Fondamenti di Automatica — 21-02-2013

Si consideri il modello dinamico del sistema meccanico rappresentato in figura 1.

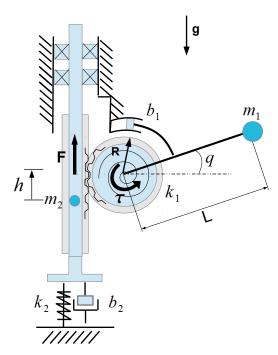


Figura 1: Sistema meccanico

Il sistema è composto da un pistone di massa m_2 collegato al telaio attraverso una coppia molla-smorzatore di costanti k_2 , b_2 , e vincolato a muoversi senza attrito in senso verticale. Sul pistone è presente una guida che ingrana su una ruota dentata di massa trascurabile e di raggio nominale R. Tale ruota è collegata tramite una molla rotoidale di costante k_1 ad un'asta di lunghezza L e massa trascurabile, alla cui estremità è collegato un corpo di massa m_1 . L'asta è inoltre collegata al telaio attraverso uno smorzamento viscoso di costante b_1 . Il pistone è attuato tramite un motore che genera una forza verticale F, mentre l'asta è soggetta ad un disturbo di coppia τ .

Indicando con h lo spostamento verticale della massa m_2 e con q la rotazione dell'asta rispetto alla direzione orizzontale (positiva in senso antiorario), e considerando che per h=0 e q=0 entrambe le molle sono a riposo (vedi figura 1), le equazioni che descrivono il comportamento dinamico del sistema sono:

$$\begin{split} \ddot{q} &= -\frac{b_1 \dot{q}}{L^2 m_1} - \frac{k_1}{L^2 m_1} \left(\frac{h}{R} + q \right) - \frac{g \cos(q)}{L} + \frac{\tau}{L^2 m_1} \\ \ddot{h} &= -\frac{b_2 \dot{h}}{m_2} - \frac{k_2 h}{m_2} - \frac{k_1}{m_2 R} \left(\frac{h}{R} + q \right) - g + \frac{F}{m_2} \end{split}$$

- **A** Data la rigidezza della molla rotoidale k_1 , si determini la rigidezza della molla lineare k_2 tale per cui il sistema è in equilibrio con q=0 ed ingressi $\tau=F=0$.
- **B** Supponendo di disporre della misura dell'angolo q, e di poter agire sulla forza F, si determini una rappresentazione in forma di stato del sistema linearizzato intorno all'equilibrio calcolato al punto precedente.

Si considerino i seguenti valori numerici: $k_1 = 5 \text{ N/m}$; $b_1 = 0.5 \text{ N m s}$; $b_2 = 0.5 \text{ N m s}$; L = 1.0 m; R = 0.5 m; $m_1 = 1 \text{ Kg}$; $m_2 = 4 \text{ Kg}$; $g = 9.81 \text{ m/s}^2$.

- C Si scrivano le istruzioni di un programma per elaboratore digitale che simuli la dinamica libera del sistema linearizzato partendo da condizioni iniziali generiche, e si discuta sulla scelta del tempo di campionamento.
- **D** Si determinino le funzioni di trasferimento tra l'ingresso u = F e l'uscita y = q, e tra il disturbo $u_d = \tau$ e l'uscita y = q. Si discuta inoltre la stabilità dell'equilibrio del sistema linearizzato.
- **E** Si disegnino in modo qualitativo i modi del sistema sia per $b_1 = b_2 \neq 0$ che nel caso in cui $b_1 = b_2 = 0$.
- \mathbf{F} Si determini una legge di controllo per F che agisca in modo da garantire che:

- **F.1** partendo dalle condizioni di equilibrio, l'uscita y=q che descrive la posizione angolare dell'asta raggiunga con un errore minore ad 1° un valore pari a 20°, senza mai superare il valore di 24° ed entrando e mantenendosi in un intorno pari a $\pm 5\%$ del valore di regime entro un tempo non superiore a 500 ms:
- **F.2** l'effetto di un disturbo di coppia del tipo $\tau = 3.1 + \sum_{k=1}^{3} \frac{1}{k(2k-1)} \sin(\omega_k t)$ con $\omega_k = \frac{0.1}{k}$ rad/s non provochi a regime un effetto sull'uscita superiore a 0.1° .

