

Phantom in oftalmologia

carmelo.demaria@centropiaggio.unipi.it

I PHANTOM IN BIOINGEGNERIA

+ Phantom

oggetto fatto ad **imitazione della figura umana**, o di una sua parte, utilizzando materiali non viventi per simulare una sua particolare proprietà fisica e o chimica, per lo sviluppo, la verifica di sicurezza, la calibrazione, e la formazione all'uso di dispositivi diagnostici, terapeutici o con altro scopo, che entrano in contatto con l'essere umano.

APPLICAZIONI

+ Applicazioni

- Banco di prova per una tecnologia
 - Ripetitività (stesse condizioni, breve periodo)
 - Riproducibilità

+ Applicazioni

- Formazione in chirurgia
 - no problemi etici,
 - sicurezza del paziente,
 - la gestione delle sale operatorie
 - la gestione del training

CLASSIFICAZIONE

Classificazione 1 Anatomia

- Distretto anatomico di interesse
 - Tessuto, organo o parte del corpo

Classificazione 2 Geometria

- Phantom **non-antropomorfi**:
 - Riproducono solo le proprietà fisiche e chimiche del tessuto di interesse, e le sue dimensioni di massima
- Phantom **antropomorfi**:
 - riproducono sia le proprietà che la forma di organi e tessuti.

+ Classificazione 2 Geometria

Standard Grade Solid Water, Gammex 457

Classificazione 2 Geometria – 3D printed Phantom

Classificazione 3 Stato fisico

- Phantom fisici,
 - modelli del corpo umano su cui effettuare test e misure utilizzando direttamente la strumentazione medica.
- Phantom virtuali (o in silico),
 - modelli al computer del corpo umano, su cui è possibile agire attraverso le periferiche del computer stesso.

+ Phantom Fisici

- Suddivisibile sulla base dello stato dei materiali utilizzati in:
 - Phantom solidi
 - Phantom liquidi

+ Phantom virtuali

- Suddivisibile in:
 - Phantom interattivi
 - Phantom per il calcolo
 - probabilistici,
 - deterministici

+ Classificazione 2+3 Caratteristiche costruttive

	Non-antropomorfi	Antropomorfi
Fisici	Cilindri per misure dosimetriche	Manichini per cateterizzazione e per la chirurgia laparoscopica

Modelli a geometria sferica,Virtualiusati per validare la soluzioneSimulatori di chirurgianumerica con una soluzionecomputer assistitaanalitica

+ Classificazione 4 Applicazioni

Progettare un phantom sulla base della sua applicazione

PHANTOM DI OCCHIO

Occhio Struttura e funzioni

⁺ Occhio Proprietà geometriche

	Zona dell'occhio	Valore
	Cornea (superficie anteriore)	7.8
	Cornea (superficie posteriore)	6.2
Raggio di	Sclera	12.7
Curvatura (mm)	Cristallino (superficie anteriore)	9.2 – 12.2
	Cristallino (superficie posteriore)	5.4 – 12.2
Spessore (mm)	Retina	11.7
	Sclera	1
	Coroide (parte anteriore)	0.1
	Coroide (parte posteriore)	0.2
	Retina	0.1

Anastasi G, Capitani S. (2007). Trattato di anatomia umana, volume III. Milano: Edi. Ermes.

Phantom di occhio Caratteristiche generali

- struttura antropomorfa, anche semplificata, approssimabile con una geometria a simmetria assiale, costituita da gusci concentrici;
- stabilità dei materiali, sia nel tempo (tecniche di conservazione, e possibilità di riuso), che in condizioni di esercizio (ad esempio sensibilità alla temperatura);
- costo di fabbricazione contenuto.

PHANTOM PER IMAGING

+ Imaging medico

 branca della medicina e dell'ingegneria che studia ed usa tecnologie e processi per creare una rappresentazione virtuale, bidimensionale o tridimensionale, di una parte di un organismo, non visibile dall'esterno, per l'analisi clinica e la pianificazione di un intervento.

Imaging Optical coherence tomography

+

+ Optical coherence tomography

Optical coherence tomography Parametri

- indice di rifrazione (adimensionale): rapporto fra la velocità della radiazione elettromagnetica nel vuoto e la velocità all'interno di un materiale;
- riflettanza (adimensionale): rapporto tra l'intensità della l'onda elettromagnetica riflessa e l'intensità dell'onda elettromagnetica incidente;
- coefficiente di attenuazione (m⁻¹): indica la riduzione di intensità dell'onda elettromagnetica (legge di Lambert-Beer).

