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behavior of a damper in the shear mode as well as in the flow mode, using a Bingham
plastic fluid model. We first consider the simplest flow geometry, which is a passage
of rectangular cross section, and then explore an annular flow passage, which is more
suited for many practical engineering applications. The flow passage of rectangular
cross section is formed by the gap between two parallel plates that also act as the
electrodes (in the case of ER fluids) or magnetic poles (in the case of MR fluids)
for the application of a field. An annular flow passage can be formed by the gap
between two concentric cylinders that also act as the electrodes or magnetic poles.
The behavior of dampers in the squeeze mode is not considered here; discussion of
this aspect has been provided by Stanway et al. [47, 48].

7.4.1 Rectangular Flow Passage

Let us consider the behavior of the fluid in a passage of rectangular cross section.
The fluid is enclosed between two parallel plates that also form the electrodes or
magnetic poles. An electric or magnetic field is applied across the height of the
passage d. The length over which the field is applied, or the active length, is L, and
the width of the passage is b. A schematic of this flow passage is shown in Fig. 7.22.
It can be assumed that a uniform field exists across the height of the passage, over
an area L x b. The fluid enclosed in this volume forms a simple active fluid element.
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Consider the force equilibrium on a rectangular fluid element of length dx,
height dy, and width b as shown in Fig. 7.23. The force equilibrium equation can be
written as

apP 9
—mX+Pdyb — tdxb — (P-l—adx)dyb + <t+a—;dy> dxb =0 (7.19)

where P is the fluid pressure, 7 is the shear stress, and m is the mass of the fluid
element given by

m=pdydxb (7.20)
where p is the mass density of the fluid. Substituting in Eq. 8.171, we obtain
a aP 9
o T T (7.21)
ot dox  dy
where u is the axial velocity (dx/0¢). Assuming a quasi-steady flow
ou
— =0 7.22
o (7.22)
The governing equation reduces to
9 oP
o _or (7.23)
ay ox

We examine the behavior of a damper using this active fluid element operating in
two modes: shear mode and flow mode.
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Figure 7.23. Differential fluid element, rectangular flow passage.
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Shear Mode

A shear mode damper can be constructed with the rectangular flow geometry shown
in Fig. 7.22 by moving the upper plate with respect to the lower one, while maintaining
a constant gap d between them. Assume that a force F, acts on the upper plate,
moving it with a constant velocity u,. A schematic of this configuration is shown in
Fig. 7.24. In this case, the pressure gradient is

P
— =0 7.24
o (7.24)
The governing equation reduces to
9
LA (7.25)

5 =
(a) Solution under zero applied field

When no field is applied, the fluid behaves like a Newtonian fluid. The shear
stress is given by (Eq. 7.1)

= — 7.26
T May (7.26)

where p is the dynamic viscosity of the fluid. Substituting in Eq 7.25, we obtain

?*u
— =0 7.27
oy (7.27)
Integrating twice leads to
u(y) = Ay + B (7.28)

The constants A and B are determined from the boundary conditions

= B =
u(0) =0 0 (7.29)
u(d) = u, A=u,/d
The velocity profile is given by
U
uy)=—y (7.30)
and the shear stress is
au u
W) =pg =k (731)
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The force on the upper plate required to move it with the velocity u, is given by

Fo=1(d)Lb
u, (7.32)
=pu—LDb
"
This can be equated to the equivalent damping force, yielding an effective damping
coefficient (inactive state) cg,.
, MnLb

Fo=cpuo = cg= =K r (7.33)

where T is a parameter that depends only on the geometry of the flow passage.
(b) Solution under non-zero applied field

When a field is applied across the gap, the fluid is modeled as a Bingham plastic.
The shear stress is given by

ou
= — 7.34
) =5+ g (7.34)

The velocity profile is calculated from the governing Eq. 7.25. Because 1, is inde-
pendent of y, and the boundary conditions are the same, the velocity profile is the
same as before

Uo
u(y) = 2y (7.35)
The shear stress is given by
Uy
(y)=1,+n i (7.36)
and the force in the damper is
F,=t(d)Lb
Uo
:(@+u7)Lb -
7.37
d 0
= < ty + 1) /Lu— Lb
Wty d
= u,

eq

where ¢, is the effective damping coefficient in the active state, defined as
oy = 1T (1 + Bi) (7.38)

