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Detection of Incipient Object Slippage by Skin-Like
Sensing and Neural Network Processing

Gaetano Canepa, Rocco Petrigliano, Matteo Campanella, and Danilo De Rossi

Abstract —Detection of incipient slippage is of great importance
in robotics for the control of grasping and manipulation tasks.
Together with fine-form reconstruction and primitive recognition,
it has to be the main feature of an artificial tactile system. The
systein presented here is based on a neural network used o
detect incipient slippage and on a skin-like sensor sensible to
normal and shear stresses. Normal and shear stresses components
inside the sensor are the input data of the neural net. An
important feature of the system is that the a priori knowledge
of the friction coefficient between the sensor and the object being
manipulated is not needed. To validate the method we worked on
both simulated and experimental data. In the first case, the Finite
Element Method is used to solve the direct problem of elastic
contact in its full nonlinearity by resorting to the lowest number
of approximations regarding the real problem. Simulation has
shown that the network learns and is robust to noise. Then an
experimental test was carried out. Experimental results show
that, in a simple case, the method is able to detect the incipiency
of slippage between an object and the sensor.

I. INTRODUCTION

TNTIL now, two principal methods have been presented
to obtain optimal grasp force avoiding (or controlling)
the slippage of the manipulated object. The first method
was presented by Bicchi er al. [1], [2]: in this case the
robot performs, through exploration, an estimation of the
friction coefficient (y) between a force-torque tactile sensor
and the manipulated object. Using this estimated value of
jo it is possible, by measuring the normal and tangential
components of the contact force. to avoid slippage during
manipulation. Problems arise in the case of occurrence of
twisting moments [3]; in such a case, the slip condition
depends on the distribution of normal and tangential stress
in the contact area.

A second method has been proposed by Cutkosky et al. [4],
[5]. They detect incipient slippage by sensing microvibrations
caused by the propagation of the slip regions within the
contact area as the tangential force increases (see Section
I1). Vibrations are detected using a couple of accelerometers:
an accelerometer, placed near the contact area, is particularly
sensitive to vibrations caused by slip-zone widening, while
the second, far from the contact zone, is used to limit the
influence of environmental noise. Studies in neuro-physiology
[6] demonstrate that human beings perceive sliding in corre-
spondence with firing activity of Pacini corpuscles (the tactile
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receptors sensitive to high frequency vibrations). Monitoring
vibrations to detect incipient slippage seems, for this reason, to
be natural. This method has the advantage of working without
the knowledge of u (on the contrary this method can give
a measure of p as a result of a manipulative act) and it
does not use sophisticated sensor arrays, but just two simple
accelerometers. On the other side, this method is vulnerable
to numerous artifacts due to environmental vibrations and
to vibrations generated during multifinger manipulation (joint
vibration and cross-sensor noise).

Other methods have been proposed [7] but they do not
appear to he particularly ugeful  since thev essentially measure
slippage when it already occurred.

Two studies are presented here, related to the use of a
tactile sensor array to detect incipient slippage. We designed
and realized a tactile sensor selectively sensitive to shear and
normal stress components generated during frictional contact.
In the first part of the study we present here, we worked
only on simulated data. They were obtained through the finite
element technique and they were used to produce the input
signal necessary for validating the method and to select the
best network structure. The preliminary results of this study
|8] were encouraging but they need experimental verification:
the second part of the study was carried out for this purpose.

A neural net, whose inputs are the shear and normal
stresses sampled at the transducer level (both simulated and
experimental), provides as output a global sliding coefficient.
This coefficient is ideally equal to the ratio 7‘% where (@ and
P are, respectively, the tangential and the normal reaction on
the surface of the sensor. Consequently, when the output of
the network is near to 1, the contact is near to the sliding
condition. The advantages of the use of this technique are:

« high immunity to vibration noise;

+ possibility of an easy integration with already developed

neural networks for fine-form reconstruction [9], [10];

« high speed and suitability for closed-toop control of

grasping and manipulation.

Experimental data are obtained using a simple prototype of
an array tactile sensor we developed. The sensor is described
in Section IIL.