+ Optical coherence tomography Parametri

Zona dell'occhio	Indice di rifrazione (380 – 760 nm)		
Cornea	1.377		
Umor acqueo	1.337		
Capsula del cristallino	1.380		
Cristallino	1.437		
Corpo vitreo	1.336		

Optical coherence tomography Parametri

Optical coherence tomography Materiali

- Silicone (PDMS), con filler inorganici
 - Scatters: Microsfere di diossido di titanio, di silice, di allumina, e nanoparticelle d'oro
 - Materiale assorbente: Carbon black
- Gel di fibrina, con filler organici
 - Sangue
 - Grasso

Kennedy F. et al. (2010). J. Biomed. Opt. Lamouche G, et al. (2012). Biomedical Optics Express , 3, 1381-1398. Agrawal A. et al. (2012). Biomedical Optics Express; 3(5):1116-26

Optical coherence tomography *Phantom*

Agrawal A. et al. (2012). Biomedical Optics Express; 3(5):1116-26

Imaging *Ecografia oculare*

+

Patient: Patient ID: Eye: OS/LEFT	Clinic: VIGEUANO Setting: General Operator: VAROTTO	Gray: Depth: Gain:	S 3.0 70	Images	21/0CT/11 07:51:46 PM :
A-line			FROZ	EN	
M	Nh Alle	M			
6	i 2	3			

+ Ecografia oculare

Ecografia oculare Parametri

+

Frequenza	Risoluzione	Profondità di penetrazione
(MHz)	(µm)	(mm)
8-10	200-500	30-40
35-50	20-60	5-8
65	5	1

direzione di propagazione

Ecografia oculare Parametri

+

Impedenza acustica

$$Z = \rho v$$

Ampiezza onda riflessa

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

Ecografia oculare *Parametri*

+

	Velocità (m s⁻¹)	Z (10 ⁶ kg m ⁻² s ⁻¹)	α (dB cm ⁻¹)
Umor vitreo	1523	1.52	0.06
Umor acqueo	1532	1.50	0.06
Cristallino	1640-1673	1.84	0.78
Tessuto adiposo	1450	1.38	0.63
Sangue	1570	1.61	0.18
Tessuti molli (val. medio)	1540	1.63	0.7
Acqua	1480	1.48	0.002
Aria	330	4 ·10 ⁻⁴	12

Ecografia oculare *Materiali*

+

- Gelatina mista a psillio
- Fluido iperecogeno (microbolle)

Jafri F et al. (2011). J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. , 569-573.

Ecografia oculare *Phantom*

+

Jafri F et al. (2011). J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. , 569-573.

PHANTOM PER DOSIMETRIA

+ Dosimetria

 branca della fisica che si occupa del calcolo e della misura della quantità di energia assorbita dalla materia quando sottoposta ad un campo elettromagnetico

 L'energia U associata ad un'onda elettromagnetica è direttamente proporzionale alla sua frequenza v

$$\nu = \frac{c}{\lambda}$$
 $U = h \cdot \nu$

Dosimetria Principi

- Gli effetti della radiazione elettromagnetica sugli esseri viventi dipendono da:
 - la frequenza della radiazione,
 - la modalità di esposizione

- radiazioni ionizzanti (> 3000 THz): in grado di ionizzare direttamente la materia qualunque sia la loro intensità: possono quindi <u>modificare le</u> <u>strutture molecolari</u>, compreso il DNA, producendo effetti biologici a lungo termine.
- radiazioni non ionizzanti, (< 3000 THz): non in grado di produrre ionizzazione nei materiali ad esse esposti ed il cui effetto biologico è legato <u>all'induzione di correnti elettriche ed al</u> <u>riscaldamento</u> a queste collegato.

Radiazioni non ionizzanti Parametri

- Gli effetti biologici sono collegati al SAR (W/kg, specific asborption rate)
- Per l'occhio il limite di SAR per un tessuto medio di 10 g è di 2 W/kg tra 0.5 e 3.5 GHz (ICNIRP)
- Importanza della geometria

Radiazioni non ionizzanti *Parametri*

- La permittività relativa, che spiega il comportamento di un materiale dielettrico in presenza di un campo elettrico; è tipicamente una funzione complessa della frequenza.
- Conducibilità (S/m), che mette in relazione la densità di corrente elettrica con l'intensità del campo elettrico

$$SAR = \int_{V} \frac{\sigma E(r)}{\rho} dr$$

Radiazioni non ionizzanti Phantom

$$\nabla \cdot (k\nabla T) + \rho SAR + A - B(T - T_b) = C\rho \frac{\partial T}{\partial t}$$

Liu L. et al. (2009). Microwave Symposium Digest , 1321-1324.

Radiazioni non ionizzanti Phantom

Sezione	Materiale (%)		ε _r	σ	
Bulbo oculare	Acqua 89	Saccarosio 10	Cloruro di sodio 1	69	1.9
Altri tessuti		2-propanolo		4.0	0.2

Liu L. et al. (2009). Microwave Symposium Digest, 1321-1324.