The quantity Bi is called the Bingham number and is a nondimensional quantity
relating the yield stress to the viscous stress. Introducing nondimensional quantities
in the analysis, such as the Bingham number and other parameters based on the
damper geometry, enables the performance of different types and sizes of devices to
be compared on the same basis. Note that if the velocity u, is high, then the Bingham
number is small and, consequently, the increase in damping coefficient on activation
of the fluid is small. It can be concluded that when an activated fluid is subjected
to high velocities, because the Bingham number is small, the fluid tends to behave
more like a Newtonian fluid than like a Bingham plastic. Therefore, the displacement
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Figure 7.25. Rectangular flow passage: flow mode operation.
amplitude and operating frequency are also important parameters in characterizing
the performance of a damper. The expression for the Bingham number is

Bi T, _ yieldstress

"~ uu,/d  viscous stress (7.39)
It can be seen that the Bingham number depends on the yield stress and viscosity
of the fluid, as well as on the gap height and the velocity of motion. The smaller the
gap, the smaller the Bingham number. Note that for a Newtonian fluid, the Bingham
number is zero. The equivalent active damping coefficient, cg,, can be written as
(from Eq. 7.38)

Coq = Coq(1 + BI) (7.40)

We sce that the damping coefficient in the active state has increased by the amount
Bi. Therefore, Bi defines the amount of active damping in the device. To create the
largest change in damping on the application of a field, the ratio of active damping
coefficient to inactive damping coefficient must be high. Therefore

a

C,
“>»1 - Bix»l —15>»

0
eq

e
d

(7.41)

This means that the yield stress must be much higher than the viscous stress. Because
u, is based on the application and d is based on the geometry of the device,
the ideal controllable fluid should have a high yield stress 7, and a low dynamic
viscosity /.

Flow Mode

A flow mode damper can be constructed with the rectangular flow geometry shown
in Fig. 7.22 by holding both of the plates fixed and creating a fluid flow between
them. A schematic of this configuration is shown in Fig. 7.25. The fluid flow is caused
by the difference in pressures p; and p; at the ends of the flow passage. In this
case, the pressure gradient is related to the applied differential pressure AP across
the active length (assumed constant over the entire active length). Note that AP =
p1 — p2 is the pressure drop across the length of the gap. The pressure gradient is

given by
P AP pr—pi
—_— == 7.42
ox L L ( )

It is assumed that the location under consideration is sufficiently far away from the
ends of the flow passage such that the flow profile is fully developed. The governing
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\ AP \

Figure 7.26. Flow profile of the fluid in
the flow mode, no field applied (rectan-
gular cross section).

]

equation becomes
a aP AP
o _ o0 (7.43)
dy o L

(a) Solution under zero applied field

In the inactive state, the fluid behavior is Newtonian. The governing equation

becomes
P u AP
— =—— 7.44
oy T (7.44)
Integrating twice yields
AP
uy)=—->—=y"+Cy+D (7.45)
2ul
The constants C and D are determined from the boundary conditions
0)=0 D=0
{“( ) — {7 (7.46)

Substituting these constants into Eq. 7.45, the velocity profile of the flow across
the gap can be written as

AP , APd
u(y) = ~2L + 2L’
(7.47)
_ AP (d—y)
=@y

It can be seen that the velocity profile is parabolic (shown in Fig. 7.26). By symmetry,
it is evident that the velocity is maximum at the center of the gap
u(d/2) = u,
AP dd

T 2uL22 (7.48)

_ APd?
-~ 8ulL
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The velocity profile can also be conveniently expressed in nondimensional form

a(y) =4y(1-3) (7.49)
where
j=2 and = ui (7.50)
The shear stress in the gap is
ou A APd
) =ng = (-5 + 57
(7.51)
AP (d
L \27”Y

The force required to maintain the flow velocity in the passage, which is basically
the damping force in the device, is given by the product of the differential pressure
and the cross-sectional area. We can assume that the flow is created by a piston with
the same cross section as the flow passage, moving with a constant velocity u,. The
force required to move the piston is F,. Because the velocity profile across the gap
is parabolic, a mean velocity u,,, can be defined that is constant across the gap and
that yields the same volumetric flow as the parabolic profile. The volumetric flow Q
is given by

d d AP
0= / u(y)bdy = b / ——y(d —y)dy
y=0 0o 2nL

2 394
_APbTdy” ¥ (7.52)
2ul | 2 3 ]
_ APbd’
T 12ulL

The volumetric flow can also be expressed in terms of the mean velocity, u,,, as
follows

O = u,bd (7.53)
From Eqgs. 7.52 and 7.53, the mean velocity is

L _ APE
" 12ul

(7.54)

The damping coefficient of the fluid element can be found from the force and velocity
of the piston. The differential pressure is related to the force on the piston by

F
AP = — 7.55
which yields
12ubl.
F= ‘; Uy (7.56)
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Figure 7.27. Flow profile of the fluid in the flow mode, under an external field (rectangular
cross section), Bingham plastic model.