Si riportino il diagramma a blocchi del sistema con il controllore progettato, il diagramma di Bode con le relative specifiche da rispettare e la risposta al gradino ottenuta con le caratteristiche significative. Si riporti infine il controllore ottenuto in grado di rispettare le specifiche.

Soluzione

A) Si sostituiscono nel sistema le condizioni necessarie per individuare un possibile equilibrio, ovvero

$$\ddot{q} \rightarrow 0, \, \ddot{h} \rightarrow 0, \, \dot{q} \rightarrow 0, \, \dot{h} \rightarrow 0, \, q \rightarrow 0, \, F \rightarrow 0, \, \tau \rightarrow 0.$$

Il sistema ottenuto è il seguente

$$0 = -\frac{k_1}{L^2 m_1} \frac{h}{R} - \frac{g}{L}$$
$$0 = -\frac{k_2 h}{m_2} - \frac{k_1}{m_2 R} \frac{h}{R} - g,$$

ovvero un sistema di due equazioni in due variabili. Ricavando h dalla prima equazione e sostituendo il valore trovato nella seconda, si può calcolare anche il valore di k_2 . L'equilibrio del sistema si ha se

$$\bar{h} = -\frac{g L m_1 R}{k_1}$$

$$k_2 = \frac{-k_1 L m_1 + k_1 m_2 R}{L m_1 R^2}.$$
(1)

B) Indicando con $z = [q, h, \dot{q}, \dot{h}]^T$ il vettore delle variabili di stato del sistema e con $\tilde{\xi} = [\tilde{\xi}_1, \ \tilde{\xi}_2, \ \tilde{\xi}_3, \ \tilde{\xi}_4]^T = [q - \bar{q}, \ h - \bar{h}, \ \dot{q}, \ \dot{h}]^T$ quello delle variabili di stato traslate nell'equilibrio generico e con $\tilde{u} = [\tilde{u}_1, \ \tilde{u}_2]^T = [F - \bar{F}; \ \tau - \bar{\tau}]^T$ il vettore degli ingressi traslati, il sistema non lineare scritto in forma di stato attorno al generico equilibrio $\bar{z} = [\bar{q}, \ \bar{h}, \ 0, \ 0]^T$ è dato da

$$\begin{cases}
\dot{\tilde{\xi}_{1}} = \tilde{\xi}_{3} \\
\dot{\tilde{\xi}_{2}} = \tilde{\xi}_{4}
\end{cases}$$

$$\dot{\tilde{\xi}_{3}} = -\frac{k_{1}(\tilde{\xi}_{1} + \bar{q})}{L^{2}m_{1}} - \frac{k_{1}(\tilde{\xi}_{2} + \bar{h})}{L^{2}m_{1}R} - \frac{b_{1}\tilde{\xi}_{3}}{L^{2}m_{1}} - \frac{g\cos(\tilde{\xi}_{1} + \bar{q})}{L} + \frac{\tilde{u}_{2} + \bar{\tau}}{L^{2}m_{1}}$$

$$\dot{\tilde{\xi}_{4}} = -\frac{k_{1}(\tilde{\xi}_{1} + \bar{q})}{m_{2}R} - \frac{(k_{1} + k_{2}R^{2})(\tilde{\xi}_{2} + \bar{h})}{m_{2}R^{2}} - \frac{b_{2}\tilde{\xi}_{4}}{m_{2}} - g + \frac{(\tilde{u}_{1} + \bar{F})}{m_{2}}$$
(2)

Sostituendo i valori di equilibrio $\bar{q}=0$ e $\bar{h}=-\frac{g\,L\,m_1\,R}{k_1}$, ingressi di equilibrio nulli, ed il valore trovato precedentemente per k_2 , si ottiene il sistema linearizzato approssimato espresso nelle nuove variabili di stato $\tilde{\xi}$

$$\dot{\tilde{\xi}} = A\tilde{\xi} + B\tilde{u}
\tilde{y} = C\tilde{\xi}$$
(3)

dove,

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_1}{L^2 m_1} & -\frac{k_1}{L^2 m_1 R} & -\frac{b_1}{L^2 m_1} & 0 \\ -\frac{k_1}{m_2 R} & -\frac{k_1}{L m_1 R} & 0 & -\frac{b_2}{m_2} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & \frac{1}{L^2 m_1} \\ \frac{1}{m_2} & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}.$$

