|_{\mathbf{x} = 0} = \frac{-p_3}{p_4 p_1 - p_3^2}.$

Il sistema linearizzato è dunque pari a

$$\dot{\mathbf{x}} = A\mathbf{x} + b\tau$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 \\ 0 & a_2 & 0 & 0 \end{bmatrix}, \ b = \begin{bmatrix} 0 \\ 0 \\ b_1 \\ b_2 \end{bmatrix}$$

$$a_1 = -\frac{p_3 p_5}{p_4 p_1 - p_3^2}, \ a_2 = \frac{p_1 p_5}{p_4 p_1 - p_3^2}$$

$$b_1 = \frac{p_4}{p_4 p_1 - p_3^2}, \ b_2 = -\frac{p_3}{p_4 p_1 - p_3^2}$$

1.C La matrice di raggiungibilità del sistema linearizzato è data da

$$R = \begin{bmatrix} 0 & b_1 & 0 & a_1b_2 \\ 0 & b_2 & 0 & a_2b_2 \\ b_1 & 0 & a_1b_2 & 0 \\ b_2 & 0 & a_2b_2 & 0 \end{bmatrix}.$$

Essa ha determinante pari a $\det(R) = -b_2^2 (a_1b_2 - a_2b_1)^2$, che è sempre diverso da zero poiché $a_1b_2 - a_2b_1 = p_3^2p_5 - p_1p_4p_5 = -(p_4p_1 - p_3^2) \neq 0$. Dunque il sistema è completamente raggiungibile.

Per quanto concerne l'osservabilità definiamo la matrice $c_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ che considera come uscita la variabile θ_0 e la matrice $c_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ che considera come uscita la variabile θ_1 . Con queste due uscite otteniamo le seguenti matrici di osservabilità:

$$O_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & a_1 & 0 & 0 \\ 0 & 0 & 0 & a_1 \end{bmatrix}, \qquad O_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & 0 & a_2 \end{bmatrix},$$

da cui, essendo $a_1 \neq 0$ e $a_2 \neq 0$, si ha che rank $(O_1) = 4$ e rank $(O_2) = 2$. Il sistema risulta quindi completamente osservabile dalla variabile angolare θ_0 , ma non completamente osservabile dalla variabile θ_1 . Questi risultati sono diretta conseguenza del fatto che nel sistema linearizzato le variabili θ_0 e $\dot{\theta}_0$ non influenzano la dinamica di θ_1 mentre θ_1 compare nella dinamica di θ_0 . D'altronde ciò era già risultato evidente dall'analisi degli equilibri del sistema. Se il pendolo è in posizione verticale (rivolto verso l'alto o verso il basso), le variabili θ_0 e $\dot{\theta}_0$ possono assumere un valore arbitrario purché costante. Questa differenza è visibile anche nel sistema non lineare dove la variabile θ_0 non compare direttamente nella dinamica della variabile θ_1 , mentre quest'ultima compare in quella di θ_0 tramite le funzioni trigonometriche. Inoltre per $\theta_1 = 0, \pi$ e $\tau = 0$ si ha $\dot{\theta}_0 = 0$, dunque $\theta_0(t) = \theta_{0c} + \theta_{0v}t$ è un andamento ammissibile, ma indistinguibile da θ_1 per qualunque valore delle costanti θ_{0c} e θ_{0v} .

Due stati iniziali distinti che producano la stessa uscita per qualunque valore del segnale di ingresso τ , si possono, dunque, avere solo nel caso di perdita di osservabilità, pertanto dei due casi precedenti consideriamo solo il secondo (osservazione di θ_1). I due stati iniziali cercati sono tali per cui la loro differenza appartiene al sottospazio di non osservabilità, cioè al $\ker(O_2)$. Quindi, poniamo siano essi \mathbf{x}_{01} e \mathbf{x}_{02} , devono soddisfare la relazione $\mathbf{x}_{01} - \mathbf{x}_{02} = \begin{bmatrix} \alpha & 0 & \beta & 0 \end{bmatrix}^T$, con α, β generici non contemporaneamente nulli. Ciò è una conferma che dalla conoscenza di θ_1 non sia possibile risalire allo stato iniziale di θ_0 e $\dot{\theta}_0$.

