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Abstract— Sensing contact forces can be a key enabler for
higher order dexterous manipulation in robotic hands. To sense
the full range of contact pressure distribution would provide the
best solution, but it is in practice unfeasible when considering
very deformable and adaptable hands. This paper proposes an
approach to estimate the contact forces acting on an under-
actuated adaptable hand by combining the compliance model
of the hand with the geometric configuration of the hand itself.
This is done by introducing reasonable assumptions about the
net contact force on each phalanx. The proposed method is
introduced and experimentally validated on two fingers of the
Pisa/IIT SoftHand.

I. INTRODUCTION

Over the years, several hand designs were proposed to try
to match the level of dexterity of the human hand. Among
them soft hands are getting increasing interest [1] [2] [3].
With the term soft hand we refer to a class of under-actuated
hands presenting a soft behavior, as a result of the embedding
of elastic elements with either fixed or variable mechanical
characteristics [4], combined with the use of under-actuation
[5]. Among them the Pisa/IIT SoftHand [6] and its evolutions
[7] [8] are soft hands implementing the concept of soft
synergies [9]. In this model the reference posture for the
hand is generated as a combination of a reduced set of
basic movements, called synergies [10]. The physical hand
is attracted towards the reference posture by forces which
are generated by the internal hand impedance, but it is also
repelled by interaction forces generated by the contact with
the environment. The actual hand posture naturally results as
the equilibrium between these two actions.

Thanks to their intrinsic compliance, soft hands enable
new paradigms in planning and control of grasping, moving
from the timid approach of traditional rigid and fragile hands,
to a more daring one [11]. In [12] it is discussed how humans
are able to exploit objects and environmental constraints
to functionally shape their hands. Analogously soft hands
are mechanically able to go beyond their nominal kinematic
limits by exploiting their structural softness. Furthermore in
[6] it is shown that is possible to perform effective grasps
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Fig. 1. An under-actuated soft hand grasping an object. Finger with a
contact force applied on close much less than fingers not in contact with
the object. Thus by looking to the hand posture is possible to infer which
fingers are in contact and which are not. This is the simple intuition that
motivates the present approach.

with just a rough knowledge of the object to be grasped and
of the environment. This diverts strongly from traditional
grasping strategies designed for rigid fully actuated hands.

Soft hands are also interesting because they require and
promote novel approaches in sensing. Conforming naturally
to the environment, information coming from the hand state
can be used to infer information about the environment itself
and about the nature of the interaction. In [13] the geometry
of an object grasped with a soft gripper is estimated from the
gripper configuration, while in [14] the hand displacement is
used to infer the location of an incidental collision. More
recently in [15] authors consider the problem of deriving
tactile data solely from proprioceptive sensors attached to
the actuator of an under-actuated finger.

In this work we face the problem of estimating contact
forces in a class of under-actuated hands which includes
those whose design is based on soft synergies [6]. In the
state of the art, a lot of effort was devoted to the design of
sophisticated solutions for force sensing, successfully used
with many robotic hands. However such solutions tend to
be expensive and bulky [16]. Other studies face the problem
of deriving force information from other sources. Examples
are [17] and [18] where forces are estimated from vision,
and [19] where the presence of an impact is estimated from
kinematic measures.



We propose here a method to estimate contact forces just
by sensing static posture measures. The underling idea of
the method is to consider the differences between actual
posture and the reference hand posture. From that informa-
tion, contacts and interaction forces are estimated relying
on the knowledge of hand compliance. Fig. 1 suggests the
intuition behind our approach: for a given command on
the hand actuator the thumb and index do not close as
much as the other fingers because of the contact forces.
The performance of the proposed method is still to be fully
tested, and the authors do not expect to reach the levels of
accuracy typically achieved by traditional and commercial
grade sensors. Nevertheless we believe that this technology
is still promising for a set of applications that range from
low-cost systems, to grasp acquisition acknowledgment.

