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Ottimizzazione Convessa

Le slide di questa parte del corso sono parte delle slide del corso del Prof.
Stephen Boyd della Standford University. Sul sito del Professor Boyd sono a

disposizione:

- 1l file pdf del libro “Convex Optimization” di Stephen Boyd e Lieven
Vandenberghe, Cambridge University Press
(http://www.stanford.edu/ boyd/cvxbook/)

- Le slide del corso “EE364a: Convex Optimization I”
(http://www.stanford.edu/class/ee364a/lectures.html)

- I Video delle lezioni



Mathematical optimization

(mathematical) optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1,....m

e r = (x1,...,x,): optimization variables
e fo:R" — R: objective function

e f;:R" - R,i=1,...,m: constraint functions

optimal solution z* has smallest value of fy among all vectors that

satisfy the constraints
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Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems
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Convex optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,....m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)
fa+8=1a>0 6>0

e includes least-squares problems and linear programs as special cases

Introduction
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solving convex optimization problems

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n?, n*m, F'}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization

Introduction



Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

e find a point that minimizes f; among feasible points near it
e fast, can handle large problems

e require initial guess

e provide no information about distance to (global) optimum

global optimization methods
e find the (global) solution

e worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction
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Brief history of convex optimization

theory (convex analysis): cal900-1970

algorithms

e 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
e 1970s: ellipsoid method and other subgradient methods

e 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

e late 1980s—now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
e before 1990: mostly in operations research; few in engineering

e since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . .. ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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Convex Optimization — Boyd & Vandenberghe

2. Convex sets

affine and convex sets

some important examples

operations that preserve convexity
generalized inequalities

separating and supporting hyperplanes

dual cones and generalized inequalities



Affine set

line through x1, x5: all points

r=0x1+ (1 —0)xs (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x; and x5: all points
r=0x1+ (1 —0)x
with 0 < 0 <1
convex set: contains line segment between any two points in the set
r,10€C, 0<0<1 = HOxr1+(1—-0)xxeC’

examples (one convex, two nonconvex sets)

Convex sets



Convex combination and convex hull

convex combination of z1,. .., xx: any point x of the form
562(911’1—|—(925132—|—“'—|—(9k£€k

with 0 4+---+0,=1,0; >0

convex hull conv S: set of all convex combinations of points in S

Convex sets



Convex cone

conic (nonnegative) combination of x; and z3: any point of the form
r = 01561 + (92562

with 8; >0, 65, > 0

L1

i)

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | alx = b} (a # 0)

Lo

a

T
™ a x> b
alez <b

e a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex

Convex sets



Polyhedra

solution set of finitely many linear inequalities and equalities
Ax < b, Cx=d

(A e R™™" C e RP*" < is componentwise inequality)

ai ao

as
as
a4

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex sets



Operations that preserve convexity

practical methods for establishing convexity of a set
1. apply definition

r,10€C;, 0<0<1 = Ox1+(1—-0)xeC’

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

® intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S={xeR"||p(t)| <1for|t| <n/3}

where p(t) = x1 cost + x5 cos 2t + - - - 4+ x,, cOsmt

for m = 2;

p(t)
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Affine function
suppose f : R" — R is affine (f(z) = Az + b with A € R™*", b € R™)
e the image of a convex set under f is convex

S CR"convex = f(S)={f(z)|x €S} convex

e the inverse image f~!(C) of a convex set under f is convex

C CR"convex = fHC)={xcR"|f(x)c C} convex

examples

e scaling, translation, projection

e solution set of linear matrix inequality {x | v141 + - + ,, A, X B}
(with A;, B € S?)

e hyperbolic cone {x | 21 Pz < (c'z)?, ¢’z > 0} (with P € ST})
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Perspective and linear-fractional function

n

perspective function P : R"t! — R™:
P(x,t) = x/t, dom P = {(z,t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : R" — R™:

Az +0b

—m, domf:{l’|CT$—|—d>O}

f(z)

images and inverse images of convex sets under linear-fractional functions
are convex
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example of a linear-fractional function

1
flz) = x
x1+x2+1

1 1
g 0 S0
-1 —1

—1 0 1 —1 0 1

X1 X1
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Generalized inequalities

a convex cone K C R" is a proper cone if

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples
e nonnegative orthant K =R, = {x € R" |z; > 0,i=1,...,n}
e positive semidefinite cone K = S/

e nonnegative polynomials on [0, 1]:

K={z cR" |z +aot + a3t + - +x,t" "+ >0 fort €0,1]}
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generalized inequality defined by a proper cone K:

r3ky <— y—x¢€k, r<gy < y—xcintk

examples

e componentwise inequality (K = R%})
:L’ij_sz — z;]vy;, 1=1,...,n
e matrix inequality (K = S%)

X jsv}r Y <= Y — X positive semidefinite

these two types are so common that we drop the subscript in <x

properties: many properties of <g are similar to < on R, e.g.,

T3KY, UKV = THUIKY+U

Convex sets
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Minimum and minimal elements

<k is not in general a linear ordering: we can have x A y and y A x

x € S is the minimum element of S with respect to < if

yES — T =K

x € S is a minimal element of S with respect to < if

yeSsS, yYyxkr — y==x

example (K = R?)