This paper is structured as follows. First, the incipient
slippage condition is described in terms of contact mechanics,
and the sensor design is briefly outlined; then we report
a description of the approach used to find the solution of
the direct problem by means of the Finite Element Method
(FEM) to obtain simulated data; subsequently the structure
of the neural network used to achieve the solution of the
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inverse problem, for both simulated and experimental data,
is discussed; finally, experimental results are reported.

II. INCIPIENT SLIPPAGE CONDITION

From contact mechanics {117, it is kinown that a langential
force whose magnitude is less than the force of limiting
friction, when applied to two bodies pressed into contact,
will not cause a sliding motion but, nevertheless, will induce
frictional traction at the contact interface. It can be shown
that a small relative motion (referred to as “microslip”) over
part of the interface occurs also when the tangential force
is inferior to the limiting friction force (@ < pP). The
remainder of the interface deforms without relalive motion
and in such regions the surfaces are said to adhere or to
“stick.” As it has been said in the introduction, the slip
area propagation produces micro-vibrations (particularly in
proximity of incipient slippage condition). At the points within
the stick region the local shear traction does not exceed its
limiting value. Assuming Amonton’s law of friction with a
constant coefficient j, this restriction may be stated

lglz, )| < plplz.y)| (1

where g(x,y) and p(z,y) are tangential and normal traction
fields, respectively. Moreover, points located in a “stick™
region must have a null slip.

Indicating rigid displacements at the points that are far from
the contact region with &, and &, and elastic displacements at
the stick contact region by i, and i,. the following equations
must be satisfied:

Ugp) — U2 = (a:rl = é.rz) =0z
_ _ (2)
iy — Ty2 = (8y1 — &y2) = &y

where indexes 1 and 2 indicate two (normal and tangential)
load situations without complete slippage. In a slip region, the
tangential and normal traction are related by

lg(z, y)| = plp(z, y)l- (3)

In addition, the direction of the frictional traction ¢ must be

the opposite of slip direction. Thus
o(zy) _ _ s(=zy)
la(z.w)l  [s(z,9)|

4

where s(z,y) represents the displacement along X axis, rela-
tive to the origin, of a generic point having coordinates (. y).
Equations (1)—~(4) provide boundary conditions which must be
satisfied by the surface tractions and surface displacements at
the contact interface. Equations (1) and (2) apply to a stick
region, and (3) and (4) apply to a slip region.

On these grounds, the ratio of the extensions of the stick and
slip regions over the interface would appear to be a good index
of the incipient slippage state, as well as the ratio §; = ‘3, {8}

In this work we wanted to teach to a neural network to
detect the slippage index directly from the measurement of
the stress field inside the sensor. To obtain this result we built
a learning set composed of couples of normal and shear stress
field measurements in the sensor. To each data is associated a
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certain value of S;. The S; value is obtained in two different
ways.
¢ In the case of simulated contact, S; is obtained by
calculating the resultant of the tangential and normal
reactions. and assuming the relation ﬂgﬁ = 1 valid in
incipient slippage conditions.
e In the case of real data, S; is given by measuring
the friction limit angle (f = arctan(su)) between the
indenter and the sensor rubber layer (see Fig. 6); then

S, =_Q_ _ Q _ tan(6)
! uP - tan(6r )P N tan(fL)

&)

where # is the angle between the force applied to the
indenter and the perpendicular to the sensor surface.

III. A TACTILE SENSOR FOR INCIPIENT SLIP DETECTION

Incipient slippage can be detected by the progressive shape
changes of the stress spatial distributions inside the sensor
block due to an incremental tangential load acting on the
pressing body. while maintaining a constant normal load [R],
[12].

To detect the incipience of slippage we developed a sensor
that is able to measure two components of the internal stress
field generated by the contact with different objects (see
Fig. 1). It consists of a linear array of eight couples of
piezoelectric polymer transducers: one transducer of each
couple is sensitive to a combination of normal stresses [13],
while the other detects the shear stress along the direction of
the array. The real sensor cannot have higher spatial resolution
because the transducer needs to have a big area to enhance
the signal to noise characteristic.

