## Mechanobiology

(old name Ing Tess e bioreattori)

The course book: **Fondamenti di ingegneria dei tessuti per la medicina rigenerativa.** Author/sMantero S, Remuzzi A, M.T. Raimondi, Ahluwalia A ISBN Code978-88-55-3039-2 Publisher :Patron: Number of pages212

# What is the course about?

- Tissue engineering
- Regenerative Medicine
- Physiological models
- Biomimicking tissues, organs and systems

# Why?

- ATMP is the bioengineering of the future.
- Biological engineering
- Design downscaled biomimetic in-vitro systems, understand how the big picture comes together.



### What is Tissue engineering?



The old cells on a scaffold approach

# 21 century tissue engineering (regenerative medicine)

Allopathy:a system of medical practice that aims to combat disease by use of remedies (as drugs or surgery) producing effects different from or incompatible with those produced by the disease being treated

New Regenerative medicine uses ATMP (advanced therapy medicinal products)

An ATMP is a medicinal product which is either:

•a gene therapy medicinal product

•a somatic cell therapy medicinal product (allogenic, autologus, or xenogenic)

•a tissue engineered product

### They all involve a degree of manipulation in-vitro

# Why do we need it?

(Lack of donor organs used to be the reason) Allopathy cannot "cure" 21° century diseases like :

- Ageing & degeneration
- Auto immune diseases
- Cancer
- Obesity
- Or genetic disorders

(what do they have in common?, what diseases can be cured with allopathy?)

# The main ingredient we manipluate in-vitro is the cell

### Stimuli

- Biochemical
- Physico-chemical
- Mechano-structural



Note even time has a role- thus a *dynamic* environment, is fundamental in all biological processes.

### monitoring/sensing/control is essential





#### Hierarchical organisation



Il corso- adesso Meccanobiologia, prima Ing Tessutale e Bioreattori

Faremmo un approccio bottom up

Sviluppo e morfogenesi : modelli Steinberg, Wolpert

Controllo biochimico, adesione e forza di adesione

Crescita e differenziazione.(cellule staminali, iPSC)

Recettori e communicazione: binding e secrezione

Controllo geometrico e tensegrity

Progettazione usando allometria e apporto nutrienti

I biomateriali e gli scaffold

Alcuni approci, pancreas, fegato, pelle ecc

Bioreactors and environmental control

### Characteristic distance 100-200 $\mu m$



**Functional unit**: collection of functional (parenchymal) and support (stromal or non-parenchymal) cells which do not require a capillary network. Is equivalent to a cube of 100 micron sides. In vitro these units are usually referred to as ORGANOIDS



### Functional unit

 Each organ is a network of the parallel functional units, composed of groups of functional cells or parenchymal supported by stromal cells, each unit has dimensions of a few hundreds of microns, and responds with characteristic times in the order of minutes. The micro-functional domains are repeated both in morphology and function.



Cardiospheres are a good example

# La cellula



Dovete sapere le funzioni dei componenti citoplasmici Quali sono i processi cellulari fondamentali?

DivsioneMorteMotoAdesioneDifferenzazione.....

Quali invece sono specifici a cellule specifiche? Fenotipo Genotipo Epigenotipo Le funzioni cellulari sono diverse da cellula a cellula e da tessuto a tessuto, e definiscono il **fentotipo** cellulare. Però alcuni processi sono comuni a tutte le cellule. I processi cellulari più noti sono:

- Proliferazione o crescita
- Migrazione
- Differenzazione
- Morte (apoptosi, necrosi)
- Metabolismo, respirazione
- Adesione
- Espressione proteica

# Cell growth: Hayflick limit and population doublings



### Fig. 1(a-c):*In vitro* population doubling time (PDT) of human bone marrow derived MSCs cultures in three sets. (a) Set 1 (b) Set 2 and (c) Set 3



 $\frac{dN}{dt} \propto N$  $\frac{dN}{N} = kdt$  $N = N_o e^{kt}$  $2N = N_o e^{kt_d}$  $t_d = \frac{k}{\ln 2}$ 

Rate of cell proliferation is proportional to cell number N= cell population  $N_{o}$  = initial population @t=0  $t_d$  =population doubling time