The paper is organized as follows in section II the problem
is defined and in section III a naive solution is shown to be
ineffective. In section IV the estimator is introduced and in
section V its theoretical performance is tested in simulations.
Section VI defines the details of the application of our
method to the kinematics of the Pisa/IIT SoftHand fingers
and finally in section VII experimental results are provided,
supporting the effectiveness of the method.

II. PROBLEM STATEMENT

A broad class of robotic hands, characterized by under-
actuated mechanisms and comprising elastic return elements,
can be described [20] by the system{ Rq = x

JT fext = RT f −E(q) ,

(1)

(2)

where q ∈ Rn is the vector of the Lagrangian joint coor-
dinates, x ∈ Rs is the vector of the generalized actuators
displacements1, R ∈ Rs×n is the transmission matrix, that
maps displacements of the joints in displacements of the
actuators, f ∈ Rs is the vector of the generalized actuator
forces, fext ∈RM is the vector that collects all the wrenches
acting the various contact points2, while J ∈ RM×n is the
matrix formed by the juxtaposition of all the Jacobians in
each contact point Ji(q) as in

JT =
[
JT

1 ,J
T
2 , · · ·

]
. (3)

An illustration of the previous equations is shown in Fig. 2.
This paper considers the problem of reconstructing the set

of the contact wrenches acting on the hand based on the sole
knowledge of the robot hand model, its joints configurations
q, and its actuators generalized forces f . With reference to
(2), this means reconstructing the value of the vector fext.

The more general instance of this problem can be easily
shown to be unsolvable: if a system F1 of two or more forces
act simultaneously on the same phalanx of the hand, the net
effect of that system of forces onto the robot mechanism is

1note that since the hypothesis of under-actuation, n≤ s
2the dimension M is equal to 3 times the number of contact points if

rigid contact is assumed, or 6 times the number of contacts if soft contact
is accounted for [21].

Fig. 2. Schematic of an under-actuated robotic hand with elastic
return mechanisms grasping an object. Refer to the text for the
definition of the symbols.

indistinguishable from another set F2 with equal resulting
wrench. Thus distinguish F1 from F2 is impossible, as any
other system of forces with same resulting wrench.

So we will limit our problem to the reconstruction of
the total wrench fext,i acting on each phalanx. Note that
in the case that a unique point contact is indeed acting to
the phalanx, the knowledge of the total wrench fext,i can be
combined with knowledge of the phalanx geometry (e.g. with
the algorithms proposed in [22]) yield also reconstruction
of the contact point. Otherwise, in the hypothesis of a
distribution of contact pressure, the same algorithms can be
used to reconstruct a point on the convex closure of the
surface in which the force of the wrench can be considered
to be applied, called centroid of contact (see again [22] for
more details).

Finally, in delineating the outlines of our problem we
limit our analysis to planar fingers with pin joints orthogonal
to the plane. This simplifying step will allow us an easier
dissertation of a complex problem. Nevertheless, the results
of our approach can still yield meaningful results in realistic
use cases, being the planarity of fingers rather common
among robot hands.

III. NAIVE SOLUTION

By evaluating Eq. (2) when fext = 0, we obtain the force
balance along the synergistic closure

0 = RT f −E(q?) , (4)

where q? ∈ Rn is the hand free closure. Subtracting it from
Eq. (2) leads to

JT fext =−(E(q?)−E(q)) . (5)

This balance clearly relates the differences between actual
and free closures q and q? to the external wrenches JT fext
through the elastic field E. For linear elastic fields this
relation is further empathized in JT fext =−E (q−q?).

Ideally an estimator for the external forces can be obtained
by expliciting fext as

fext =−J−T (E(q)−E(q?)) . (6)



(a) Real Forces (b) Pseudoinverted Forces

Fig. 3. Even in a very simple grasp (a), to regress the interaction forces
through pseudo-inversion generates incoherent results (b). The algorithm
identifies just a force, exerted on the third phalanx outside the range of the
finger.

This approach however present a main limitation: the Ja-
cobian matrix J(q) is in general not invertible. Indeed for
a planar finger with no knowledge of contact points the
Jacobian is the non-square matrix J(q) ∈ Rn×3n, where n
is the number of joints.