C) Sostituendo i valori numerici assegnati e considerando il punto di equilibrio dato si ottiene:

$$\dot{\tilde{\xi}} = A\tilde{\xi} + B_1\tilde{u}_1 + B_2\tilde{u}_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & -10 & -0.5 & 0 \\ -2.5 & -10 & 0 & -0.125 \end{bmatrix} \begin{bmatrix} \tilde{\xi}_1 \\ \tilde{\xi}_2 \\ \tilde{\xi}_3 \\ \tilde{\xi}_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0.25 \end{bmatrix} \tilde{u}_1 + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \tilde{u}_2,$$

$$\tilde{y} = C\tilde{\xi} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \tilde{\xi}.$$

Utilizzando il metodo di Eulero in avanti $\dot{\tilde{\xi}} \approx (\tilde{\xi}(k+1) - \tilde{\xi}(k))/T$ (dove T rappresenta il tempo di campionamento, da scegliere opportunamente) e ponendo $\tilde{u} = 0$ il sistema discretizzato diventa

$$\tilde{\xi}(k+1) = A_d \,\tilde{\xi}(k)$$
$$y(k) = C_d \,\tilde{\xi}(k)$$

$$A_d = AT + I, \qquad C_d = C.$$

Il sistema discretizzato precedentemente ottenuto può essere simulato con il seguente programma

```
% Tempo di campionamento
T = 0.01;
\% Assegnazione delle costanti
m1=1; m2=4; k1=5; b1=0.5; b2=0.5; L=1; R=0.5;
% Matrici del sistema
A = [0 \ 0 \ 1 \ 0; 0 \ 0 \ 0 \ 1; ...
   -k1/(m1*L^2) -k1/(R*m1*L^2) -b1/(m1*L^2) 0;...
   -k1/m2*R - k1/(R*m1*L) 0 - b2/m2
C = [1 \ 0 \ 0 \ 0];
% Matrici del sistema discretizzato (Metodo Eulero in avanti)
Ad = eye(4) + T * A;
% Tempo totale di simulazione
Tf = 100:
% Condizioni iniziali
q0 = 0;
h0 = 0.1;
Dq0 = 0;
Dh0 = 0;
xk = [q0, h0, Dq0, Dh0]';
\% Inizializzazione della variabile di uscita (k=0)
vk=C*xk:
for t=0:T:Tf
    % Memorizzazione del valore dell'uscita in un vettore
    y = [y yk];
    \% Aggiornamento uscite e stato
    yk = C*xk;
    xk = Ad*xk;
figure;
plot(y);
title('Uscita del sistema');
xlabel('t [s]')
ylabel('q
```

D La funzione di trasferimento tra l'ingresso di controllo $u = \tilde{u}_1$ (la forza agente sul pistone) e l'uscita y (la posizione angolare dell'asta stessa) è

$$G_u(s) = -\frac{2.5}{(s^2 + 0.3974 \, s + 1.915)(s^2 + 0.2276 \, s + 13.06)}.$$
 (4)

La funzione di trasferimento presenta 2 coppie di poli complessi coniugati, tutti a parte reale negativa. Si può quindi concludere sulla asintotica stabilà del sistema linearizzato attorno all'equilibrio calcolato al punto A).

La funzione di trasferimento tra l'ingresso di disturbo \tilde{u}_2 (la coppia agente sull'asta) e l'uscita y è

$$G_d(s) = \frac{s^2 + 0.125 s + 10}{(s^2 + 0.3974 s + 1.915)(s^2 + 0.2276 s + 13.06)}.$$
 (5)

Il diagramma a blocchi rappresentante il sistema con due ingressi (di controllo F e di disturbo τ) e l'uscita di misura y=q è rappresentato in figura 2.