Radiazioni ionizzanti Parametri

- dose assorbita (J/kg o gray, Gy): energia che la radiazione cede alla materia per unità di massa;
- dose equivalente (sievert, Sv): energia che la radiazione cede alla materia per unità di massa e pesata per un opportuno coefficiente che dipende dal tipo di radiazione;
- dose efficace (sievert, Sv): oltre alla dose equivalente tiene conto, attraverso un opportuno coefficiente, del tipo di tessuto coinvolto.

Radiazioni ionizzanti Phantom fisici

- Materiali liquidi, geliformi o cerosi.
- Alloggimento per i dosimetri (camere a ionizzazione, dosimetri termoluminescenti, film radiografici, etc)

DeWerd LA, Kissick M. (2014) The Phantoms of Medical and Health Physics – Devices for Research and Development. Springer Science+Business Media New York

Radiazioni ionizzanti Phantom virtuali

 Simulazioni con Metodi Montecarlo (brachiterapia, protonterapia)

Hastings WK. (1970). Biometrika , 57 (1), 97-109. Gagne NL, Rivard MJ. (2013). Appl Radiat Isot. , 62-66. Alghamdi A et al. (2007). Phys Med Biol , 52, 51-59. Devlin PM. (2007). In Brachytherapy: applications and techniques. Philadelphia.

Radiazioni ionizzanti Phantom virtuali

• Simulazioni con **Metodi Montecarlo** (brachiterapia, protonterapia)

PHANTOM PER TRAINING CHIRURGICO

+ Vitrectomia

Rizzo S, Patelli F, Chow DR. (2009) Vitreo-retinal Surgery. Springer-Verlag Berlin Heidelberg

- Proprietà meccaniche
 - Elastiche

+ Vitrectomia parametri

- Proprietà meccaniche
 - Viscoelastiche
 - Creep e stress relaxation

+ Vitrectomia parametri

- Proprietà meccaniche
 - Reologia
 - Umor Vitreo

Tokita M et al. (1984). Biorheology ;21(6):751-756.

+ Vitrectomia parametri

- Proprietà meccaniche
 - Reologia
 - Umor Vitreo

 $T = 1 \min T =$

+ Vitrectomia parametri

- Proprietà meccaniche
 - Reologia
 - Umor Vitreo

Tokita M et al. (1984). Biorheology ;21(6):751-756.

Zona dell'occhio	Modulo elastico (MPa)		
Sclera parte anteriore	2.9 ± 1.4		
Sclera parte posteriore	1.8 ± 1.1		
Coroide	0.6 ± 0.28		
Retina	≈20*10 ⁻³		

Eilaghi A et al. (2010). 18;43(9):1696-701 Friberg TR, Lace JW. (1988). Exp Eye Res. Sep;47(3):429-36. Jones IL et al. (1992). Eye London Engl. , 6, 556-559. Glass DH et al. (2007) Invest Ophthalmol Vis Sci. Sep;49(9):3919-26.

+ Vitrectomia *materiali*

Zona dell'occhio	Materiale	
Salara	5% (p/v) policaprolattone in	
Sciera	cloroformio	
Coroide	PDMS	
	4% (p/v) di gelatina in acqua	
Retina	deionizzata crosslinkata	
	con 0.2% (p/v) di genipin	
	31.5% (p/v) di alcol polivinilico in acqua	
Umor vitreo	deionizzata	
	+ 2.5% di gelatina in acqua deionizzata	
Umor vitreo	deionizzata + 2.5% di gelatina in acqua deionizzata	

Fogli G et al. (2014). Journal of Biomedical Optics , 19 (6) (8).

+ Vitrectomia Phantom

Fogli G et al. (2014). Journal of Biomedical Optics, 19 (6) (8).

Richa R. et al. (2012). IEEE Trans. Biomed. Eng. Aug; 59(8):2291-301.

PHANTOM PER FARMACOCINETICA

+ La farmacocinetica

 Branca della farmacologia che studia quantitativamente l'assorbimento, la distribuzione, il metabolismo e l'eliminazione di farmaci.

+ Farmacocinetica principi

• Umor vitreo: tessuto avascolare

Legge di Fick
$$\frac{\partial C}{\partial t} = D \nabla^2 C$$

+ Farmacocinetica Phantom

• Misure di diffusione

Fogli G et al. (2014). Journal of Biomedical Optics, 19 (6) (8).

CONCLUSIONI

+ Conclusioni

- La progettazione di un phantom richiede:
 - Una profonda conoscenza delle proprietà fisico/chimiche del tessuto di interesse
 - Ergonomia ed usabilità
 - Costi contenuti
+ Conclusioni

- Ad oggi non esiste un phantom oculare ideale, cioè che possa essere utilizzato indifferentemente per qualunque tipo di misura o operazione chirurgica.
- Determinate proprietà desiderate si ottengono a discapito di altre (proprietà ottiche vs proprietà meccaniche).
- La soluzione migliore sembra essere l'utilizzo di phantom diversi a seconda del loro campo di applicazione.