A straightforward method to solve this redundancy could
rely on the use of Moore-Penrose pseudo-inversion J+T (q).
Being the number of unknowns larger than the number of
equations, this method would brings to a solution compatible
with the system of equations. However there are at least two
strong limitations to what the algorithm can do.

First, among all the possible solutions, pseudo-inversion
takes the one of minimum norm. But there is a problem
in defining norm for wrenches: being them composed by
a mixture of forces and torques, they must be normalized
with respect to some characteristic values. These values are
in general arbitrary and in practice can be hard to find.
Moreover the goodness of the solution has some amount of
dependence on them, so it is not unique.

Second, the choice of minimizing the norm of the solu-
tion can imply considering solutions that are clearly non-
compatible with the physical reality. To further clarify this
point we report in Fig. 3 the example of a 3-DoF finger
grasping a sphere. Each phalanx is consider of the same
length L. The finger is in contact with the object in the
middle point of each phalanx. As result of the grasping, two
forces F are exerted on the medial and distal phalanges,
as in Fig. 3(a). The corresponding external torque on the
joints is RT f −E(q) =

[
0 −L

2 F −L
2 F
]T . By solving (6)

through pseudo-inversion, i.e. as J(q)+(RT f − E(q)), the
estimation in Fig. 3(b) results. Notice in particular how a
pair of identical forces applied in the center of the phalanges
is translated in one force applied on just one phalanx along
a line that is not compatible with the phalanx geometry.

IV. PROPOSED ALGORITHM

As the previous section clearly showed, there are important
motivations to avoid solving the redundancy of equation (5)
with a simple pseudo-inverse. The most overwhelming is that
the pseudo-inverse based solution leads to the reconstruction
of forces that are manifestly not compatible with our insight

of the hand-environment system and its physical constraints.
This is why we propose to solve redundancy by incorporating
this knowledge of the system in the form of a set of
reasonable simplifying hypotheses that constrain the solution
of the problem within the domain of physical sense.

A. Hypothesis H1: localized contact.
As it is clear in Fig. 3(b), the most manifest incoherence

of the pseudo-inverse approach is the generation of solutions
corresponding to forces applied on lines that do not intersect
the geometry of the phalanges. This is inconsistent with any
real system of contact forces applied to the phalanx body on
its surface. So, to reduce the space of the possible solution,
we start by including the constraint that forces can occur
only in the phalanges and not outside them.

The most general form of the contact Jacobian J has
a structure as in equation (3). To include constraint H1,
given the frame attached to each phalanx, describe the set of
points inside the i-th phalanx as an implicit function of two
variables ui,vi as in

pi =
[

px,i(ui,vi) py,i(ui,vi)
]
, (7)

such that ui,vi ∈ [0,1] (or other similar closed compact
intervals). Then consider only the force component of each
Jacobian but parametrized with respect to ui,vi. The full
contact Jacobian would have a shape of the form

JT
c =

[
JT

1 (u1,v1), JT
2 (u2,v2), · · ·

]
, (8)

Where the subscript c is for constrained. At this point our
problem becomes JT

c fext =−(E(q?)−E(q))
ui ∈ [0,1]
vi ∈ [0,1]

(9)

Note that the space of the problem solution shrunk by n
unconstrained variables (all the contact torques) but grew by
2n constrained variables and became non-linear. This can be
considered as an inconvenience. To overcome this limitation,
a stronger assumption can be substituted to H1, namely H1∗:
• Given that the geometry of the phalanges is in general

small with respect to that of the full hand, assume that
forces are applied exactly in the middle of each phalanx
(see Fig. 5(a)).