E) I modi del sistema con i valori numerici dati sono rappresentati in figura 3. Nel caso in cui $b_1 = b_2 \neq 0$, i modi propri sono oscillazioni smorzate tipiche di un sistema asintoticamente stabile con poli complessi coniugati. Nel caso in cui entrambi gli smorzamenti siano nulli, i modi non sono altro che oscillazioni non smorzate tipiche di un sistema marginalmente stabile (poli immaginari puri), come rappresentato in figura 4.

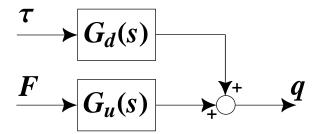


Figura 2: Diagramma a blocchi del sistema.

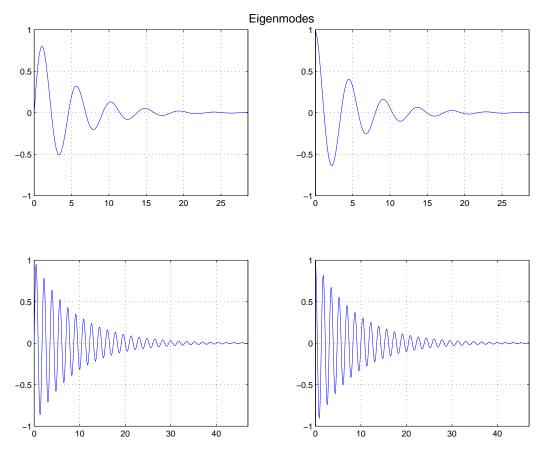


Figura 3: Modi propri del sistema.

F Poichè il sistema in anello aperto è asintoticamente stabile, il progetto del controllore essere fatto direttamente sul diagramma di bode. Si consideri come al solito un prototipo di controllore del tipo

$$C(s) = \frac{K_c}{s^t} C_0(s), \text{ con } C_0(0) \ge 1.$$

F.1) La specifica richiede che l'asta raggiunga la posizione di 20° partendo da 0, con un errore a regime non superiore ad 1°; per il teorema del valore finale quindi si ha

$$\lim_{s \to 0} s E(s) = \lim_{s \to 0} s \frac{1}{1 + C(s) G_u(s)} \frac{20}{s} < 1.$$
 (6)

Questo corrisponde ad avere un guadagno statico della funzione di anello aperto C(0) $G_u(0) \ge 19 \approx 26$ dB. Le altre specifiche riguardano la sovraelongazione, pari al 20% ($100 \, \frac{24^\circ - 20^\circ}{20^\circ}$) ed il tempo di assestamento al 5%.

Si può procedere quindi tentando di progettare di un controllore capace di rendere la f.d.t. in anello chiuso ben approssimabile con un sistema a due poli dominanti per il quale le specifiche si traducono

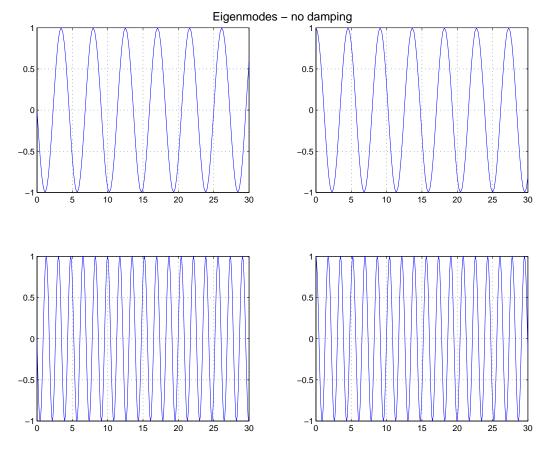


Figura 4: Modi propri del sistema non smorzato.