Fig. 1 depicts the sensor. It is a multilayer structure made
of a 1-cm thick Aluminum base used to fix the sensor to the
test structure. On the aluminum base is fixed, by means of four
screws, a custom printed circuit on which the metal contacts
for the transducers are phatolithographically engraved. Two
different types of piezoelectric polymer films are then glued,
with cyanoacrylic glue, on the printed circuit. A layer of
conductive paint is distributed on the polymeric layer to realize
the ground contact. Finally, a 1.5-mm thick layer of natural
rubber completes the structure.

Some tricks are necessary to obtain a reasonably good signal
from the sensor. In fact, the two polymeric films used in the
sensor are obtained in two ways and present different behavior
while force or temperature on the transducer change. A layer,
the one sensitive to a combination of normal stresses, is made
of a 28-um thick two-axial PVDF film (from Solvay & Cie,
Bruxelles, Belgium). The other layer is made of a 60-um
thick PVDF film obtained cutting with a microtome a 1-mm
thick sheet of mono-axial PVDF (from Thomson CSF, Paris,
France), perpendicularly to the stretching direction. Using this
procedure we obtain a set of 5-cm long, 60-pm thick, |- mm
large shavings. To reduce the influence of temperature changes
and of normal stress components, we cut and glued this film
on the contact in an appropriate way. We first glued a 3-mm
long piece of shaving on a half of the printed circuit contact;
then we glued another 3-mm piece of shaving near the first
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Metal contact

Rubb/er layer

o
Biaxial PVDF
Printed circuit

Monoaxial PVDF
Aluminum base

Fig. I. A schematic of the tactile array sensor able to detect the incipiency
of the slippage. Each ractel is composed of two transducers: one is sensitive
to a combination of normal stresses while the other is sensitive to the shear
stress in the arrow direction.

one. This second piece was glued upside-down and rotated of
180° on the printed circuit plane. The same procedure was
followed for each contact. In such a way, only the shear stress
component of the stress, in the direction of the array, is able
to elicit a net charge at the electrodes. For the same reason
also the pyro-clectric cffect is minimized.

The net charge generated by the indenter contact with the
sensor is acquired using a set of 16 charge amplifiers. To avoid
the saturation problem we put a resistance in parallel to the
charge amplifier capacity. The time constant of the RC group
was | s.

The outputs of the amplifiers were directly connected to a
16 channel analog-to-digital converter board, PCL812PG (Ad-
vantech Co. Lid., Taiwan). inseited in a 80386 PC. Complete
array data acquisition was performed at a sampling frequency
of 100 Hz.

IV. NUMERICAL SOLUTION OF THE DIRECT PROBLEM

To obtain simulated data we needed to solve the tactile direct
problem in presence of friction: given the object as well as the
normal and the shear force applied to it, the stress acting on the
transducers inside the sensor has to be found. The following
constraints must be considered.

« Friction is a very complicated phenomenon and it depends
not only on the material of both the sensor and the object
in contact, but also on environmental conditions, surface
finishing and other uncontrollable factors. The friction
coefficient is both a very simple and, at times, inadequate
parameter to describe the problem.

« Even if it was possible to describe friction by Newton's
law, contact between two bodies in the presence of
friction is one of the most complex problems of contact
mechanics, and the direct problem never admits a closed-
form solution.

« A general solution for different shapes of the indenter can-
not be found, even if approximations and simplifications
are introduced into the problem

Since the direct problem cannot be solved analytically, the
FEM approach was used. Given the complexity of the problem,
some simplifying assumptions were required to obtain the
data needed to feed the tactile network. The model was made
up of two parts: the pressing body and the sensor block. It

¥
indenter
. rofile
a=1. Ny
b~_. *%. ol
C ‘ ' 7 . v " . 1 X
transducers

Fig. 2. Model of the sensor. The transducers are posed directly on the rigid
base while the indenter is schematized by its nodes in the plane »-y connected
to the sensor by means of gap elements (dashed lines). Nodes on the sides
and on the surface are free. except the ones connected to the indenter and to
the sensor using (b) gap elements: they are free only if the (a) indenter node
and (c) the sensor node are not in contact. The gap elements (a 4+ b 4 ¢)
automatically manage situations of stick and slip.