As we will see in our application (sec. VI) this hypothesis
is particularly reasonable due to the phalanges geometry and
dimensions. Under this assumption the set of feasible ui and
vi for each phalanx collapses to one point ui = ui∗,vi = vi∗.
This leads to the new formulation of the problem as

JT
c∗ fext =−(E(q?)−E(q)) , (10)

where
JT

c∗ =
[
JT

1∗,J
T
2∗, · · ·

]
. (11)

and each JT
i∗ = JT

i (ui∗,vi∗). Note that now the new problem
shrunk by the 2n variables ui,vi and become, once again,
linear (Jc∗ is constant). The new problem is n variables
smaller than the original 5 (each JT

i∗ has one column less
than the corresponding JT

i ). However JT
c∗ is not square, thus

no straightforward solution can still be found.
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Fig. 4. Simulative results performed in the case of external forces non-orthogonal to the phalanx. We consider forces in [0.25,0.75]N, exerted respectively
on Proximal phalanx (a), Medial Phalanx (b), Distal Phalanx (c). γ is the angle that force has with its orthogonal. The line indicates the mean, the band
contains all the simulated evolutions for M = 0. The dotted lines represent maximum and minimum performance also considering an external torque
M ∈ [−2,2]Nmm.

B. Hypothesis H2: friction cone compatibility.

Another constraint that will help containing the space of
the possible solutions is that imposed by friction: assuming
that the hand contact reached a steady state, the forces
exchanged between the phalanges and the world should be
compatible with the friction cone. This can be modeled in
the most general case as a non-linear constraint involving
the ratio between the different components of the contact
wrenches represented on a reference frame defined with
respect to the normal and tangent direction on the point of
the contact. For example, if we indicate the normal to the
phalanx surface on the contact points with ni(q), this changes
the original problem in{

JT fext =−(E(q?)−E(q))
< fext,i,ni(q)> /|| fext,i|| ≥ cos(αi) ,

(12)

where αi is the angle of static friction cone on the i-th
contact, < ·, ·> is the scalar product, and || · || is the euclidean
norm.

Note that hypothesis H2 shrinks the space of the feasible
solutions by adding n non-linear inequalities. Once again the
non-linearity of the constraint can present difficulties during
the solution phase, so we introduce a stronger version of
hypothesis H2, justified by the domain of application of
hands is for a large part defined by the task of grasping3.
Hypothesis H2∗ is
• Given the typical contact condition of the hand on

objects during grasping, we assume that forces are
orthogonal to the contact surface of each phalanx.

H2∗ has the effect of collapsing the friction cone to a ray
originating from the contact point and directed toward the
phalanx. Combing H2∗ with H1∗ reduces problem (10) to{

JT
c∗ fext =−(E(q?)−E(q))

fext,i = ni|| fext,i|| .
(13)

Substituting λi = || fext,i|| the system becomes{
JT

c∗Nλ =−(E(q?)−E(q))

λi ≥ 0 ,

(14)
(15)

3The robustness of the system to slight deviation from the assumptions
H1∗ and H2∗ will be discussed in the following sections.

where

N =


n1(q) 0 · · · 0

0 n2(q)
. . .

...
...

. . . . . . 0
0 · · · 0 nn(q)

 . (16)

Note that now the matrix Jr , JT
c∗N is square, thus the

problem becomes a linear square problem of size n with
n linear inequality constraints added, expressed by (15).

If Jr is invertible, which we will assume, problem (14) can
be solved as

λ̂ = J−T
r (q)(EP,k(q?)−EP,k(q)) , (17)

which leads to

f̂ext = N(q)λ = N(q)J−T
r (q)

(
EP,k(q?)−EP,k(q)

)
. (18)

Constraint (15) can be used to check the validity of the
solution. To account for imprecision in the solution, coming
from deviations from the hypotheses H1∗ and H2∗, we
modify the algorithm in its final form by introducing the
hypothesis of non-adhesive forces

f̂ext = N(q)[J−T
r (q)(EP,k(q?)−EP,k(q))]+ , (19)

where f̂ext ∈Rn is the estimation of contact forces, and [ · ]+
is the element-wise saturation to positive values.