come segue:

$$S_{\%} = 100 e^{-\frac{\pi \delta}{\sqrt{1-\delta^2}}} \le 20\% \qquad \Longrightarrow \qquad \delta > 0.45 \qquad \Longrightarrow \qquad M_{\phi} > 45^{\circ}$$

$$\omega_T > \frac{3}{\delta T_{a5}} \approx 12.8 \, \mathrm{rad/s} \,.$$

F.2) La specifica richiede che un disturbo di coppia $\tau = 3.1 + \sum_{k=1}^{3} \frac{1}{k(2k-1)} \sin(\omega_k t)$ con $\omega_k = 10^{-k}$ rad/s sull'asta non provochi a regime un effetto sull'uscita superiore a 0.1°. Per rispettare tale specifica, si può utilizzare il principio di sovrapposizione degli effetti. Consideriamo la componente sinusoidale del disturbo τ e applichiamo il teorema della risposta armonica. La funzione di trasferimento fra il disturbo di coppia e l'uscita y=q del sistema è data da

$$Y(j\omega) = \frac{G_d(j\omega)}{1 + C(j\omega)G_u(j\omega)}D(j\omega) = \bar{G}(j\omega)D(j\omega),$$
(7)

perciò

$$y(t) = \sum_{k=1}^{3} |\bar{G}(j\omega_k)| \frac{1}{k(2k-1)} \sin(\omega_k t + \angle \bar{G}(j\omega)).$$
 (8)

Facendo riferimento al caso cautelativo in cui $\sin(\omega_k t + \angle \bar{G}(j\omega)) = 1$, aggiungendo nel disturbo anche la componente costante, il modulo complessivo del disturbo è pari a

$$\tau_d = 3.1 + \sum_{k=1}^{3} \frac{1}{k(2k-1)} = \frac{13}{3},$$

per cui il controllo deve essere scelto in modo tale che

$$|\bar{G}(j\omega)| = \frac{|G_d(j\omega)|}{|1 + C(j\omega)G_u(j\omega)|} \le \frac{0.1}{\frac{13}{3}} \approx 0.023 \quad \forall \omega \le \omega_d$$
(9)

dove ω_d viene scelta come la massima frequenza del disturbo, ovvero 0.1 rad/s. A bassa frequenza, vale in genere l'approssimazione (si può verificare dai diagrammi di Bode) $|1 + C(j\omega)G_u(j\omega)| \approx |C(j\omega)G_u(j\omega)|$, il controllore deve soddisfare

$$|C(j\omega)G_u(j\omega)| \ge \frac{|G_d(j\omega)|}{0.023}.$$
(10)

Poiché nel campo frequenziale d'interesse (vedi figura 5) la $|G_d(j\omega)| < -7.9$ dB e 20 $\log_{10}(0.023) \approx -32.7$ dB, il guadagno d'anello deve essere superiore a -7.9 - (-32.7) = 24.8 dB per frequenze minori di 0.1 rad/s.

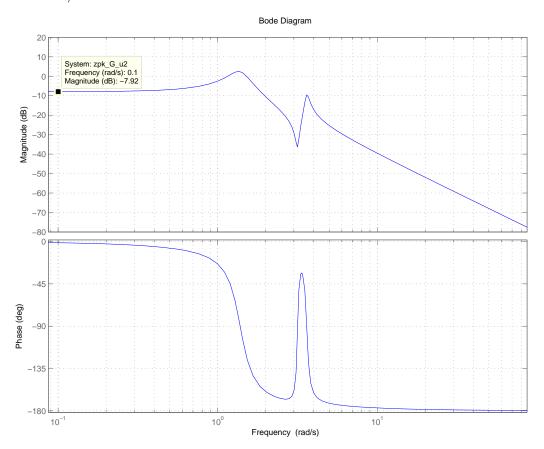


Figura 5: Diagramma di Bode della f.d.t. $G_d(s)$.

La figura 6 mostra il diagramma di Bode di G(s)/s con specifica sulla banda passante e sul guadagno in bassa frequenza.