The damping coefficient of the fluid element under zero applied field, cf,, can be
found from the previous equation as

F

C = —
[«

T uy,

12ulb
d

(7.57)

It is seen that the damping coefficient depends on the geometry of the damper and
the viscosity of the fluid.

(b) Solution under non-zero applied field

When a field is applied, the velocity profile of the fluid changes depending on the
local shear stress. The flow velocity profile in the Newtonian case is parabolic and the
shear stress at the middle of the gap is zero. Therefore, around this region, the fluid
is in the pre-yield condition. Near the walls of the passage, the shear stresses may be
higher than the yield stress, resulting in post-yield fluid behavior. Treating the fluid
as a Bingham plastic, it can be seen that in the pre-yield region, the fluid behaves like
a solid and, therefore, has a constant translational velocity around the center of the
gap. Near the walls, the fluid behavior is Newtonian, with a parabolic velocity profile.
The resulting flow profile across the height of the gap can be considered as a solid
plug around the center of the gap, being carried along in a Newtonian fluid. This
flow profile is depicted in Fig. 7.27. The flow is divided into three regions: regions 1
and 3 are the post-yield regions and region 2 is the pre-yield region. The thickness
of the plug in the center of the gap is é.

To find the flow profile in the gap and the effective damping cocfficient, cach of
the three regions is treated separately. Substituting the expressions for shear stress
in each region, we see that the governing equation for all three regions reduces to

Eq. (7.44)
u AP
= 7.58
L T (7.58)
and the location of each region is
d—34§
d+$é
Y2 = 5 (7.60)
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Region 1
Integrating the previous governing equation twice leads to
ui(y) = —ZAM—iyz +Cy+G (7.61)

The boundary conditions in this case are

u1(0) =0 (7.62)
8u1

it =0 7.63
ay ly=y ( )

Whereas the first boundary condition is a result of the no-slip condition at the wall,
the second boundary condition occurs because there can be no discontinuity in the
flow profile. Substituting and solving yields the constants

G =0 (7.64)

AP APy,
- =0 = (G =
MLY1+ 1 1 s

(7.65)

Therefore, the velocity profile in region 1 is given by

AP APy
ul(y)=——2MLy2+ oL

AP

- y(Q2y — 7.66
2MLy(yl y) (7.66)
AP

= y(d-68—

2MLy( y)

Region 3
Integrating the governing equation twice leads to

AP
us(y) = —myz + Gy + Cy (7.67)

The boundary conditions in this case are

usz(d) =0 (7.68)
8Ll3

Ml _y 7.69
3y by, (7.69)

These boundary conditions are similar to that of the previous case. Substituting and
solving yields the constants

AP APy
——W —+ C3 =0 — C3 = 2 (770)

wl nl

AP , AP AP
—— j— =0 = —— -2 7.71
Z;LLd +uLdy2+C4 = G 2'Ude(d y2) (7.11)
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Therefore, the velocity profile in region 3 is given by

_ AP L AP AP e
us() = —5 ¥+ et g (@ = 2dy)
AP ~
- 2ML [(d y ) 2y2(d Y)] (772)

AP
=—(d- -4
m AR )
Note that this result can also be obtained from the symmetry of the flow

uz(y) = uy(d —y) (7.73)

Applying this relation to Eq. 7.66 results in Eq. 7.72.
Region 2

The velocity is constant in region 2, given by the velocity at the locations y; and y;.
Let us call the velocity of the fluid in region 2 the plug velocity, u,. Then we can

write
w(y1) =u
! (7.74)
us(y2) = uy
Substituting in Eq. 7.66, we obtain
AP
up =ui(y1) = ZM—LY%
(7.75)
_ AP(d—6)?
N 8l
As a check
AP
=—(d- )
uz(y2) om 7d=y2)(2—9)
AP (7.76)
=——(d—8)
8 7(d=95)
= L[p

Note that the solution of the governing flow equation (Eq. 7.43) in all three
regions involves a total of five constants: Cy, C;, C3, C4, and §. The boundary con-
ditions in regions 1 and 3 (Egs. 7.62, 7.63, 7.68, and 7.69) provide four equations.
The condition of equal flow velocities at the locations y; and y, (Eq. 7.74) does not
provide any additional information because y; and y, are fixed by the assumption
that the flow profile is symmetric about the center of the flow passage. Therefore, an
additional condition is required to find the thickness of the plug, 8. This can be found
by solving for the shear stress at the boundary of region 2. The governing equation
(Eq. 7.43) in region 2 is written as

k%) AP

oL (7.77)
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Integrating this equation yields