V. SIMULATION RESULTS

To understand the limits of performance of the proposed
algorithm, we test its behavior with respect to relaxations
on the assumptions H1∗ and H2∗. The simulated system is a
planar finger, with three phalanxes, actuated through a single
motor {

J(q)T fext = RT f −E(q)
f̂ext = [J−T

r (q)(E(q?)−E(q))]+ .
(20)

We evaluate the reconstruction quality as the 2−norm of the
normalized difference between reconstructed external forces
f̂ext and the actual ones fext

|| f̂ext− fext||
|| fext||

. (21)



We consider here the i−th element of the external force as
fext,i =

[
1 sin(γ)

]T Fi, see Fig. 6(a). By varying γ we set
the distance of the force exerted from the orthogonality hy-
pothesis. We consider here a quite large friction cone of γ ∈
[−π

4 ,
π

4 ]. We simulate the system (20) for f ∈ [25,75]Nmm,
Re = [10 10 10]mm. The non linear model of the elastic field
E(q) is taken as the one of our hardware, that we present in
the next sections, with P = [0 0 0], k = [0.5 0.5 0.5]Nmm

rad ,
R = [1 1 1]mm. We consider three scenarios, in each one
the force is applied on a single phalanx Fi ∈ [0.25,0.75]N.
We also consider a torque applied to the same phalanx
Mi ∈ [−2,2]Nmm. Fig. 4 presents the resulting values of the
cost index. The solid line indicates the mean performance,
the band contains the simulated evolutions for Mi = 0. The
dotted lines refer to the best and worst performance for
a fixed γ . As expected, estimation error is null when the
orthogonality hypothesis is verified, i.e. when γ = 0. The
estimation error increases as the hypothesis is relaxed, i.e.
for increasing values of |γ|. However, results show that for
the considered range of parameters the relative error remains
in the worst case under 0.5 by considering a maximum force
inclination of γ = 0.3rad. Maximum mean errors are 0.6 for
a force exerted on the proximal phalanx, 0.8 for a force
exerted on the medial phalanx, and 1.0 for a force exerted
on the distal phalanx.

VI. APPLICATION TO THE PISA/IIT SOFTHAND
To apply the proposed algorithm to Pisa/IIT SoftHand we

must first derive the form of its reduced Jacobian and its
potential field. Together with the elastic term we consider
here also the effects of gravity.

A. Reduced Jacobian
Every finger of Pisa/IIT SoftHand (Fig. 5) is composed

by a set of phalanges implementing a CORE type joint [23].
Abduction joints are neglected in this analysis. Fig. 6(a)
shows the kinematic model of a single joint in rest and flexed
position. A pure rolling constraint between the two phalanxes
is modeled through a virtual link (dashed in figure), with no
mass, with the two associated angles constrained to be equal.

Therefore the finger kinematics is obtained as 6R model
with three equality constraints that reduce the total number
of DoF to 3. The reduced Jacobian JT

r (q) is

JT
r =

a11 a12 a13

0 a22 a23

0 0 a33

 ∈ R3×3 , (22)

with

a11 = Dcos( q1
2 )+L

a12 = D[cos(q2 +
q1
2 )+2cos( q2

2 )]+L[1+2cos(q2)]

a13 = D[cos(q2 +q3 +
q1
2 )+2cos(q3 +

q2
2 )+2cos( q3

2 )]

+L[2cos(q2 +q3)+2cos(q3)+1]
a22 = Dcos( q2

2 )+L
a23 = D[cos(q3 +

q2
2 )]+2cos( q3

2 )+L[2cos(q3)+1]
a33 = Dcos( q3

2 )+L ,
(23)

where L is the link length, and D is the virtual link length
(i.e. the diameter of the primitive circle of the two gears, see
also Fig. 6(a)). qi is the i− th element of q. It is worth to
notice that the algorithm is well posed since JT

r is always
invertible for qi > 0, L > 0, D > 0.

B. Non Linear Spring Model

In the Pisa/IIT SoftHand the elastic force E(q) is im-
plemented through a set of elastic ligaments. Each element
connects two consecutive phalanxes as in Fig. 6(b). Even
if we consider each ligament as a linear spring, the overall
compliance characteristic is non-linear due to the kinematics
of the connection. Indeed the i-th spring displacement due
to variations of qi can be written as

∆li(qi) = 2Ri[cos(
qi

2
+βi)− cos(βi)+Pi] , (24)

where Ri is the envelope radius of the finger, βi is the angle
of the spring connection with respect to the horizontal, Pi is
the pre-stretch of the elastic (i.e. its displacement when qi =
0). Note that Ri and βi are accurately known by design, Pi
instead can vary from element to element, due to fabrication
dispersion.

