

Comsol Multiphysics Analisi termica

carmelo.demaria@centropiaggio.unipi.it

+ Comsol Multiphysics

000		Model Navigator						
	New	Mod	el Library	User Mode	ls Open	Settings		
▼ ► ▼ ■ Sho Libr	Fluid Dynan backste backste cylinder falling s fluid val microm shock tu sloshing Geophysics grounde rock fra Heat Transf Multidiscipl	nics p p argyris p quad flow and ve ixer ube g tank water flow cture er inary	w Docur Re	mentation	Descriptio 3D Fluid- Simulatio Channel A flexible bending pressure the defor turn affe of two-w	on: -Structure Inter on of an Obstace e obstacle in a under the visco e forces impose rmations are la ct the fluid flow ay fluid-struct	raction cle in a Fluid fluid channel is ous and ed by the fluid. If irge, they will in w. This is a model ture interaction.	
					Негр	Cancel		

Come cambia il profilo di temperatura nel tempo?

+ Simmetrie

- Simmetria rispetto ad un piano
 - Geometria simmetrica
 - Condizioni (al contorno ed iniziali) simmetriche

- Assialsimmetria
 - Geometria assialsimmetrica
 - Condizioni (al contorno ed iniziali) assialsimmetriche

+ Assialsimmetria

+ Esercizio Assialsimmetria Conduzione

+ Da 2D axi a 3D postprocessing

To postprocess the solution in 3D, first revolve the geometry into a cylinder in a 3D geometry and then map the axisymmetric solution to the cylinder using an extrusion coupling variable:

- 1. From the Draw menu, choose Revolve.
- 2. In the Revolve dialog box, leave the default settings and click OK. This creates a cylinder in 3D. Note that the axis of revolution in 3D is the y-axis, which means that the plane that you map the radial coordinate r to is the xz-plane.
- 3. Click the Geom1 tab at the top of the drawing area to return to the 2D axisymmetric geometry.
- 4. Choose Options>Extrusion Coupling Variables>Subdomain Variables.
- 5. In the Subdomain Extrusion Variables dialog box, select Subdomain 1 and then type T_2D in the first row of the Name column and T is the first row of the Expression column. This creates an extrusion coupling variable T_2D that represents the temperature (the variable T).
- 6. Click the General transformation button. The default source transformation (x: r and y: z) is correct.
- 7. Click the Destination tab.
- 8. Select Geom2 from the Geometry list, select Subdomain from the Level list, and finally select the 1 check box for Subdomain 1 in the Subdomain selection list. The variable T_2D is the only extrusion coupling variable and the software selects it automatically.
- In the Destination transformation area, type sqrt(x²+z²) in the x edit field, and leave the value y in the y edit field. This transforms r and z in the axisymmetric geometry to x² + z² and y, respectively, in the 3D geometry.

10. Click OK.

- 11. From the Solve menu, choose Update Model to map the solution to the 3D geometry.
- 12. From the Postprocessing menu, choose Plot Parameters.

+ Esercizio

 Raffreddamento del cemento durante la procedura di impianto della protesi d'anca cementata.

+ Esercizio: Convezione e conduzione

- Q = #matricola (W/m³)
- T = temperatura (in gradi centigradi) pari alle ultime due cifre del numero di matricola
- Fluido = acqua, profilo laminare
- Solido = ghisa
- Analizzare i casi U₁≥U₂