21 i1s the minimum element of S;
29 is a minimal element of Sy 1
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Separating hyperplane theorem

if C' and D are disjoint convex sets, then there exists a # 0, b such that

aTxgbfora:EC’, a'z>bforze D

the hyperplane {z | al'x = b} separates C' and D

strict separation requires additional assumptions (e.g., C' is closed, D is a
singleton)
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Supporting hyperplane theorem

supporting hyperplane to set C' at boundary point x:
{z|alz =a" 20}

where a # 0 and al'z < alzg forall x € C

supporting hyperplane theorem: if C' is convex, then there exists a
supporting hyperplane at every boundary point of C

Convex sets
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Dual cones and generalized inequalities
dual cone of a cone K:
K*={y|y'z>0forall z € K}

examples

e K =R!: K* =R}

o K =S1: K*=S%

o K ={(z,0) | [lzfla <t} K* = {(,) | |lzll2 <t}
o K ={(z,0) | [lz[ <t} K*={(,t) ] |lzllcc <1}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y-gx0 < yTxZOforallaziKO
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <g

Z 1s minimum element of S iff for all
A =g+ 0, x is the unique minimizer
of Mz over S

minimal element w.r.t. <g

e if £ minimizes ATz over S for some \ =+ 0, then = is minimal
A1
/

L1

i)

e if x is a minimal element of a convex set S, then there exists a nonzero
A\ =+ 0 such that = minimizes \! 2 over S

Convex sets 2-22
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Un cono € un insieme C di punti x per cui Ax € C per ogni A € R, .

Esempi di coni non propri:

Non convesso Convesso

non puntato non puntato Non Solido
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Diseguaglianza generalizzata indotta dal cono K = R’} dell’ortante non

negativo

In figura sono rappresentati i vettori confrontabili con x che sono piu grandi
(zona tratteggiata) e quelli che sono confrontabili con = e sono piu piccoli (zona
rigata). Le zone non evidenziate sono di vettori non confontabili con x per il

cono scelto.

W
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Iperpiano di supporto, cono duale ed elemento minimo

Il legame che c’e tra questi tre concetti e che se x € un minimo di S equivale a
dire che esiste un A che appartiene al cono duale e quindi il vettore —\ e la

direzione di un iperpiano di supporto ad S in z.

Infatti se 2 & minimo per S allora esiste A € K* per cui ATy > A\Tx per ogni
y € S. Per la definizione di cono duale si ha ATz > 0 e quindi —A\Ty < -\Tz <0
per ogni y € S. Per definizione —\ individua la direzione di un iperpiano di

supporto ad S in x.
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K =R2

—p-
[1,0]

Y

Esempio di elemento minimale che non ¢ minimizzatore per ogni A > g+ 0
nonostante esista un A = (1, 0)? lungo la cui direzione x ¢ il minimizzatore. Ni

noti perd che A\ = (1, 0) appartiene al bordo del cono duale (che coincide con
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Esempio di un elemento che non ¢ minimale (esistono vettori piu piccoli) che &
un minimizzatore (non unico!) per A = (0, 1) anch’esso appartenente al bordo
del cono duale.



optimal production frontier

e different production methods use different amounts of resources z € R"
e production set P: resource vectors x for all possible production methods

e efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. R}

fuel

example (n = 2)

x1, T2, T3 are efficient; x4, x5 are not

labor
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3. Convex functions

basic properties and examples
operations that preserve convexity
the conjugate function

quasiconvex functions

log-concave and log-convex functions

convexity with respect to generalized inequalities



Definition
f:R"™ — R is convex if dom f is a convex set and

flz+ (1—0)y) <O0f(z)+(1-0)f(y)

forall z,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

flOz +(1=0)y) <O0f(x)+(1-0)f(y)

forxz,ycdomf, x#y, 0<6<1

Convex functions
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Examples on R

convex:
e affine: ax +bon R, forany a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on R, for0 < a <1

e logarithm: logx on R,

Convex functions



Examples on R"” and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alx + b

o norms: ||z, = (1, |?) /7 for p > 1;