1.D Il sistema risulta completamente raggiungibile e dunque ovviamente stabilizzabile. Disponendo della misura della variabile θ_0 come uscita esso risulta completamente osservabile e quindi ovviamente detettabile. Rimane da considerare il caso in cui si misuri la sola variabile θ_1 . Affinché il sistema risulti detettabile, i modi non osservabili dovranno essere asintoticamente stabili. Portiamo quindi il sistema in forma standard di osservazione. Dalla matrice di osservabilità si ottiene subito che $\bar{\mathcal{O}} = \ker(O_2) = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T \right\}$, pertanto una matrice di trasformazione può essere costruita come

$$T = \left[\begin{array}{c|c} T_{\mathcal{O}} & T_{\bar{\mathcal{O}}} \end{array} \right] = \left[\begin{array}{c|c} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array} \right],$$

mediante la quale si ottiene

$$\tilde{A} = T^{-1}AT = \begin{bmatrix} A_{\mathcal{O}} & \mathbf{0} \\ A_{\mathcal{O}\mathcal{O}} & A_{\mathcal{O}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ a_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & 0 & 0 & 0 \end{bmatrix}.$$

Quindi $A_{\mathcal{O}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ i cui autovalori sono $\lambda_{1,2} = 0$. Il sistema non è quindi detettabile tramite l'uscita θ_1 .

2.A Per lo studio della stabilità al variare del parametro α faremo uso del metodo diretto di Lyapunov. Il linearizzato del sistema rispetto all'origine è dato da

$$\left. \frac{\partial f}{\partial x} \right|_{\substack{x_1 = 0 \\ x_2 = 0}} = \begin{bmatrix} 0 & \alpha \\ -\alpha & 0 \end{bmatrix},$$

i cui autovalori sono $\lambda = \pm j\alpha$. Circa la stabilità dell'equilibrio nell'origine si può quindi concludere:

- $|\alpha| < 1$ \Longrightarrow equilibrio localmente asintoticamente stabile;
- $|\alpha| > 1$ \Longrightarrow equilibrio instabile;
- $|\alpha| = 1$ \Longrightarrow nulla si può concludere mediante il metodo diretto.

Il caso $|\alpha| = 1$ necessita un'analisi ulteriore. Ricorreremo pertanto al metodo indiretto di Lyapunov usando la funzione candidata $V(x_1, x_2) = x_1^2 + x_2^2$. La funzione scelta è definita positiva, procediamo quindi al calcolo dell'equazione alle differenze:

$$\Delta V = (x_1^+)^2 + (x_2^+)^2 - (x_1^2 + x_2^2)$$

$$= (\alpha x_2 - x_1^2 x_2)^2 + (-\alpha x_1 + x_1 x_2^2)^2 - (x_1^2 + x_2^2)$$

$$= x_1^4 x_2^2 + x_1^2 x_2^4 - 4\alpha x_1^2 x_2^2$$

$$= x_1^2 x_2^2 (x_1^2 - 4\alpha + x_2^2),$$

dove nei passaggi precedenti si è fatto uso della condizione $\alpha^2=1$. Dall'analisi del segno di ΔV si deduce che:

• $\alpha=1$ \Longrightarrow ΔV risulta semidefinita negativa, quindi l'equilibrio nell'origine è localmente semplicemente stabile. Per appurare se sia anche asintoticamente stabile proviamo ad applicare il criterio di Krasowskii-LaSalle. L'insieme in cui ΔV si annulla, nell'intorno dell'origine, è dato dagli assi coordinati:

$$\mathcal{N} = \{(x_1, x_2) \in \mathbb{R}^2 : \Delta V = 0\} = \{(a, 0), a \in \mathbb{R}\} \cup \{(0, b), b \in \mathbb{R}\}.$$

Tale insieme contiene completamente traiettorie del sistema. Infatti, è sufficiente prendere una condizione iniziale di tipo (a,0), per vedere che al passo successivo si avrà un punto di tipo (0,-a), da questo si otterà con un ulteriore passo (-a,0) e quindi (0,a) e successivamente (a,0). Le traiettorie sono quindi dei cicli di ampiezza costante che non convergono nell'origine. L'equilibrio nell'origine per $\alpha = 1$ è quindi solo semplicemente stabile;

α = -1 ⇒ ΔV risulta solo semidefinita positiva e non sono quindi applicabili i
criterî di instabilità. È possibile, però, provare l'instabilità dell'equilibrio nell'origine limitando
l'analisi ad un sottinsieme di moti. Si considerino, a tal fine, i moti generati a partire da
condizioni iniziali sulle bisettrici dei quadranti:

$$x(0) = \begin{bmatrix} \pm a \\ \pm a \end{bmatrix}.$$

È facile verificare che le bisettrici costituiscono un insieme invariante, poiché ogni moto che ha origine in esse, in esse è confinato in ogni istante. Ciò equivale a dire che per ogni t si ha $|x_1(t)| = |x_2(t)|$. Pertanto, limitatamente ai moti sulle bisettrici, il sistema risulta equivalente al seguente sistema del prim'ordine:

$$z^+ = z(1+z^2), \quad z(0) = |a|$$

per il quale è facile verificare l'instabilità dell'equilibrio nell'origine mediante la funzione di Lyapunov $V(z)=z^2$.