was assumed that the model extends indefinitely along the
Z axis to reduce the great number of calculations of the tri-
dimensional case The pressing bodv was modeled assnming
that it has infinite stiffness; hence, only the coordinates of
the nodes on its profile were given. The sensor block was
partitioned in a rectangular mesh representing the superficial
rubber layer, where the sensor elements were ideally placed
in the nodes at the sensor’s base (see Fig. 2). Constraints in
all three spatial directions were imposed on the base nodes
to simulate the rigid base of the sensor block. The mesh of
the sensor hlock was denser at the top surface zone, because
the stress and the strain gradients are expected to be greater
there. Two-dimensional, isotropic elements suitable for solid
structures modeling were used to build the sensor block. Non-
linear elements were not used because the rubber in the sensor
presents linear stress-strain characteristics up to 20% strain, as
determined in separate stress-strain tests.

The interaction between the two bodies is simulated by
using gap elements to link the nodes of the indenter with
the corresponding ones of the sensor block. A gap element
produces stress only when the two bodies tend to penetrate,
while it lets them free to separate. The indenter was supposed
to be applied only on the sensor center (see Fig. 2).

One of the most important phases at the planning stage is
the mesh dimensioning. The mesh must be structured correctly;
along with this, the optimal number of elements must be found
for the problem to be solved. A high number of elements with
a very dense mesh can lead to accurate results, but it is very
penalizing in terms of computational load. On the other hand,
a poorly dimensioned mesh can yield quite crude results. In
this work great care was taken in dimensioning the mesh,
using both time and computational load as cost parameters.
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Fig. 3. (a) Percentage error curves in the determination of the normal stress
component o, and (b) the shear stress component 7, for various tangential
indentation values. On the horizontal axis the distance from the sensor center
is reported.

One simulation was executed at the maximum mesh density
allowed by the wave-front (bandwidth of the global stiffness
matrix) limitations of the program: this large mode! uses
123 % 33 nodes to represent the sensor block. Another model
was dimensioned, using practical considerations involving the
number of sensors composing the array, in a 41 x 11 mesh.

In the following the most accurate simulation is referred to
as simulation A, the other as simulation B. The simulation
results samples are indicated with the subscript i (A; and B;),
the displacement between indenter and sensor is indicated as
iz, the normal stress field value with o, and the tangential
stress field value with 7.

After re-sampling the stress curve rebuilt from simulation B
data using a spline third order interpolation, so as to have two
arrays of the same length to compare, the following formula
was used to estimate the relative error introduced by the
rougher quantization:

B; _ xAi
. b ®)
mzuc‘ay ! | >
e = &y
= —_—— 7
€'r_,, IUEXI‘T_E‘L' ( )

As can be seen from Fig. 3, where the error curves are
shown in the case of a parabolic indenter with a normal pen-
etration of 0.15 mm and five steps of tangential displacement
linearly increasing from 0 mm to 0.3 mm, the error is always
quite small. Table I shows that the maximum error is 11.05%,
i.e., small enough to justify the use of the rougher mesh for
further simulations. In addition, it is important to note that
the absolute error is usually much smaller than the maximum
absolute value recorded at the borders.
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TABLE 1
MaxiMuM PERCENTAGE ERRORS IN @y AND Try FOR DIFFERENT VALUES OF
TANGENTIAL DISPLACEMENT OF THE INDENTER. ON THE HORIZONTAL
Axis THE DiSTANCE FROM THE SENSOR CENTER IS REPORTED

Usr max % error in o, | max % error in Tey
] 3.46 11.05
0.075 4.73 10.10
0.15 6.19 9.74
0.225 7.81 9.36
0.3 9.34 8.55H
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Fig. 4. (a) Normal and (b) shear stresses at the sensor array plane for various
tangential indentation values. On the horizontal axis the distance from the
sensor center is reported.

System geometry is shown in Fig. 2 in the case of simu-
lation B. Fig. 4 shows the normal and shear stresses caused
by a fixed normal indentation and an increasing tangential
indentation, in the case of simulation A. It can be seen how
72y Shapes change with the progressive increase of tangential
loading while o, shapes show little change, while in Fig. 5 the
spatial distribution of normal and shear stress fields inside the
sensor block are shown for a parabolic indenter with normal
and tangential load.