### La Matrice Extra Cellulare (vedere anche la roba di biomeccanica sul ECM)

| Matrice Extra Cellulare |                                                                                                                                               |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Componente              | Funzione                                                                                                                                      |  |  |  |
| Acqua                   | E' il mezzo di trasporto, ed è la componente più<br>importante degli organismi viventi. Rende inoltre<br>incomprimibile L'ECM,.               |  |  |  |
| Sali Minerali           | Mantengono un sistema tamponato                                                                                                               |  |  |  |
| Elastina                | Proteina strutturale                                                                                                                          |  |  |  |
| Fibronettina, laminina  | Proteine adesive specializzate, spesso glicosilate                                                                                            |  |  |  |
| Glicosamminoglicani     | Disaccaridi (ad esempio:acido ialuronico, eparina,<br>eparan solfato) che formano un complesso con le<br>proteine per formare i proteoglicani |  |  |  |
| Proteoglicani           | Complessi zuccheri-proteine che formano un reticolo macromolecolare o gel idratato, figura 4                                                  |  |  |  |
| Collagene               | Proteina strutturale e ligando adesivo                                                                                                        |  |  |  |



### LIGAND BINDING/RECEPTORS

Libro di Lauffenburger e Linderman



### Binding Glycocalyx: carbohydrates adsorbed on transmembrane proteins. It is negative, why? Membrane is 40% protein, 45% lipid and 5% carbohydrate 40 Α 100-200 Α

Eukaryotc Cell responses are regulated and controlled by receptor interaction with the environment. So parameters such as growth, death, differentiation, are studied by analysing receptorligand binding and the associated trafficking and signalling events.



**INSIDE OUT- OUTSIDE IN** 



#### An example of signal transduction pathways



**Signal transduction** occurs when an extracellular signaling<sup>[1]</sup> molecule activates a specific receptor located on the cell surface or inside the cell. In turn, this receptor triggers a biochemical chain of events inside the cell, creating a response.<sup>[2]</sup> Depending on the cell, the response alters the cell's <u>metabolism</u>, shape, <u>gene expression</u>, or ability to divide.<sup>[3]</sup> The signal can be amplified at any step. Thus, one signaling molecule can cause many responses.<sup>[4]</sup>

Receptors: Cell surface receptors (CSR). They interact with the extra cellular environment giving rise to <u>four types of signals</u>:

- •Nerve transmission
- •Hormone release
- •Muscle contraction
- •Growth stimulation

There are four types of messenger molecules.

•steroids

- small organic or inorganic moleculespeptides
- •Proteins

<u>The messengers may be</u> •Endocrine: usually hormones •autocrine •paracrine : usually cytokines •juxtacrine

There are 4 classes of ligand bound receptor signal transduction models

- •ion channel receptor (fast ms, low affinity)
- •G protein linked receptor (second messenger involved)(medium, mins, med affinity) (GPCR)
- Receptors which are also enzymes (slow, high affinity)
- •Tyrosine kinase linked receptors (enzyme which adds a phosphate group to proteins at tyrosine residues...ie phosphorylation)

A variety of messengers can bind to various tissues.

Various cellular responses may occur, depending on the tissue.

Either positive or negative responses may occur, even in the same tissue,

depending on the type of receptor.

The response of a cell to a messenger depends on the number of receptors occupied. A typical cell may have about 1000-3000 receptors.

Only a small fraction (10%) of the receptors need to be occupied to get a large (50%) response.

Receptors may have a dissociation constant of about 10<sup>-11</sup>; this is the concentration of messenger at which they are 50% saturated. Thus very low concentrations of messengers may give a large response.

| Receptor    | Ligand      | Cell        | R <sub>T</sub> (#/cell) | Kf (M <sup>-1</sup><br>min <sup>-1</sup> ) | Kr (min <sup>-</sup> | Kd (M)  | T95%<br>(min) |
|-------------|-------------|-------------|-------------------------|--------------------------------------------|----------------------|---------|---------------|
| Fc          | Fab         | macrophage  | 7.1e5                   | 3e6                                        | 0.023                | 7.7e-10 | 650           |
| EGF         | EGF         | Rat lung    | 2.5e4                   | 1.8e8                                      | 0.12                 | 6.7e-10 | 12.5          |
| Fibronectin | Fibronectin | fibroblasts | 5e5                     | 7e5                                        | 0.6                  | 8.6e-7  | 2.5           |
| Transferrin | Transferrin | hepatocytes | 5e4                     | 3e6                                        | 0.1                  | 3.3e-8  | 15            |



We consider a model of receptor-ligand binding in which binding is monovalent and interfering effects are absent. kf and kr are the kinetic association and dissociation constants.

R=number of receptors per cell

```
C=number of complexes per cell
```

L=conc of ligand in the ECM (moles/liter)

kr=t<sup>-1</sup>

 $kf = M^{-1}t^{-1}$ 

N=number of cells per unit volume

ok