Being the spring energy for each joint 1
2 ki∆l2

i , where ki is
the i-th spring elastic constant we obtain, by derivation, the
i-th component of the elastic field E(q) as

4kiR2
i [cos(βi)− cos(βi +

qi

2
)+Pi]sin(βi +

qi

2
) tanh(ks

qi

2
) ,

(25)
where tanh(ks

qi
2 ) is heuristically added to take into account

the effect of the joint limits. ks is a suitable constant chosen
as a trade-off between accuracy and smoothness (in the
following we consider ks = 80Nmm). It is worth noticing
that a variation of ki changes mostly the slope of the
characteristic, while a variation of Pi adds an offset to the
curve.

C. Gravity torque

In the case of availability of hand posture measurement
also the compensation of gravity can be included as

G(q) = JT (q)(R(q)⊗ [1 ,1 ,1])
[
FT

g1 FT
g2 FT

g2
]T

, (26)

where ⊗ is the Kronecker product, J(q) is the full Jacobian,
Fgi = [0 ,0 ,mig]T is the weight force acting on link i defined
by mi, the mass of the i−th link and g, the gravity accelera-
tion. R(q) is a rotation matrix opportunely parametrized by a
set of three angles included in q∈R9. Neither J(q), nor R(q),
are explicitly reported here for the sake of space. Note that
all the elements appearing in G(q) are already considered
known by design, and so they can be directly compensated
during the calibration procedure.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

To experimentally validate the proposed method, we de-
veloped a gripper adopting two fingers of Pisa/IIT SoftHand,
derived from the one described in [24]. The gripper design
will be made openly available as part of the NMMI platform



(a) (b) (c)

Fig. 5. Pisa/IIT SoftHand finger with main variables underlined. (a) shows the contact force Fi point of application. γ is the angle of a generic force
applied in the same contact point w.r.t. Fi. (b) shows the whole finger structure. qi is the angle between i-th and previous phalanxes. (c) presents the
kinematic model of the finger, a 6R serial robot, with 3 equality constraints. Also the contact forces F1,F2,F3 are reported.

(a) Rest (b) Rest

(c) Flexed (d) Flexed

Fig. 6. Interphalangeal joint, a realization of CORE joint. Due to the pure
revolution constraint between the two phalanxes we model a single joint as
an RR arm, with a mass-less intermediate link, and an equality constraint
between the two angles. The interphalangeal spring system is represented in
rest (a) and flexed (b) positions. qi is the joint angle, β is the angle of the
spring connection with respect to the horizontal, Ri is the envelope radium

[8]. On each phalanx there is an IMU and a normal force
sensor. In this work we will use the force sensors as ground
truth to compare the results of the proposed algorithm. The
IMUs readings are used to reconstruct the hand posture.

B. Algorithm

Fig. 7(b) shows a scheme of the implemented algorithm,
with its two inputs: the measure of the motor current i,
and the measure of accelerations a and angular velocities
ω from the IMUs. We estimate the motor torque from the
current by considering the simple static relation f = αM i,
where αM is the product of motor torque-current constant
and the gear ratio. Joint angles q ∈ R6 are estimated from
acceleration a and angular velocity ω , coming from IMU
measurements, through an implementation of passive com-
plementary Mahony filter [25]. The particularity of this filter
is to not directly integrate accelerations a but to use them to

measure the gravity acceleration, and thus regress the rotation
w.r.t. to the local vertical. The time discrete dynamics of the
filter is

Ai
n = Ai

n−1 +Ai
n−1(δn +Ω)∆t , (27)

where Ai
n−1 is the rotation matrix at the step n−1 from the

i−th IMU frame to a fixed inertial inertial one. Ω is the
skew matrix of the angular velocity ω at the step n, and
δn is a correction factor which depends linearly from the
cross product between the acceleration a in IMU frame and
the gravity g considering the rotation An−1. Finally ∆t is the
time between two steps. The i−th element of q is evaluated
by looking to the rotation matrix that maps Ai−1

n into Ai
n. See

[24] for more details. The force and joint angle estimations
f and q are then used to estimate the contact forces f̂ext,
according to the proposed algorithm.

