Lesson 3 - 17/11/2015

Comsol models

Serena Giusti serena.giusti@centropiaggio.unipi.it

Consumo e diffusione di O2

Obiettivo:

Implementare un modello Comsol di due costrutti cellulari sferici del raggio di 2 mm, uno in gel e uno poroso (porosità 90%, permeabilità 1E-9 m²), perfusi all'interno di un canale di diametro 15 mm e lunghezza 10 mm, con consumo di ossigeno secondo la cinetica di Michaelis-Menten

Physics:

Convection-Diffusion Brinkman Equation

Dati modello:

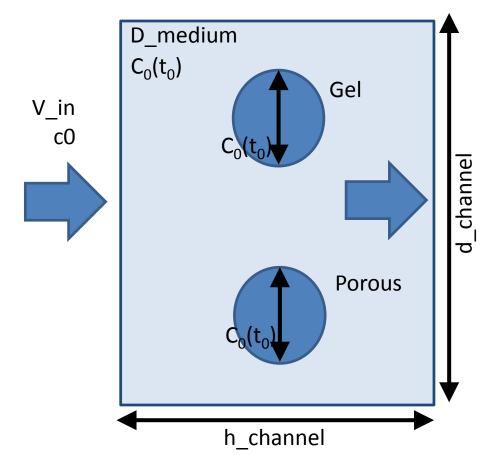
d_channel = 15 mm

h_channel = 10 mm

V_in -> 1E-4 m/s

 $D_02 -> 3E-9 \text{ m}^2/\text{s}$

 $D_{gel} -> 1E-9 \text{ m}^2/\text{s}$


CO -> 0.2 mM

C cr \rightarrow 2.64 μ M

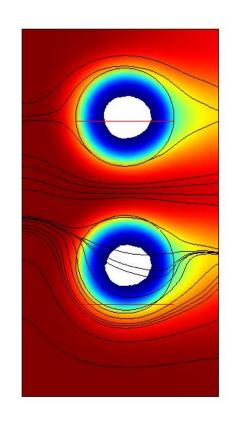
Rho -> 8E6 cells/mL

Vmax -> 7E-17 mol/s

Km -> $2.3E-3 \text{ mol/m}^3$

Consumo e diffusione di O2

Obiettivo:


Implementare un modello Comsol di due costrutti cellulari sferici del raggio di 2 mm, uno in gel e uno poroso (porosità 90%, permeabilità 1E-9 m²), perfusi all'interno di un canale di diametro 15 mm e lunghezza 10 mm, con consumo di ossigeno secondo la cinetica di Michaelis-Menten

Post-processing:

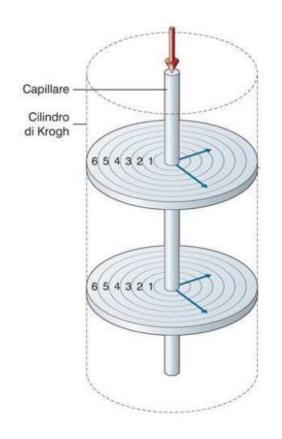
Plottare la concentrazione di ossigeno lungo il diametro degli scaffolds Calcolare la percentuale di cellule vitali in ognuno dei due scaffolds

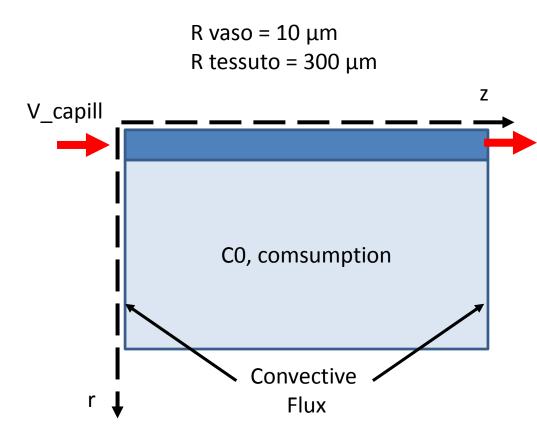
Obiettivo 2:

Implementare un modello tempodipendente, partendo dal modello stazionario

0.14

0.12


0.1



Modello del cilindro di Krogh

Obiettivo:

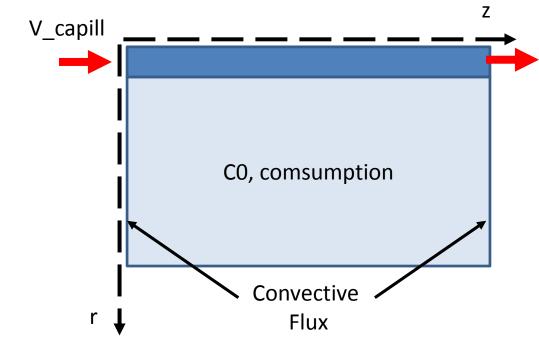
Implementare un modello 2D Comsol del cilindro di Krogh, assumendo che l'ossigeno legato all'emoglobina venga rilasciato immediatamente nel sistema vascolare.

Modello del cilindro di Krogh

Obiettivo:

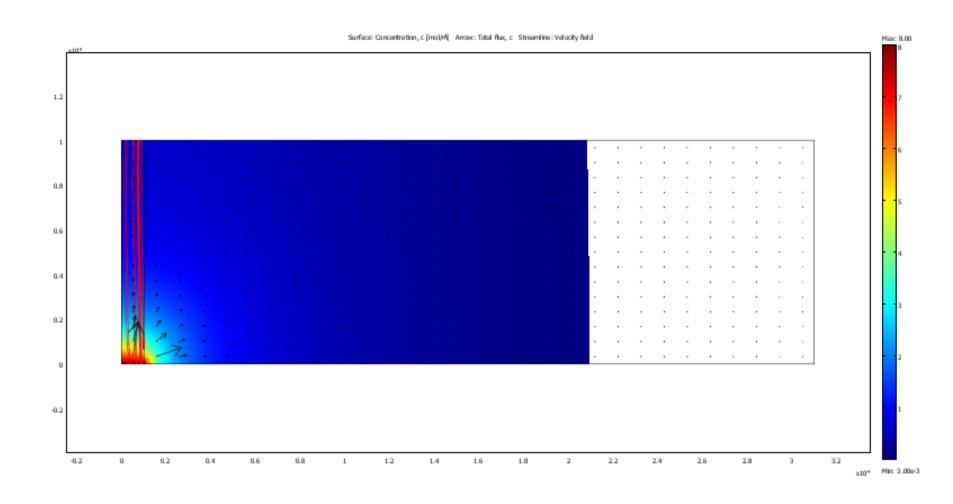
Implementare un modello 2D Comsol del cilindro di Krogh, assumendo che l'ossigeno legato all'emoglobina venga rilasciato immediatamente nel sistema vascolare.

Physics:


Convection-Diffusion Navier-Stokes

Dati modello:

D_O2 -> 3E-9 m²/s
CO -> 8 mM
cells -> tot human body
Volume -> uomo standard
R -> 5E-17 mol/s


Fino a che distanza radiale ho una concentrazione adeguata di ossigeno? $C cr = 2 \mu M$

R vaso = $10 \mu m$ R tessuto = $300 \mu m$

Modello del cilindro di Krogh

