

Stereolithography

Micro e Nano Sistemi

carmelo. de maria @centropiaggio. unipi. it

Stereolitografia

Stereolitografia

What is SLA?

- Stereolithography Apparatus (SLA) is a liquidbased process which builds parts directly from CAD software.
- SLA uses a low-power laser to harden photosensitive resin and achieve polymerization.
- The Rapid Prototyping Stereolithography process was developed by 3D Systems of Valencia, California, USA, founded in 1986.
- The SLA rapid prototyping process was the first entry into the rapid prototyping field during the 1980's and continues to be the most widely used technology.

Stereolitografia

Fig.28 - Processo di stereolitografia.

The Process

- The process begins with a 3D CAD file.
- The file is digitally sliced into a series of parallel horizontal cross-sections which are then provided to a StereoLithography Apparatus (SLA) one at a time.
- A laser traces the cross-section onto a bath of photopolymer resin which solidifies the cross-section.
- The part is lowered a layer thickness into the bath and additional resin is swept onto the surface (typically about 0.1 mm).
- The laser then solidifies the next cross-section.
- This process is repeated until the part is complete.
- Once the model is complete, the platform rises out of the vat and the excess resin is drained.
- The model is then removed from the platform, washed of excess resin, and then placed in a UV oven for a final curing.

Stereolitografia: varianti

Stereolitografia: varianti

Stereolitografia – point-by-point scanning

Laser is focused/shaped through optics. A computer controlled mirror directs laser to appropriate spot on photopolymer surface.

Polymer solidifies wherever laser hits it.

When cross section is complete, elevator indexes to prepare for next layer.

Stereolitografia – point-by-point scanning

- 1. Laser traces current cross section onto surface of photocurable liquid acrylate resin
- Polymer solidifies when struck by the laser's intense UV light
- 3. Elevator lowers hardened cross section below liquid surface
- 4. Laser prints the next cross section directly on top of previous
- 5. After entire 3-d part is formed it is post-cured (UV light)

Note:

- care must be taken to support any overhangs
- The SLA modeler uses a photopolymer, which has very low viscosity until exposed to UV light. Unfortunately this photopolymer is toxic. Warpage occurs.

Stereolitografia – Layer at a Time Solidification

A glass mask is generated

Laser then shines through mask, solidifying the entire layer in one "shot." More rapid layer formation, and thorough solidification.

Photosolidification Layer at a Time

- 1. Cross section shape is "printed" onto a glass mask
- 2. Glass mask is positioned above photopolymer tank
- 3. Another rigid glass plate constrains liquid photopolymer from above
- 4. UV lamp shines through mask onto photopolymer- light only can pass through clear part, polymer solidifies there, polymer in masked areas remains liquid
- 5. Due to contact with glass plate, the cross linking capabilities of the photopolymer are preserved- bonds better w/ next layer
- 6. New coat of photopolymer is applied
- 7. New mask is generated and positioned, and process repeats
- 8. 12-15 minute postcure is required

Note:

 Much less warpage than SLA, but still uses photopolymers which are toxic.

3D System SLA 7000

Laser	He-Cd			
Lunghezza d'onda	0.325 um			
Potenza	800 mW			
Spessore minimo	0.025 mm			
Volume vasca	253			
Volume di lavoro	500 x 500 x 600 mm3			
Velocità di scansione	Max 9.52 m/s			
Diametro Spot	Da 0.23 a 0.84 mm			

PARAMETRI DI PROCESSO

$$\left(\frac{2}{\omega_0^2}\right) \cdot y^{*2} + \left(\frac{1}{D_p}\right) \cdot z^* = \ln\left[\sqrt{\frac{2}{\pi}} \cdot \left(\frac{P_L}{\omega_0 \cdot v_s \cdot E_c}\right)\right]$$

$$E_{x} = \left(\frac{1}{C_{d}}\right) \cdot \int_{0}^{C_{d}} (E(z) - E_{c}) \cdot dz \qquad \frac{E_{x}}{E_{c}} = \left(\frac{D_{p}}{C_{d}}\right) \cdot \left[\exp\left(\frac{C_{d}}{D_{p}}\right) - 1\right] - 1$$

Figure 2-21 Excess energy relative to the cure depth and the optical penetration depth

Materials:

- The laser can be either: HeCd or Solid State and can range in power from 12 –800mW
- The original resin was acrylate based, then epoxy-based: ACES (Acrylic Clear Epoxy System).
- The resin can be modified to improve different characteristics; depending on the users needs.

