II rene

g. vozzi@centropiaggio.unipi.it

The kidneys - Functions

- Organ for molecular transport and separation, also and endocrine function
- Eliminate substance produced during protein metabolism: urea, creatinine, uric acid (urea NH₂-CO-NH₂) (always ask what about products of lipid and carbohydrate metabolism)
- Eliminate other substances (sulphates, phenols, drugs)
- Eliminate ions in ecesso (Na⁺, Cl⁻, K⁺)
- Regulate fluid volume
- Regulate acid-base balance, through elimination of H⁺ e HCO3⁻, HPO₄²⁻
- Production of erythropoietin, a hormone which regulates haemopoiesis
- Production of adrenalin

The kidneys - Functions

- Consequences of renal failure (when 90% of nephrons are dysfunctional)
 - Uremia
 - Anemia
 - Low Hematocrit
 - Acidosis
 - Edema
 - Death

The urinary systems

Gross Structure of Kidney

Kidney functional unit

 The functional unit of the kidneys is the nephron. Each kidney has about 1,000,000

Kidney functional unit

Kidney functional unit

Kidney functional unit

Glomerular ultrafiltration

Renal Filtration

- The immediate constriction of the approximately 50 capillaries that form the glomerulus system induces high pressure. The filtration is therefore more effective ('ultrafiltration ').
- The walls of the glomerulus capillaries are 25 times more permeable than normal
- 1200 ml/min of the blood flows in kidneys (1/4 of the total vascular flow)
- The initial filtrate is plasma minus the proteins
- 125 ml/min of filtrate is produced in the Bowman's capsule (180 l/day).
- This passes in tubules and is almost all reabsorbed. In particular, glucose, and all amino acids.
- Urea etc, are not reabsorbed. Ions (Na etc.) are reabsorbed only in part.
- 99,4% of the H₂0 is reabsorbed giving 1 liter of urine per day for 180 liters of filtrate

Renal Filtration

Renal function

Renal Function

Renal function

Change in concentration of filtrate with respect to t=0 (when the filtraton process begins)

Reabsorption is guided by active and passive transport and osmosis. Glucose and amino acids are reabsorbed in the proximal tubule by active means, whereas +ve ions are reabsorbed throughout H_20 is reabsorbed through osmosis everywhere except in the loop of Henle. K e H are secreted in the distal zones, and negative ions follow the positive passively.

Renal function

- The threshold for glucose reabsorbtion is 18 mM. All molecules have a maximum reabsorbtion threshold except Na. (Drink to eliminate)
- Glomerular filtration rate GFR=125 ml/min.
- Blood flow=1200 ml/min
- % blood filtered and processed = 10
- % plasma blood filtered and processed = 20 (because the other half is cells)

Summary: three renal processes

Three fates of a molecule