V. BACK PROPAGATION NEURAL
NETWORKS TO DETECT INCIPIENT SLIP

Multilayer perceptrons networks trained using the backprop-
agation (BP) algorithm have been used in a large number
of problems dealing with class discrimination and pattern
recognition [14]. They have shown a particular ability in
solving tactile data processing related problems [8], [9], [15].
even in a noisy environment. In this work the ability of a BP
network to detect incipient slippage is tested.

As we said in the introduction, we investigated about the
possibility of a neural net to discriminate the incipience of the
slippage using both simulated and real data. In this section we
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Fig. 5. This is an example of the results obtained from simulation. A section
of the model of the indefinite sensor is shown while a parabolic indenter is
pressed on it: the contour lines of (a) normal and (b) shear stress fields are
shown in the case of both normal and tangential indentation appiied 1o the
paraboloid:

report about the preliminary dimensioning of the network and
the results obtained on simulated data.

As described in Section III, it was impossible to obtain
a sensor with high spatial resolution joined to an adequate
sensibility: consequently our actual sensor is made of only
eight tactels. Using simulation it is possible to obtain data
with higher spatial resolution: as a consequence. we supposed
to obtain data from a sensor having 21 sensitive sites (tactel)
composed by two transducers, for a total length of 2 cm.
The results of the work on this simulated data are interesting
because they can elicit the behavior of the network with data
that still cannot be obtained from any sensor and are also
useful to select a net structure using adequate learning and
recalling sets.

A. Network Design

The input data are the normal and shear stress components.
Since the simulated device is composed of 21 normal stress
sensitive elements and 21 shear stress sensitive elements,
the input laver of the neural network is dimensioned in 42
processing elements (PE). The detection of incipient slippage
is made assuming as network output the slippage index S;
S = “—OT, This implies the use of only one PE in the output
layer. After dimensioning the input and the output layer of the
network, the hidden layers as well as their numbers have to
be dimensioned. Some neural network computational studies
[16] have shown that a three-hidden-layer BP neural network
is able to make any arbitrary partitioning of the input space.
However, depending on the complexity of the problem, it may
be unnecessary 1o use all the hidden layers.

Since the number of sensors in a linear array has been fixed
to 42, and since it is impossible to decide in advance if all the
sensors will be equally important to the sensing task, the first

choice has been to dimension the input layer in 42 PE’s. The
output layer, as said before, has one PE.

The next design step resides in defining the hidden layers.
It is necessary to recognize the progressive changes of a curve
toward a certain state, with no concerns about the type of curve
we are dealing with. The neural network should be able to
extrapolate the elements characterizing the shape changes, and
it should show a complete immunity to the curve shape itself.
Two network families have been tested, starting with a one-
hidden-layer structure and increasing the number of hidden
layers as long as the network response was not satisfactory.

The following six networks have been designed and tested:

1) one 42 PE’s hidden layer:

2) one 84 PE’s hidden layer:

3) one 21 PE’s hidden layer;

4) two 42 PE’s hidden layers;

5) one 42 PE’s and one 82 PE’s hidden layers;

6) one 42 PE’s and one 21 PE’s hidden layers.

The activation function used in each layer strictly depends
on the space to be explored and recognized. Our problem is
hoth a classification and an approximation one: therefore, it
seems appropriate to use the sigmoidal activation function

11—-¢77
f&)=315e=

in all the layers, because this structure has shown to provide the
best average response in both classification and approximation
|‘li'ubki'|'| {17]. To minimize the maximum absolute error in the
recognition of S; the maximum error estimate has been used
as error criterion. The algorithm that rules the learning phase is
the Generalized Delta Rule in its original formulation [16]; the
reason of this choice is that the standard algorithm provides the
“worst case analysis,” giving an estimate of the lower feature
limit of the network. The square summation of the output error
(SSE) has been used as error criterion.