Materials: Somos 18120

TECHNICAL DATA - LIQUID PROPERTIES					
Appearance	Translucent				
Viscosity	~300 cps @ 30°C				
Density	~1.16 g/cm³ @ 25°C				

TECHNICAL DATA - OPTICAL PROPERTIES					
E _C	6.73 mJ/cm ²	[critical exposure]			
D_P	4.57 mils	[slope of cure-depth vs. In (E) curve]			
E ₁₀	57.0 mJ/cm²	[exposure that gives 0.254 mm (.010 inch) thickness]			

Materials: Somos 18120

TECHNICAL DATA									
Mechanical Properties		Somos® ProtoGen 18120 UV Postcure at HOC -2		Somos® ProtoGen 18120 UV Postcure at HOC +3		Somos® ProtoGen 18120 UV & Thermal Postcure			
ASTM Method	Property Description	Metric	Imperial	Metric	Imperial	Metric	Imperial		
D638M	Tensile Strength	51.7 - 54.9 MPa	7.5 - 8.0 ksi	56.9 - 57.1 MPa	8.2 - 8.3 ksi	68.8 - 69.2 MPa	9.9 - 10.0 ksi		
D638M	Tensile Modulus	2,620 - 2,740 MPa	381 - 397 ksi	2,540 - 2,620 MPa	370 - 380 ksi	2,910 - 2,990 MPa	422 - 433 ksi		
D638M	Elongation at Break	6 - 12%	6 - 12%	8 - 12%	8 - 12%	7 - 8%	7 - 8%		
D638M	Poisson's Ratio	0.43 - 0.45	0.43 - 0.45	N/A	N/A	0.43	0.43		
D790M	Flexural Strength	81.8 - 83.8 MPa	11.9 - 12.2 ksi	83.8 - 86.7 MPa	12.2 - 12.6 ksi	88.5 - 91.5 MPa	13.2 ksi		
D790M	Flexural Modulus	2,360 - 2,480 MPa	343 - 359 ksi	2,400 - 2,450 MPa	350 - 355 ksi	2,330 - 2,490 MPa	361 ksi		
D2240	Hardness (Shore D)	84 - 85	85 - 87	N/A	N/A	87 - 88	87 - 88		
D256A	Izod Impact (Notched)	0.14 - 0.26 J/m	0.26 - 0.49 ft-lb/in	N/A	N/A	0.13 - 0.25 J/m	0.24 - 0.47 ft-lb/in		
D570-98	Water Absorption	0.77%	0.77%	N/A	N/A	0.75%	0.75%		

Materials cont:

- SLA Somos 7120 A high speed general use resin that is heat and humidty resistant.
- Somos 9120 A robust accurate resin for functional parts. For more information on this material please read the material
- **Somos 9920** A durable resin whose properties mimic polypropylene. Offers superior chemical resistance, fatigue properties, and strong memory retention.
- **Somos 10120 WaterClear** A general purpose resin with mid range mechanical properties. Transparent parts are possible if finished properly.
- Somos 11120 WaterShed Produces strong, tough, water-resistant parts. Many of its mechanical properties mimic that of ABS plastic.
- **Somos 14120 White** A low viscosity liquid photopolymer that produces strong, tough, water-resistant parts.
- Somos ProtoTool ProtoTool is a high density material that transcends currently available stereolithography resins by offering superior modulus and temperature resistance.

Cost

- Cost of materials:
 - 200€ per liter
 - A cube 20*20*20 cm³ approx 8 liters
- Post processing Requirements:
 - Careful practices are required to work with the resins.
 - Frameworks must be removed from the finished part.
 - Alcohol baths then Ultraviolet ovens are used to clean and cure the parts.

Vantaggi

- Probably the most accurate functional prototyping on the market.
 - Layer thickness (from 20 to 150 μm)
 - Minimum feature size 80 to 300 μm
 - Smooth surface finish, high dimensional tolerance, and finely detailed features (thin-walls, sharp corners, etc...)
- Large build volume
 - Up to $50 \times 50 \times 60 \text{ cm}^3$ (approx)
- Used in: Investment Casting, Wind Tunnels, and Injection Molding as tooling
- Resins can be custom engineered to meet different needs: higher-temps, speed, finish...

Svantaggi

- Requires post-curing.
- Long-term curing can lead to warping.
- Parts are quite brittle and have a tacky surface.
- Support structures are typically required.
 - Supports must be removed by hand
- Uncured material is toxic.
- Little material choice
- Costs
 - Material
 - trained operator
 - Lab environment necessary (gasses!)
 - Laser lasts 2000hrs, costs \$20' 000!
- Slow process

Link utili

- http://www.acucast.com/ rapid prototyping.htm
- http://www.milparts.net/sla.html
- http://www.protocam.com/html/materialssla.html
- http://www.3dsystems.com
- http://www.dsm.com/products/somos/en_US/ offerings/offerings-somos-proto-gen.html#

SOLID GROUND CURING

Solid Ground Curing (SGC)

- Solid Ground Curing (SGC), is somewhat similar to stereolithography (SLA)
- both use ultraviolet light to selectively harden photosensitive polymers.
- SGC cures an entire layer at a time and use another material as support

Solid Ground Curing (SGC)

- 1. Photosensitive resin is sprayed on the build platform.
- 2. The machine develops a photomask (like a stencil) of the layer to be built.
- 3. This photomask is printed on a glass plate above the build platform using an electrostatic process similar to that found in photocopiers.
- 4. The mask is then exposed to UV light, which only passes through the transparent portions of the mask to selectively harden the shape of the current layer.
- 5. After the layer is cured, the machine vacuums up the excess liquid resin and sprays wax in its place to support the model during the build.
- 6. The top surface is milled flat, and then the process repeats to build the next layer.
- 7. When the part is complete, it must be de-waxed by immersing it in a solvent bath.

SGC: pros and cons

- High capital and operational cost
- Large heavy equipment
- Good dimensional accuaracy
- Much less warpage than SLA