T||oo = maxy |z

examples on R™™" (m x n matrices)

e affine function

i=1 j=1

e spectral (maximum singular value) norm

f(X) — HXHQ = O‘maX(X) — ()\maX(XTX))l/Q
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Restriction of a convex function to a line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) =logdet X, dom f =S" |

g(t) = logdet(X +tV) log det X + logdet (I + tX—1/2VX—1/2)

— logdet X + Z log(1 4 tA;)
i=1

where ); are the eigenvalues of X ~1/2V X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of f is

~

f(zx)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fllz+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {c0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,
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First-order condition

f is differentiable if dom f is open and the gradient

_(01@) 0f(x) S
Vi) = ( Or;  Oxy '~ Ox, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > fx)+Vflx)'(y—z) forall z,y € dom f

f(y)
fl@)+ V) (y — =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ 9P f(x)

2 L=
v f(x)w &zziﬁazj’

1,7=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex

Convex functions 3-8



Examples

x) = (1/2)z" Pz + ¢z + r (with P € S™)

(

f(z)

quadratic function: f

V3 f(z)

= Px + q,

V

convex if P >0

| Az — b||3

least-squares objective: f(x)

convex (for any A)

27
5
(FZTSS
hhhhhﬂhhhhhh A
77
g
LTLFALT

quadratic-over-linear: f(z,y) = 22/y

AL 1] 11
AT ----
.u--------nn\\\ 7

e

7

/

convex for y > 0

3-9
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log-sum-exp: f(z) =1log> ,_,expxy is convex

1 1

VQf('CC) — —diag(z) o (].TZ)2

17 2 (21 = exp z)

to show V2f(z) = 0, we must verify that v!VZf(x)v > 0 for all v:

(Zk Zk”/%)(z:k Zk) — (Zk Uk:zk)Z
(5 2)° ="

vV f(x)v =

since (3, vkzk)* < (02, 2z1v3) (D2, k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[,_; zx)"/™ on R’ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set
a-sublevel set of f : R" — R:
Co={z €domf | f(z) < a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R"” — R:
epi f = {(z,t) e R"™ |z € dom f, f(z) <t}

epi f

f is convex if and only if epi f is a convex set

Convex functions
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+ (1 =0)y) <0f(z)+(1—-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =z) =0, prob(z=y)=1-10
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

flx) = —Zlog(bi —a; 1), domf={z|a]z<b,i=1,...,m}
i=1
e (any) norm of affine function: f(x) = ||Ax + b||
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1 . n(alx + b;) is convex

e sum of r largest components of x € R":
f(@) = 2py+ 2 + -+ 2

is convex (xy; is ith largest component of x)
proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}
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Pointwise supremum

if f(z,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples

e support function of a set C: S¢(z) =sup,ccy’ « is convex

e distance to farthest point in a set C"

f(z) = sup ||z -y
yel

e maximum eigenvalue of symmetric matrix: for X € S”,

Amax(X) = sup yTXy
lyll2=1

Convex functions
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Composition with scalar functions

composition of g : R — R and h: R — R:

. .. g convex, h convex, h nondecreasing
f is convex if ~ _ _
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f'(x) = h"(g(x))g'(x)* + ' (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of ¢ : R® — R* and h : R* = R:

f(CC) — h(g(x)) — h(Ql(x)ag2(x)7 T 7gk(x))

. .. g; convex, h convex, h nondecreasing in each argument
f is convex if ~

g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

(@) = g'(2)" V*h(g(2))g'(x) + Vh(g(x))" g" (2)

examples
e > " loggi(x) is concave if g; are concave and positive

e log> " expg;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(:v, y)

IS convex

examples

o f(z,y) =2l Ax + 22T By + vy Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(x,y) = 21 (A — BC~ Bz
g is convex, hence Schur complement A — BC~1BT >0

e distance to a set: dist(x,S) = inf,cs ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R™ — R is the function ¢ : R” x R — R,
g(a,t) = tf(xft),  domg={(z,t)| 2/t € dom, t >0}

g is convex if f is convex

examples
o f(z) =x'xis convex; hence g(z,t) = 21z /t is convex for t > 0

e negative logarithm f(z) = —log x is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex on R?Hr

e if f is convex, then
g(x) = (chz+ d)f ((Az +b)/(c' z + d))

is convex on {x | ¢’z +d >0, (Az+b)/(c!'z +d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

rxedom f

f(x)

v ,/’»(0, —f*(v))
e f*is convex (even if f is not)

e will be useful in chapter 5
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examples

e negative logarithm f(z) = —logx
f*(y) = sup(zy+logw)
x>0
_ —1—log(~y) y <0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z' Qz with Q € ST},

() Slip(nyc — (1/2)z" Qx)

1T—1
= 2yQ Y
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