B. Learning Parameters

The typical BP learning algorithm usually involves four
parameters: Learning Rate (LR), Momentum (M), Learning
Data Noise (LDN), and Cycle Number (CN) [18]. The values
of LR = 0.1 and M= 0.9 [16] have been used for the
first two parameters. Networks have been trained with both

deviation of 10% of the maximum stress found during the
simulation) learning sets, to test the change of the performance
in presence of noise. The optimal value of the CN parameter
came out, from preliminary training sessions, to be 10000,
even if more learning cycles were used to train the two-hidden-
layers networks 4 to 6, since they have more internal states to
be set properly. In none of the cases the value of 15000 cycles
was exceeded. It is worth mentioning that CN represents the
maximum number of cycles that a network can reach during a
training session; moreover a trigger was set in the neural net
simulator program to provide a learn break mechanism when
the error goes below a specified value, to prevent the network
from over-learning phenomena.
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TABLE 11
QutpuT ERRORS EXHIBITED BY THE NEURAL NETWORKS FOR DIFFERENT NETWORK DESIGNS IN BOTH THE LEARNING AND THE
RECALLING PHASES. THE ERROR ARE ABSOLUTE ERROR REFERRED TO THE MAXIMUM SLIPPAGE INDEX VALUE OF 1

Network Learning Phase Recalling Phase
configuration || Max Error | Mean Error | Std Dev || Max Error | Mean Error | Std Dev
#1 0.04922 | 0.002614 0.00438 0.27284 0.03554 0.03401
#2 0.05606 0.00355 0.00306 043712 N.04601 0.046486
#3 0.04602 0.00253 0.00416 0.26308 0.03805 0.03370
#1 0.04221 0.00250 0.00334 0.19630 11.03436 0.02856
#5 0.04311 0.00236 0.00351 0. 18508 0.03416 0.02921
#0 0.04082 |  0.00130 0).00258 0.17709 0.03416 0.02918

C. Learning Set Design

In this work the indenter shape class has been limited 1o
convex functions. Considering that an exhaustive learning set
cannot be obtained, and a set formed by an arbitrary number of
arbitrary shapes would not allow a good representation of the
input class, a Taylor polynomial approach was chosen. In other
words, a learning set was built using powers of x from 0 to
n, and all their possible linear combinations with coefficient |
(e.g.inthe case n = 2 : 1, x, 2%, x+x?). A learning set of 32
Taylor fifth order shapes (that is, all the possible combinations
from f(z) =010 f(z) =z + 2% + 2* + 2* + 2°) has been
built to feed the network. A constant normal displacement of
0.15 mm and a linearly increasing tangential displacement with
a step of 0.05 mm was then imposed to the indenter.

D. Design of the Recalling Sets

A properly sclected recalling set would have to be fully
representative of the objects the network will have to deal
with in its real work place. It has to be compatible with the
information embedded in the learning set, too. The recall set
has been built using common shapes, giving for each of them
four different examples. Indenters with the following cross
sectional shapes were used:

1) flat;

2) trianguiar:

3) parabolic;

4) spherical;

5) exponential;

6) trapezoidal;

7) flat with parabolic edges.

E. Results With Simulated Data

The networks have been trained using an absolute maximum
error trigger of 0.01, used to stop learning whenever the error
becomes less than 1% with respect to the data value range
({=0.5,0.5}), or when the cycle counter reaches the maximum
cycles value (see Section V-B). The behavior of the networks
in the learning phase and in the recall phase is illustrated by
the values reported in Table II. The table shows that all the
networks have similar behaviors.

Although a very small value of the standard deviation
suggests that almost all the recall examples present an error
near to the mean error, the maximum absolute error is high.
The examples that caused an error over 10% have been
examined, and a common characteristic was found: they were

all sharp indenters near to the slipping condition. This can be
justified by the fact that sharp indenters act on a few sensors,
causing a bad representation of the stress curves at the network
inpul.

It should be noted that the learning history slightly influ-
ences the performance of a network (the initial weights of the
connections are generated randomly and there are oscillations
during the learning phase); consequently, referring to a trained
network as the “best performing™ one with a narrow margin
with respect to the others does not imply that all the other
networks have a poor performance. In the preceding tests
the better performance of the two-hidden-layer networks is
evident, while the choice of the best performing network
among #4, #5, and #6 has been slightly influenced by the
learning history.

VI. A NETWORK FOR REAL DATA

When we use the real sensor we could only obtain eight
couples of field sample: using this data we conducted, anyway,
a preliminary experimental study.