AP
n(y)=——7y+G (7.78)

The constants § and Cs can be found from the following boundary conditions
o) =1 (7.79)
n(y2) = -1 (7.80)

Substitution in Eq. 7.78 results in an expression for Cs

AP AP
= = 81
Gs 2L(Y1+Y2) Ld (7.81)
Therefore, the shear stress in region 2 is given by
AP AP
ny)=-—Fvy+-,d
AP (7.82)
=—(d-2
TARL

The plug thickness can be found by substituting the constant Cs in the first boundary
condition (Eq. 7.79)

AP AP 2L
—_—— — = = — . 3
Ly1+2Ld T, = § YAp (7.83)
It is convenient to nondimensionalize the plug thickness by the height of the gap
- & 2L

The value of § defines the state of flow through the gap.

(1) 8 = 0: The flow is purely Newtonian.

(2) 8 = 1: The gap is completely blocked and there is no flow of fluid. Given a specific
fluid, the differential pressure below which the flow passage remains blocked can
be derived as

AP < 2ok

(7.85)

Alternatively, to sustain a specified pressure differential without allowing any
flow, a fluid can be chosen with a yield stress such that

- APd
‘E —
.y

To calculate the effective damping coefficient of the activated fluid element, it

is necessary to find a mean flow velocity, u,,, by finding the total volumetric flow Q
through the passage

(7.86)

d
Q=/y0u(y)bdy
=201+0,

(7.87)
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where 1 and Q) is the volumetric flow through region 1 and region 2, respectively,
given by (from Egs. 7.66 and 7.75)

" AP AP
— - = 8
b/ 2yy1 ¥ dy = 2 7 (d = 8)* (7.88)

0,=5b / updy = A—Pb(d —5)%8 (7.89)
V1

Note that Q3 = (1. The total volumetric flow is given by
O=u,bd
APb

APb
_ " _ 3 =/~ _8\2
T 12u =9+ L(d 878

APb (7.90)
= G- 5)2<d+ )

APb &3 _ 5
= 1-8)%(1+ =
12 L (1-9) < +2>

From this equation, the mean velocity can be extracted as

Up = AP d2(1 —5)? (1 + g) (7.91)

12pL
The damping coefficient ¢f, in the active state is given by

a _Fﬂ

C e —
eq um

(7.92)

where F, is the force required to move the piston when the fluid is activated, given
by

F,=APbd (7.93)
From these equations, the active damping coefficient is

= E TS ~ AT (1949
(1=98)2(A+48/2) (1-=68)*(1+46/2)
The ratio of the damping coefficient in the active state to the damping coefficient in
the inactive state, as a function of different plug thicknesses, is shown in Fig. 7.28. It
can be seen that this ratio increases steeply as the plug thickness increases. For a plug
thickness of around 0.6, the damping coefficient increases by an order of magnitude
from the inactive to the active state.
The ratio of the damping coefficients in the active and inactive states can also
be expressed in terms of the Bingham number. The Bingham number is defined as

gi— 24
Um
o (7.95)
B 'l:y_d 12u L
o APAA(1—-38)2(1+5/2)
From the definition of plug thickness (Eq. 7.84)
68
Bi = _ _ (7.96)

(1-3)2(1+3/2)
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which yields the ratio of damping coefficients as

g _Bi
o 65

eq

(7.97)

It is interesting to note that using the Bingham plastic model, it is possible to obtain
a value of § = 1, meaning fully blocked flow. This would yield a damping coefficient
of infinity, which is not realistic. Using the biviscous fluid model would alleviate this
problem because of the finite pre-yield viscosity.

Piston Area and Flow Passage Area

Often, for flow mode dampers, the cross-sectional area of the piston head (A, ) may
not be the same as the cross-scctional arca of the flow passage (A;). An example
of such a case is a bypass damper (shown in Fig. 7.29). In this case, the damping
coefficient calculated from the force and velocity in the flow passage is different
from the damping coefficient with respect to the force and velocity of the piston. The
volume of fluid displaced by the piston head is given by

Qp = Apup (7.98)

where u,, is the velocity of the piston head. The effective damping coefficient of the
bypass damper, ¢4, is defined with respect to the piston velocity and the force on
the piston, F,

F, = ceqtp (7.99)
Area A
d NN Fg.uq
Figure 7.29. Equivalent damping coefficient of a Fo up
bypass damper. ‘ ‘é
l ]
Area Ap/
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