Un controllore che permette al sistema di rispettare tali specifiche, compresa la causalità, è il seguente:

$$C(s) = -110791252.2985 \frac{(s+1.398)^2(s^2+33\,s+308)}{(s^2+169.2\,s+7159)(s^2+388.6\,s+3.776e4)} \,.$$

Il controllore presenta un guadagno abbastanza elevato (di segno negativo essendo il guadagno statico della G(s) anch'esso negativo) necessario per rispettare la specifica sull'errore a regime e sulla reiezione dei disturbi in bassa frequenza. A seguito di questo si ottiene anche un aumento della banda passante superiore a quella richiesta. Tuttavia, l'attraversamento dell'asse a 0 db del diagramma del modulo di Bode avviene con una pendenza pari a -5, ottenendo quindi un sistema instabile in anello chiuso. La specifica sul tempo di assestamento e sulla sovraelongazione massima richiede che il sistema controllato in anello chiuso sia ben approssimabile con un sistema a due poli dominanti con MF pari a 45° . Si procede quindi ad inserire due reti anticipatrici complesse realizzando contemporaneamente sia un guadagno in fase fino al valore desiderato che un attraversamento dell'sse a 0 dB, in grado di realizzare l'obiettivo.

Con tale controllo il sistema in anello chiuso diventa il seguente:

$$G_{\rm cl} = \frac{276978130.7462(s+1.398)^2(s^2+33\,s+308)}{(s^2+2.646\,s+1.902)(s^2+18.96\,s+243.3)(s^2+66.15\,s+6052)(s^2+470.7\,s+6.195e04)} \,. \tag{11}$$

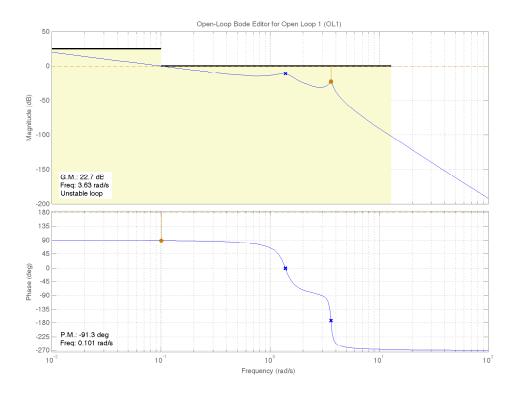


Figura 6: Diagrammi di Bode della f.d.t. G(s)/s con specifiche su banda passante e guadagno in bassa frequenza.

La figura 7 mostra il diagramma di Bode di C(s)G(s) con le specifiche rispettate. In figura 8 è mostrata la risposta per ingresso a gradino del sistema controllato in anello chiuso, da cui si vede come le specifiche $\mathbf{D.1}$ siano rispettate.

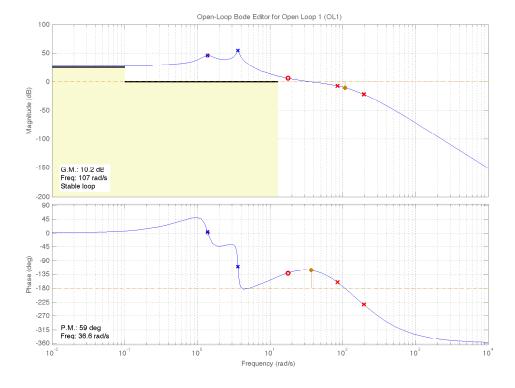


Figura 7: Diagrammi di Bode della f.d.t. C(s)G(s) con le specifiche rispettate.

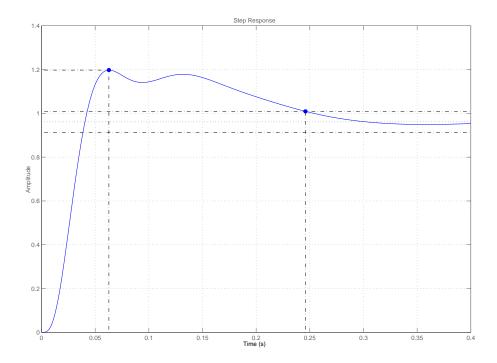


Figura 8: Risposta per ingresso a gradino del sistema controllato per soddisfare le specifiche D.1.

Infine, il diagramma a blocchi complessivo è riportato in figura 9.

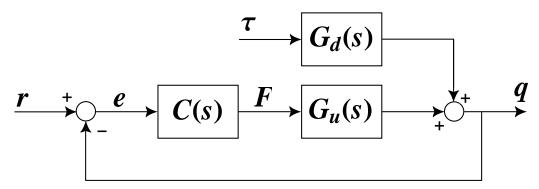


Figura 9: Diagramma a blocchi del sistema complessivo.