The network input data are the normal and shear stress
components. Since the experimental device is composed of
eight normal stress sensitive elements and eight shear stress
sensitive elements, the input layer of the neural network is
dimensioned in 16 processing elements (PE). The detection
of incipient slippage is made assuming as network output the
slippage index S;: S; = ;‘% = ;%“(%. This implies the use
of only one PE in the output layer.

After dimensioning the input and the output layer of the
network, the hidden layers as well as their number have to be
dimensioned. In Section V we found that even a very simple
net, with only one hidden layer with the dimension of the input
layer, is able to detect the incipiency of slippage. Anyway.
our data are a little bit more complex to analyze: the indenter
could be in any position on the sensor. As a consequence, we
chose to use the simpler double hidden layer network structure
described in Section V: this structure has a first hidden layer
with the same dimension of the input one (that means 16 PE)
and a second hidden layer with a half of the elements (8 PE).

The other structural elements of the network, and the
learning parameters, were the same than on Section V.

Working with real data we need to keep the indenter
shapes class limited to a very simple and small set of convex
indenter. The class is quite small because of the difficulties
we encountered to obtain a high number of data. Moreover
the low resolution of the sensor output implies that small
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Fig. 6. A drawing of the structure used to apply the indenter on the sensor.

difference in the indenter shape does not produce noticeable
output difference.

Due to the difficulties described in the experimental results
section. we could only use a limited number of friction limit
angles and angles of application of the indenter load.

The shape of the indenter we chose was as follows:

1) flat (4 mm wide);

2) flat (6 mm wide);

3) flat (10 mm wide):

4) cylindrical (radius 10 mm);

5) cvlindrical (radius 30 mm);

6) triangular (edge angle 60°):

7) triangular (edge angle 120°);

The indenter was applied on three different positions on the
sensor: centered and = 2.5 mm from the center. As regard the
friction limit angle between the indenter and the sensor we
used two values (25° and 38°). We obtained the first value of
critic angle distributing talcum powder on the sensor surface.
We applicd the foree to the indenter with three angles: %152,
and 30° (the last one could only be applied when the critic
angle was 38°).

Using a combination of different indenters, different friction
critic angles, contact point position, and resultant angles we
obtained a training set made of 25 examples and a recalling
set made of 11 examples. Using the values of critical angle
and angle of the resultant we obtained different values for S;.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup and Preliminary Measurements

To obtain shear and normal stress field data we needed
to apply a calibrated force to the sensor using different
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Fig. 7. Two samples of the data acquired from the sensor when pushed with
two different indenter shapes: shape 4 with # = 15°, and shape 7 with no
tangential load applied.

indenter. Moreover we needed to measure the critic angle
between the sensor and the indenter. To have a coherent sel
of data, indenters was made larger than the sensor surface.
It was pushed on the sensor transversely to the direction of
transducers.

A simple experimental setup was built to enable us to apply
a force with a given application angle and to determinate the
friction critic angle (see Fig. 6). We fixed the sensor on a
micrometrical table that may be tilted of a known angle. Then,
we pushed the indenter on the sensor using a small hand pillar
press and a suitable mechanical structure.

This structure (see Fig. 6) is made of three pieces of
aluminum joined by two hinges B and C. The indenter I
is screwed to the structure. Screw A and the wing nut in
C allow to adjust the indenter position in such a way it is
perpendicular to the sensor surface S. Moreover, the direction
of the force applied by the press, passes for the contact point
O. When we apply the load, hinge C is blocked while B may
only turn in the counter clockwise direction. Force F is then
applied without generate any torque in the contact area. The
force application angle @ is easily measured.

Before stress data acquisition we measured the friction critic
angle 0. The procedure consists in tilting the sensor (adapting
the structure and the indenter in the meantime) until a rotation
around hinge B happens because of a slippage of indenter L
This measure must be carried out very carefully, applying the
indenter gently to avoid stick phenomenon.

B. Data Acquisition

Using the experimental setup we just described, we acquired
data from the charge amplifiers for 10 s while we were pressing
an indenter against the sensor. We then selected the sample
with the highest normal stress value. This procedure was
repeated for each element of the learning and of the recalling
sets. Two examples of the acquired data, for two shapes of
indenter, are shown in Fig. 7. An important thing we need to
point out is that the sensor was not calibrated, as can be seen
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