Model parameters are all known by design, except to P,k
which were estimated by solving

argmin
P,k

m

∑
i=1
||RT f̃ i−EP,k(q̃i)||2 , (28)

where f̃ i and q̃i, for i ∈ {1 . . .m} are m measures acquired
from a single closure (see Fig. 8). The problem is non-
convex, so we solved it by an exhaustive evaluation of
the cost function in the value of an opportune lattice of
the interval [0,30]Nmm

rad × [0,30]Nmm
rad × [0,30]Nmm

rad for the
stiffness k and [0,3]× [0,3]× [0,3] for the pretension P. The
result is refined through a classic gradient-descent algorithm,
implemented in MatLab function FminCon.

C. Results

The following parameters resulted from the identi-
fication procedure: k =

[
0.23 0.34 0.26

]T Nmm
rad , P =[

0.72 0.51 0.65
]T . Fig. 9 shows the comparison between

joint torque estimated through elastic and gravitational model
EP,k(q)+G(q) and the current used by the motor RT αM i.
The two trends match with a good accuracy, with a dis-
crepancy in the first 15s probably due to the presence of
un-modeled friction effects. This translates in errors of less



(a) Testbed (b) Scheme

Fig. 7. To evaluating the proposed algorithm in a realistic condition we designed the experimental setup in (a). It is a two-fingered planar gripper with
6-DoF, actuated by the motor (3) through the single tendon (1) connected to the pulley (2). The motor angle is acquired through the encoder (4). Each
phalanx is equipped with an IMU (7) providing measures of angular velocity and acceleration, and a normal force sensor (8) as benchmarking. The low
level control is implemented in the custom board (5). (b) presents the scheme of the employed algorithm, combining the one proposed in this work with
a Mahony fitler for the estimation of joint angles and with a simple static estimator of motor generalized force.

(a) (b)

(c) (d)

Fig. 8. Photo-sequence of the gripper free-closure.

than 0.1Nmm in estimating forces during the free closure of
the gripper.

The ability of the algorithm in estimating interaction
forces is evaluated through the grasping of three cylinders
of different radii and softness: 30mm rigid, 60mm rigid,
60mm soft. The two rigid objects are covered with a layer
of neoprene, to increase the dimension of friction cone to
further reduce the similarity with the imposed hypothesis.

Fig. 10 shows the final posture of the grasp for the
three objects. Fig. 11 shows the evolution of both estimated
and measured forces. In all the three cases the algorithm
successfully locates phalanges which are in contact. A good
resemblance is present between force trends and magnitude
individuated by the algorithm and measured by the sensors.
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Fig. 9. Comparison between joint torque estimated through elastic and
gravitational model EP,k(q)+G(q) and the current used by the motor RT αM i
for the left finger of the gripper.

(a) (b) (c)

Fig. 10. Final grasping configuration for the three objects considered in
the experiments.

VIII. CONCLUSIONS

In this work we proposed an algorithm to estimate inter-
action forces in an under-actuated robotic hand. To solve
analytically the problem we formulated reasonable hypothe-
ses on the nature of such forces. The algorithm was then
explicitly derived for a finger of Pisa/IIT SoftHand, and
experimentally tested. Future work will be devoted to include
in the algorithm compensatory terms taking in account
neglected effects, and to test the algorithm effectiveness in
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(a) Large Cylinder
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(b) Sponge
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(c) Small Cylinder

Fig. 11. Measured and estimated interaction forces for the left finger
of the gripper during the considered experiments. Forces estimated by the
algorithm present same trend and magnitude of the measured ones, also
allowing to correctly detect the phalanx in which the contact occurs

different experimental setups.
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